
Iterativeminimization ofH2 control performance criteria 1

Alexandre S. Bazanella a,b Michel Gevers b Ljubǐsa Mǐsković b
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Abstract

Data-based control design methods most often consist of iterative adjustment of the controller’s parameters towards the
parameter values which minimize an H2 performance criterion. Typically, batches of input-output data collected from the
system are used to feed directly a gradient descent optimization - no process model is used. A limiting factor in the application
of these methods is the lack of useful conditions guaranteeing convergence to the global minimum; several adaptive control
algorithms suffer from the same limitation. In this paper the H2 performance criterion is analyzed in order to characterize
and enlarge the set of initial parameter values from which a gradient descent algorithm can converge to its global minimum.

1 Introduction

Control performance criteria are a key element in con-
trol systems theory. Not only are they fundamental from
a conceptual point of view but this concept also leads to
a large variety of control design methods, which are for-
mulated as optimization problems. The solution of these
optimization problems usually relies on full knowledge
of the process to be controlled and of the characteris-
tics of its disturbances. Often it is also required that the
controller’s transfer function can be freely chosen. These
conditions are often not fulfilled in practice, which moti-
vates the development of methods for the design of fixed
structure regulatorswith partial or even conceivably no a
priori modelling of the process. The minimization of the
performance criterion, in these methods, is performed
directly from data collected from the system, which mo-
tivates the designation data-based control design.

Several data-based control design methods explicitly op-
timizing performance criteria have appeared in the lit-
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erature, with different approaches and for different per-
formance criteria. These criteria express either one or a
combination of the fundamental control objectives: ref-
erence tracking, noise rejection, and economic use of con-
trol energy. In [16] an iterative procedure based on spec-
tral analysis, named Frequency Domain Tuning (FDT),
has been proposed for the minimization of an H2 perfor-
mance criterion for a system with zero reference; hence,
no tracking objective is pursued. The Virtual Reference
Feedback Tuning (VRFT) method [8][9] is based on a
clever manipulation of variables which transforms an H2

performance criterion into one which is quadratic in the
design parameters. The resulting quadratic cost func-
tion can be minimized directly, so that no iterations are
required. However, only the reference tracking objective
is treated (unless a two degree of freedom controller is
used, as in [19]) and the global minimum of the result-
ing quadratic function coincides with that of the original
criterion only under ideal conditions. Not suffering from
this second limitation, but again an iterative procedure,
is Correlation-based Tuning (CbT) [18][17], which uses
instrumental variable ideas to eliminate the deleterious
effect of noise in the achievement of its reference track-
ing objective. Data-based optimization of a general H2

performance criterion appears in [14]. There, a method
for obtaining an unbiased estimate of the gradient of the
cost function directly from closed-loop data is proposed;
this method has been named Iterative Feedback Tuning
(IFT). IFT is discussed in depth in [13][12] and extended
in [23] to even more general performance criteria, which
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contain robustness enhancement objectives.

It has been found that a limiting factor in the appli-
cation of data-based control design is the possible lack
of convergence to the global minimum of the criterion.
Closely related is the problem of convergence of model
reference adaptive control (MRAC) algorithms, which is
also formulated as the optimization of an H2 criterion.
The fundamental difference between MRAC and data-
based design is that in MRAC, controller updates are
made at each time sample, whereas in data-based control
design each controller update is done based on a batch
of data. Convergence of MRAC is a thoroughly stud-
ied subject [5][10]. Convergence properties of IFT have
also been studied but not fully established [11]. Typi-
cally, convergence to local minima cannot be excluded,
even under ideal conditions. The convergence problem
is usually approached, in data-based control design as
well as in adaptive control, through analysis of the opti-
mization algorithm. Remedies to lack of convergence are
accordingly prescribed as modifications to the optimiza-
tion algorithm, usually adhoc and requiring additional
experiments or complexity of the algorithm.

In this paper, we take a different approach to the prob-
lem of securing convergence to the global optimum of
H2 performance criteria via a data-based approach. We
do not concern ourselves with analyzing or deriving al-
gorithms to solve the optimization problem; instead, we
focus on the cost function itself. If the cost function to be
optimized is sufficiently “well-behaved”, then the prop-
erties of any one specific optimization procedure become
less material for the purpose of assuring convergence:
any (correct) algorithm will converge properly. We thus
aim at requiring simpler algorithms and less data for the
optimization - and simplicity is a major credential for
a data-based design algorithm. In contrast with some
other data-based schemes mentioned above, we deal with
general H2 optimization, which includes tracking, noise
rejection and control effort.

Our principal concern is to give intuitively meaningful
and appealing conditions for the set of parameter val-
ues that are guaranteed to lie within the domain of at-
traction of the global minimum of a performance index,
when minimization is attempted using gradient descent
approximations. When these conditions are not satisfied
by the desired criterion, we show how it can be changed,
possibly with the use of intermediate criteria that do sat-
isfy these conditions and whose minima converge to the
minimum of the desired criterion. The idea behind the
introduction of intermediate criteria is to enlarge the do-
main of attraction to the global minimum of the global
procedure without compromising the final performance.
This procedure has been baptized cost function shaping.

The paper is organized as follows. Notation, definitions,
preliminary results and a formal statement of the prob-
lem are presented in Section 2. The core of our analysis

appears in Section 3. There the H2 performance crite-
rion is broken up into three terms, each one representing
one of the fundamental control objectives. It is shown
that, under some structural hypothesis, the three terms
present a similar analytical structure which allows the
derivation of convergence properties. Then the cost func-
tion shaping is presented in Section 4. In Section 5 the
effect of relaxing the previous structural assumptions is
analyzed. A closing discussion is given in Section 6.

2 Preliminaries

2.1 Definitions

Consider a linear time-invariant discrete-time single-
input-single-output process

y(t) = G(z)u(t) + ν(t) (1)

In (1) z is the forward-shift operator, G(z) is the process
transfer function, u(t) is the control input and ν(t) is
the process noise. The noise is a quasi-stationary process
which can be written as ν(t) = H(z)e(t) where e(t) is
white noise with variance σ2

e . Both transfer functions,
G(z) and H(z), are rational and causal (proper). It is
assumed that H(∞) = 1, that is the impulse response
h(t) of the filter H(z) satisfies h(0) = 1.

This process is controlled by a linear time-invariant con-
troller which belongs to a given - user specified - class
C of linear transfer functions. This class is such that
C(z)G(z) has positive relative degree for all C(z) ∈ C;
equivalently, the closed loop is not delay-free. The con-
troller is parameterized by a parameter vector ρ ∈ ℜp,
so that the control action u(t) can be written as

u(t) = C(z, ρ)(r(t) − y(t)) (2)

where r(t) is the reference signal, which is assumed to be
quasi-stationary and uncorrelated with the noise, that is

E[r(t)e(s)] = 0 ∀t, s

where E[·] denotes expectation. The system (1)-(2) in
closed loop becomes

y(t, ρ) = T (z, ρ)r(t) + S(z, ρ)ν(t)

T (z, ρ) =
C(z, ρ)G(z)

1 + C(z, ρ)G(z)
= C(z, ρ)G(z)S(z, ρ)

where we have now made the dependence on the con-
troller parameter ρ explicit in the output signal y(t, ρ).
It is also assumed that the controller parametrization
has a certain structure, as specified below.

Assumption A - Linear parametrization:

C(z, ρ) = ρT C̄(z), ρ ∈ ℜp (3)
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where C̄(z) is a column vector of fixed rational functions.

Some of the most common controller structures are in-
deed linearly parametrized, PID with fixed derivative
pole being the most popular. In addition, one can create
a set of stable basis functions, a finite sum of which can
approximate any stable controller in L2 norm on the unit
circle as close as desired; similarly for a controller that is
totaly unstable. If a controller has poles on the unit cir-
cle, the best approximation is to duplicate the poles and
the residues, but that is strictly not necessary if the con-
troller is part of a stable closed loop. Hence, Assumption
A does not represent a significant loss of generality.

For later reference, we provide here some additional
definitions. We say that a scalar quasi-stationary
signal x(t) is persistently exciting of order k - in
short, PEk - if its spectrum Φx(eω) has at least k
nonzero components. For a vector field V (eω) =
[v1(e

ω) v2(e
ω) . . . vk(eω) ]T , where each vi(e

ω) is a
function of the frequency variable ω, we say that the
vector V (eω) has full-rank if the functions vi(e

ω) form
a linearly independent (LI) set over the reals, that is, if
6 ∃η ∈ ℜk, η 6= 0 : ηT V (eω) = 0 ∀ω ∈ ℜ.

2.2 Problem statement

We want the closed loop to achieve a given performance,
which is specified by a “desired” closed-loop transfer
function Td(z), called reference model in the literature.
We thus search for the controller parameters that make
the output of the system the closest to the desired one,
that is, we solve the following optimization problem.

min
ρ

J(ρ)

J(ρ)
∆
= E[λ(y(t, ρ) − yd(t))

2 + (1 − λ)u2(t, ρ)] (4)

where yd(t) = Td(z)r(t) is the desired output and λ ∈
[0, 1] is a user-specified constant. This control design for-
mulation is representative of several well-known model-
based control design methods, such as LQR/LQG [2] and
generalized predictive control (GPC) [6], in which solu-
tions of (4) may be achieved by means of tools such as
Riccati equations, Linear Matrix Inequalities (LMI’s),
Bilinear Matrix Inequalities (BMI’s), etc [7].

Such model-based design requires the knowledge of a
process model, namely the transfer functions G(z) and
H(z), and possibly the noise variance σ2

e as well. Ob-
taining a good model for a real process usually demands,
among other tasks, collecting data from real system op-
eration. Data-based design, on the other hand, addresses
the minimization of the criterion (4) directly from data
collected from the system, without the intermediate step
of deriving a process model from these data. Such meth-
ods as IFT [13] and FDT [16] rely on iterative optimiza-
tion procedures, mostly gradient descent algorithms.

The quantities required in the optimization procedure
are the cost function’s gradient and possibly its Hessian,
which are estimated pointwise directly from batches of
input-output data collected from the closed-loop sys-
tem. These methods bear no claim on convergence to
the global minimum of the criterion; convergence to a
local minimum only can be guaranteed [11][14].

In this paper we are concerned with this particular but
core aspect of data-based design: the convergence of it-
erative solutions of (4) to its global minimum. In order
to proceed we need some definitions on optimization,
which are given in the following subsection.

2.3 Optimization

Let J(ρ) : ℜn → ℜ+ be a differentiable cost function
with an isolated global minimum ρ∗. Successive approx-
imations for the global minimum are obtained by a re-
cursion ρi+1 = f(ρi). A set of initial conditions for which
the algorithm converges to ρ∗ is called a domain of at-
traction (DOA).

Definition 2.1 Let ρ∗ be the global minimum of a func-
tion J(ρ) : ℜn → ℜ+. A set Ω ⊂ ℜn is a domain of
attraction of an algorithm ρi = f(ρi−1) for the function
J(ρ) if limi→∞ ρi = ρ∗ ∀ρ0 ∈ Ω. ⋄

A gradient descent algorithm is one in which the itera-
tion is given by

ρi+1 = ρi − γi∇J(ρi) (5)

where ∇J(ρ) = ∂J(ρ)
∂ρ

and γi > 0 ∀i. The rationale be-

hind this algorithm is clear: updates are made in the
opposite direction of the gradient, so, at least for suffi-
ciently small γi, at each iteration a smaller value for the
cost is achieved. Its convergence properties which are
relevant for our analysis are established in the following
Theorem.

Theorem 2.1 Consider a twice-differentiable function
J(·) : ℜn → ℜ+. Assume that this function has an
isolated global minimum ρ∗ and define the set Bα(ρ∗) =
{ρ : (ρ − ρ∗)

T (ρ − ρ∗) < α}. If

(ρ − ρ∗)
T∇J(ρ) > 0 ∀ρ ∈ Bα(ρ∗), ρ 6= ρ∗ (6)

then there exists a sequence γi, i = 1, . . . ,∞ such that
Bα(ρ∗) is a DOA of algorithm (5) for J(ρ).

Proof: Let V (ρ) = (ρ − ρ∗)
T (ρ − ρ∗) be a Lyapunov

function for the discrete-time system (5). Then

V (ρi+1) − V (ρi) = (ρi − γi∇J(ρi) − ρ∗)
T ×

× (ρi − γi∇J(ρi) − ρ∗) − (ρi − ρ∗)
T (ρi − ρ∗)

= −2γi(ρi − ρ∗)
T∇J(ρi) + γ2

i ∇J(ρi)
T∇J(ρi)
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which is negative provided that 0 < γi < 2(ρi−ρ∗)
T ∇J(ρi)

∇J(ρi)T ∇J(ρi)
.

For ρi ∈ Bα(ρ∗) the existence of such γi is guar-
anteed by condition (6), which also implies that
∇J(ρi) 6= 0 ∀ρi 6= ρ∗, ρi ∈ Bα(ρ∗). The proof is
completed by noting that Bα(ρ∗) is a connected and
bounded level set of V (ρ). ⋄

Condition (6) implies that:

• the angle between the gradient and the vector ρ − ρ∗
is always in the interval (−π/2, π/2);

• the gradient is never zero - there are no extrema (min-
ima, maxima) or saddle-points in Bα(ρ∗) other than
the global minimum ρ∗.

Actual convergence also involves the proper choice of
algorithmic parameters, the sequence γi in particular,
an issue which we do not address in this paper. When
the cost function does obey condition (6) in a given set,
then we say that this set is a candidate DOA, because
then we can find γi such that this set will be a DOA for
the gradient descent algorithm (5).

Definition 2.2 Let ρ∗ be the global minimum of a func-
tion J(ρ) : ℜn → ℜ+. A ball Bα(ρ∗) is a candidate DOA
for J(ρ) if ρ∗ ∈ Ω and (6) is satisfied for all ρ ∈ Ω. ⋄

In an actual data-based design (IFT, CbT, FDT), the

gradient in (5) is replaced by an estimate ̂∇J(ρi). It is a
well known fact (see [13], for instance) that such a gradi-
ent descent algorithm converges, in a stochastic sense, to
a minimum of the cost function provided that the esti-
mate is unbiased and that appropriate γi have been cho-
sen. The reasoning in Theorem 2.1 remains valid, with

̂∇J(ρi) replacing ∇J(ρi), and some slack in condition
(6) becomes necessary to compensate for the estimate er-
rors. Also notice that in this stochastic setting only con-
vergence to a neighborhood of the global optimum can
be achieved (stochastic convergence) and hence condi-
tion (6) must be verified only outside this neighborhood.

3 Analysis of the cost function

Under the assumption that the reference and the noise
are uncorrelated, we can split the cost J(ρ) in (4) into
three components:

J(ρ) = λ[Jy(ρ) + Je(ρ)] + (1 − λ)Ju(ρ) (7)

where we have defined

Jy(ρ) = E[((T (z, ρ) − Td(z))r(t))2]

Je(ρ) = E[(S(z, ρ)ν(t))2]

Ju(ρ) = E[u(t, ρ)2]

The minimization of Je(ρ) for a free-form controller with
known process model is a classical problem known as

minimum variance control, whose solution is well known
[3][4][16]. The minimization of Jy(ρ) has also been widely
studied in the literature, particularly in the context of
model reference adaptive control [5][10]. In this paper
we refer to Jy(ρ) as the reference tracking criterion.

Let Γ be the set of all control parameter values that

render the closed-loop system BIBO-stable, that is, Γ
∆
=

{ρ : T (z, ρ) is BIBO − stable}. For ρ ∈ Γ Parseval’s
theorem yields:

Jy(ρ) =
1

2π

π∫

−π

| T (eω, ρ) − Td(e
ω) |2 Φr(e

ω)dω (8)

Je(ρ) =
1

2π

π∫

−π

| S(eω, ρ) |2 Φν(eω)dω (9)

Ju(ρ) =
1

2π

π∫

−π

| C(eω, ρ) |2| S(eω, ρ) |2 [Φr(e
ω)

+Φν(eω)]dω (10)

where Φx(eω) indicates the spectrum of a signal x(t).

3.1 Reference tracking

Let us start by studying the reference tracking cost,
that is, Jy(ρ). To that end, we define the ideal con-
troller Cd(z), which is the controller transfer function
that would exactly achieve the desired closed-loop trans-
fer function Td(z):

Cd(z) =
Td(z)

G(z)(1 − Td(z))
(11)

Let us assume that none of the unstable poles and ze-
ros of G(z) (if there are any) are cancelled by Cd(z).
Clearly, this assumption is automatically verified for pro-
cesses that are stable and minimum-phase. For unstable
and/or nonminimum-phase processes, the satisfaction of
this property is determined by the choice of the refer-
ence model; this is an inherent feature of model refer-
ence design. When a process model is available, the ref-
erence model can and must be chosen to satisfy this as-
sumption, otherwise the global minimum of the perfor-
mance criterion would deliver a destabilizing controller.
In data-based design, it is also possible to cope with this
limitation by leaving the zeros of the reference model as
free parameters, as shown in [20].

If and only if the ideal controller Cd(z) lies within the
class of controllers considered, then the closed-loop sys-
tem can be made to behave exactly as the reference
model by a proper choice of the parameter ρ. We will
assume that this is the case in most results that follow,
so let us formalize this assumption.
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Assumption By - Cd(z) ∈ C, or, equivalently,

∃ρd : C(z, ρd) = Cd(z) = ρT
d C̄(z) (12)

This assumption is dual to the assumption in identifica-
tion theory that the process model belongs to the model
class considered. Similar assumptions will be made for
the two other cost components Ju and Je. Though as-
sumptions of this nature are standard in our context
[8][5], they are not weak ones. We can, however, expect
them to be violated only moderately in a well formu-
lated design problem; it does not make good engineering
sense to formulate a problem in which one searches for
a performance that is radically different from what can
be achieved. The case where assumption By is “almost”
satisfied is analyzed in Section 5.

Under assumptions A and By the global minimum of
Jy can be found by VRFT [20], which is most oppor-
tune, since it is a direct (noniterative) method. How-
ever, VRFT design for controllers with just one degree
of freedom can only cope with Jy and not with general
H2 criteria, as we do later in this paper. Moreover, when
assumption By is not satisfied VRFT yields a controller
that is not the minimum of Jy. In these cases, VRFT
can still be used to provide an initial condition for an it-
erative optimization procedure. Note also that without
assumptions A and By we can not guarantee that the
global minimum will be reached, but they are not neces-
sary for the application of data-based controller tuning.

From (3) and (12), and adopting the convention that
gradients are column vectors, we get:

C(z, ρ) − Cd(z) = (ρ − ρd)
T C̄(z)

∇C(z, ρ) = C̄(z) ∇C∗(z, ρ) = C̄∗T (z)

where C̄∗(eω) = C̄T (e−jω). Calculating the gradient of
Jy(ρ) in (8) and using the above yields (the calculations
are given in Appendix A): 2

∇Jy(ρ) = M(ρ)(ρ − ρd) (13)

M(ρ)
∆
=

1

π
(

π∫

−π

Φr | G |2| S(ρ) |2 ℜ{S∗
dS(ρ)C̄C̄∗}dω)

Here ℜ{·} denotes the real part of a complex number
and the desired sensitivity function is defined as Sd(z) =
1 − Td(z). It is clear that Jy(ρd) = 0 and ∇Jy(ρd) =
0 so that ρd is the global minimum of Jy(ρ). Writing
condition (6) for this function we get

(ρ − ρd)
T∇Jy(ρ) = (ρ − ρd)

T M(ρ)(ρ − ρd) > 0

∀ρ ∈ Bα(ρd), ρ 6= ρd (14)

2 In order to make the expressions shorter we will henceforth
omit the dependence on eω when the signals appear inside
integrals.

Thus, whether this condition is satisfied in a given set
depends on the properties of the matrix M(ρ) for all ρ
contained in this set; let us examine these properties.
From (13):

M(ρ) =
1

π

π∫

−π

Φr | G |2| S(ρ) |2 ℜ{S∗
dS(ρ)}ℜ{C̄C̄∗}dω

−
1

π

π∫

−π

Φr | G |2| S(ρ) |2 ℑ{S∗
dS(ρ)}ℑ{C̄C̄∗}dω

∆
= Ms(ρ) + Ma(ρ) (15)

It is straightforward to verify that Ma(ρ) is anti-
symmetric, whereas Ms(ρ) is symmetric - hence their
subscripts. Since xT Qx = 0 for any anti-symmetric
matrix Q and any x ∈ ℜn, (14) can be written as

(ρ − ρd)
T Ms(ρ)(ρ − ρd) > 0 ∀ρ ∈ Bα(ρd), ρ 6= ρd

(16)

which is satisfied if Ms(ρ) is positive definite.

Now, C̄(eω)C̄∗(eω) is positive semi-definite by con-
struction and its sum over a sufficiently large number of
frequencies is positive definite provided that the vector
field C̄(eω) is full-rank (the functions in C̄(eω) form an
LI set over the reals). The same is true for its real part.
With this we have proven the following result.

Theorem 3.1 Let C̄(eω) be full-rank and r(t) be PEp. 3

Let Υ ⊆ Γ be a connected set such that ρd ∈ Υ and, for
all ρ ∈ Υ:

ℜ{S∗
d(eω)S(eω, ρ)} > 0 ∀ω (17)

Then

(ρ−ρd)
T∇Jy(ρ) > 0 ∀ρ ∈ Υ, ρ 6= ρd ⋄

Some comments are in order:

(1) Whereas the first two conditions of the Theorem
(reference is PEp and C̄ is full-rank) are necessary
for the integral in (15) to be bounded away from
zero, condition (17) is not. If (17) is violated only
at those frequencies where the input power is low,
then the integral is likely to be positive. This is
a powerful idea in adaptive control which will be
further explored in the sequel.

(2) Condition (17) can also be expressed as

maxω | 6 S(eω, ρ) − 6 Sd(e
ω) |< π/2 ∀ρ ∈ Υ (18)

3 Recall that p is the dimension of the parameter vector ρ.
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This maximum phase difference between two trans-
fer functions is a metric that can be used to mea-
sure the distance between a given ρ and the global
optimum ρd.

(3) Condition (17) is satisfied if and only if the following
transfer function is strictly positive real (SPR).

Sd(e
ω)

S(eω, ρ)
(19)

(4) To check the SPR condition (18) we need to know
roughly the phase of the sensitivity S(z, ρ), and a
rough estimate can be obtained from the same data
used for the design. So, checking condition (18) does
not require a process model.

(5) A similar SPR condition involving sensitivity func-
tions has been obtained for correlation-based tun-
ing (CbT) in [18]. This SPR condition is established
for the class of controllers in the form of rational
functions.

The conditions of Theorem 3.1 have a clear interpreta-
tion:

• the input must be persistently exciting of order at
least equal to the dimension of the parameter vector;

• the parametrization of the controller cannot be redun-
dant, that is, it must represent the class of controllers
considered with a minimum number of parameters;

• the parameter values in Υ must be “close enough” to
the ideal parameter value ρd, so that the respective
sensitivity functions are not too different, in the sense
that their phases are close, but actually with no spe-
cific restriction on their magnitudes.

Example 3.1 Let G(z) = 1
z−a

, | a |< 1, C(z, ρ) =

ρ z−a
z−1 . The ideal controller Cd(z) belongs to the con-

troller class considered if and only if the reference model
is of the form Td(z) = 1−b

z−b
; then ρd = 1 − b. The sensi-

tivity function is given by

S(z, ρ) =
1

1 + C(z, ρ)G(z)
=

z − 1

z − (1 − ρ)

For two arbitrary sensitivity functions generated by
ρ1, ρ2 ∈ Γ, we have

S(z, ρ1)

S(z, ρ2)
=

z − (1 − ρ2)

z − (1 − ρ1)

The set of stability parameters ρ is Γ = {ρ : | 1 − ρ |<
1}. Let us define αi = 1−ρi for convenience of notation.
From the positive real lemma [7], this function is SPR if
and only if there exists q ∈ ℜ+ satisfying the inequalities:

q(1 − α2
2) > 0

(α2 − α1)
2q2 + 2(α1α2 − 1)q + 1

∆
= η(q) < 0

The first inequality requires α2 < 1, which is the case
for ρ2 ∈ Γ. The second one will be satisfied for some real
positive q if and only if the roots of the polynomial η(q)
are real and at least one of them is positive. The roots
of η(q) are given by

q =
−(α1α2 − 1) ±

√
(α2

1 − 1)(α2
2 − 1)

(α2 − α1)2

These roots are real if and only if (α2
1 − 1)(α2

2 − 1) ≥ 0,
which is satisfied for all ρ1, ρ2 ∈ Γ. Moreover, for ρ1, ρ2 ∈
Γ,−(α1α2−1) > 0, so one of the roots is positive. Hence,
whatever reference model Td(z) we choose such that it
is BIBO-stable and can be achieved exactly with the
controller class considered, Γ will be a candidate DOA
for the global minimum ρd = 1 − b. ⋄

It is typically the case that some information on G(z) is
necessary in order to verify the satisfaction of Assump-
tion By, as well as to check condition (17). In the exam-
ple, the knowledge of the model structure alone is enough
to verify that Assumption By can be satisfied with a
PI controller class C(z, ρ) = ρ z−a

z−1 . In order to actually
choose a controller class that satisfies Assumptions By

and A we need to know also the pole value a. This knowl-
edge, on the other hand, allows also to characterize the
whole set of reference models for which Assumption By is
satisfied, and to verify that condition (17) is satisfied for
all these reference models. So, although some informa-
tion on the process must be available in order to use the
results of this paper, this required information is far less
than what is required for model-based design - namely,
knowledge of G(z) to a reasonable degree of accuracy.

Example 3.2 Let G(z) = 1
z−0.5 , C(z, ρ) = ρ z

z−0.9 and

Td(z) = 2.4z
z2+z+0.45 . The ideal controller, which mini-

mizes Jy(ρ), is achieved for ρd = 2.4. The stability set
is Γ = (−0.05, 2.85). It is straightforward to verify that
Sd(eω)
S(eω,ρ) is SPR for all ρ ∈ Υ = (1.35, 2.85). So, from

Theorem 3.1, the cost Jy(ρ) has no other extrema than
ρd within the set Υ and this set is a candidate DOA for
Jy(ρ). For ρ 6∈ Υ the SPR condition is not satisfied,
so there may exist local minima or maxima in this set.
Whether such extrema exist depends on the particular
reference applied to the system, as will be seen later. ⋄

Let us reexamine (13) and (16) in the light of the fi-
nal remark in the example above, noting that M(ρ) is a
scalar here. Theorem 3.1 tells us, based on these equa-
tions, that if all the factors inside the integral that forms
Ms(ρ) are positive, then the integral cannot be zero and
(16) is satisfied. There is only one term inside that inte-
gral that can be nonpositive: ℜ{S∗

dS(z, ρ)}. If this term
is negative in a range of frequencies and positive in an-
other range, then there exists a Φr such that it “weighs”
equally these two frequency ranges, thus causing the in-
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tegral to vanish. The following Corollary results imme-
diately from this argument.

Corollary 3.1 Let C̄(eω) be full-rank and consider
a given set Υ ⊆ Γ, with ρd ∈ Υ. If for some ρ1,

∃ω : ℜ{ Sd(eω)
S(eω,ρ1)} < 0 then there exist PEp reference

signals r(t) such that ∇Jy(ρ1) = 0. This, in turn, im-
plies that for such reference signals: condition (6) is not
satisfied at ρ1; ρ1 is an extremum of Jy(ρ); and any set
Υ ∋ ρ1 is not a candidate DOA for Jy(ρ). ⋄

Example 3.3 Consider again the system of Example
3.2. The SPR condition is not satisfied for ρ < 1.35. For
ρ = 0.5, for instance, we have the situation presented
in Figure 1, where it is clear that the SPR condition is
indeed not satisfied, since there are frequencies where the
phases of Sd(z) and S(z, 0.5) differ by more than π

2 rad.
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Fig. 1. Example 3.2 - frequency response of Sd(e
ω) (full line)

and S(eω, ρ) (dashed line) for ρ = 0.5 (ρd = 2.4).

It can be seen in this figure that ℜ{ Sd(ej1)
S(ej1,0.5)} = 0, so

if only this frequency (ω = 1 rad) is excited, the gradi-
ent will be zero at this particular value of ρ. Indeed, by
applying r(t) = sin(1 · t) we have the cost presented in
Figure 2, which has a local maximum at ρ = 0.5. ⋄
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Fig. 2. Cost Jy(ρ): global optimum at ρd = 2.4 and a maxi-
mum at ρ = 0.5.

Hence, convergence can be guaranteed by properly re-
stricting the reference spectrum to those frequencies

where the phase difference is small. This idea has been
explored in adaptive control [24] and is one of the bases
of the cost function shaping presented in the sequel.

3.2 Control effort

From (10), the cost function associated with the control
energy is given by

Ju(ρ) =
1

2π

π∫

−π

|
ρT C̄(eω)

1 + ρT C̄(eω)G(eω)
|2 [Φr(e

ω)

+Φν(eω)]dω (20)

It is evident from (20) that ρu
∆
= 0 is the global minimum

of Ju(ρ), which results in Ju(0) = 0. The gradient is
given by (see Appendix A.2)

∇Ju(ρ) = Mu(ρ)ρ (21)

Mu(ρ) =
1

π
[

π∫

−π

(Φr + Φν) | S(ρ) |2 ℜ{S(ρ)C̄C̄∗}dω]

From (21) it is also clear that∇Ju(0) = 0. Note that this
optimal controller belongs to any linearly parametrized
class of controllers; it is achievable with ρ ∈ Γ if and
only if the process is open-loop BIBO-stable. We can
apply for Ju(ρ) the same reasoning as for Jy(ρ), mutatis
mutandis , which gives the following result.

Theorem 3.2 Let C̄(eω) be full-rank, let Υ ⊆ Γ be a
connected set such that 0 ∈ Υ, and let

Re{S(eω, ρ)} > 0 ∀ρ ∈ Υ (22)

Then

ρT∇Ju(ρ) > 0 ∀ρ ∈ Υ, ρ 6= 0 ⋄

The SPR condition (22) has the same interpretation as
(17): it represents the distance of the achieved sensitivity
to the desired one. The difference between the two cases
is the value of the desired sensitivity, which now is given
by Su(eω) = S(eω,0) = 1.

3.3 Noise rejection

The cost Je(ρ) represents the variance of the output due
to the noise. The minimization of this variance for the
case where the controller is not constrained is a classi-
cal topic in control theory known as minimum variance
control. The solution of this problem, when G(z) is min-
imum phase, is given by the following controller [3]:

Ce(z) =
H(z) − 1

G(z)

7



Applying this controller, the obtained sensitivity is

Se(z) =
1

1 + Ce(z)G(z)
=

1

H(z)

The sensitivity Se(z), being the one that is obtained with
the best possible controller, is the desired sensitivity for
the performance criterion Je(ρ). We can use this fact
to rewrite the cost (9) in a more insightful form (see
Appendix A.3):

Je(ρ) = σ2
e +

1

2π
σ2

e

π∫

−π

| H |2| S(ρ) − Se |2 dω (23)

Clearly, if the minimum variance controller were applied,
then the sensitivity would equal the desired sensitivity
Se(z) and the cost would evaluate to σ2

e . We can give
Je the same treatment as before and obtain similar re-
sults. We start with the assumption that the minimum
variance controller can be implemented in our class C.

Assumption Be - There exists ρe: C(ρe, z) = Ce(z).

The remarks previously made about assumption By ap-
ply ipsis literis here. Under Assumption Be the gradient
is given by

∇Je(ρ) = Me(ρ)(ρ − ρe) (24)

Me(ρ) =
σ2

e

π

π∫

−π

| H |2| G |2| S(ρ) |2 ℜ{S∗
eS(ρ)C̄C̄∗}dω

which is similar to (13) and (21). So, once again we have
a similar result.

Theorem 3.3 Let C̄(eω) be full-rank. Let Υ ⊆ Γ be a
connected set such that ρe ∈ Υ and that, for all ρ ∈ Υ,

ℜ{
Se(e

ω)

S(eω, ρ)
} > 0 ∀ρ ∈ Υ (25)

Then

(ρ−ρe)
T∇Je(ρ) > 0 ∀ρ ∈ Υ, ρ 6= ρe ⋄

3.4 Combining the three objectives

Each one of the three cost components represents a dif-
ferent control objective whose minimum is achieved at
different values of the parameter vector. When the three
components are put together to form the whole cost, we
can also write the gradient of the combined criterion in

the nice form of a symmetric matrix multiplying the dif-
ference to the minimum, as done previously for the gra-
dient of each individual cost.

∇J(ρ) = λMy(ρ)(ρ − ρd) + λMe(ρ)(ρ − ρe)

+(1 − λ)Mu(ρ)ρ

= M(ρ)(ρ − ρ∗) (26)

where

M(ρ) = [λMy(ρ) + λMe(ρ) + (1 − λ)Mu(ρ)]

ρ∗ = M−1(ρ)[λMy(ρ)ρd + λMe(ρ)ρe]

A sufficient condition for M(ρ) to be nonsingular is that
each one of the individual matrices My(ρ), Me(ρ) and
Mu(ρ) has a positive definite symmetric part. On the
other hand, if the symmetric parts of each one of these
matrices - My(ρ), Me(ρ) and Mu(ρ) - are positive defi-
nite, then so is the symmetric part of M(ρ). Under these
conditions the total cost J(ρ) has similar properties to
each one of its components and we can state a result
which is similar to the ones presented previously for each
term separately.

Theorem 3.4 Consider the cost (26), let C̄(eω) be full-
rank and let r(t) be PEp. Let Υ ⊆ Γ be a connected
set containing ρe, ρd and 0 such that, for all ρ ∈ Υ,
Sd(eω)
S(eω,ρ) ,

Se(eω)
S(eω ,ρ) and S(eω, ρ) are SPR. Assume further

that ρ∗ ∈ Υ. Then

(ρ−ρ∗)
T∇J(ρ) > 0 ∀ρ ∈ Υ, ρ 6= ρ∗ ⋄

4 Cost function shaping

4.1 The problem data

For simplicity of presentation we shall focus on the ref-
erence tracking criterion Jy, but the results to be dis-
cussed are also valid for the other two criteria, since they
have the same analytical structure. Among the variables
present in (15) and (17), which determine the conver-
gence properties, some can be manipulated by the de-
signer and others cannot. Let us take a closer look at
each one of these variables to see which ones are under
the designer’s control. Start with the process character-
istics - G(z), H(z) and σ2

e ; these are given and unknown,
and we certainly cannot change them.

The controller class C is given and known; it is a de-
signer’s choice that is usually made in a previous stage
of system conception, so we cannot change it here.
For example, the available hardware often imposes
the controller class. On the other hand, the particular
parametrization C̄(z) used to represent this class can
often be manipulated. It has been proven in this paper,
and also noted elsewhere [16], that this parametrization
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must represent the class C with the minimal number
of parameters but it can otherwise be freely chosen.
Though this choice does play a role in the properties
of the cost function, and thus might be useful for cost
function shaping, we do not explore it in this paper.

The initial controller parameter ρ0 could, in theory, be
selected at will. However, finding an initial controller
that is guaranteed to provide a stable closed loop is
not without danger when the process is unknown, even
though a method like VRFT can be very helpful. Also,
the main application field envisaged for model-free tun-
ing methods is the performance improvement of con-
trollers that have been operating in a stable, but not op-
timally performing way. In this situation, which is prob-
ably the most common in practice, the initial controller
is imposed upon us. So, whether it is possible to choose
ρ0 in a given practical situation is determined by case-
specific and rather subjective considerations.

The remaining items are determined strictly by the per-
formance criterion: Td(z), λ and Φr. Once the choice
of performance criterion has been made, these variables
are fixed; changing them would imply minimizing an-
other criterion, not the one the user has chosen. Never-
theless, if our criterion of choice is too hard to optimize
starting from our given controller ρ0, we may consider
minimizing an easier criterion as an intermediate task.
Then, taking the new controller resulting from this op-
timization as the initial controller, it might be easier to
optimize the desired criterion. Actually, we can think
of inserting more than one intermediate task, optimiz-
ing at each time a criterion that is closer to the desired
one, and guaranteeing that each one of these intermedi-
ate optimization tasks will converge. This is the central
idea of what we have called “cost function shaping”: to
manipulate one or more of the variables Td(z), λ and
Φr stepwise so that the resulting intermediate cost func-
tions have a larger domain of attraction to their global
optimum, in such a way as to eventually minimize the
desired cost function. As will be seen in the sequel, each
one of the cited variables has its own way of influencing
the convergence properties of the optimization.

4.2 Cautious control

Starting from an initial controller which delivers a given
performance - say T0(z) - which we consider poor, let us
choose a first intermediate reference model T 1

d (z). This
reference model should not require at once the achieve-
ment of a performance that is much better than the one
we already have with T0(z). Instead, T 1

d (z) should be
cautious, aiming at a modest performance improvement,
one which is closer to the (poor) performance T0(z) than
the real reference model of interest, namely Td(z). Once
the global optimum of this new criterion (ρ1

∗) has been
attained, we can pick a second, more ambitious, refer-
ence model T 2

d (z) (i.e. one closer to Td(z)), and optimize

it starting from ρ1
∗ as the initial controller. This argu-

ment can be used successively, with several intermediate
reference models, until the desired reference model Td(z)
is achieved. This concept of cautious control is a familiar
one in data-based control design [15][14] and in iterative
identification and control design [25]; it is also a fun-
damental precept of the windsurfer approach to adap-
tive control [22][21]. In [1], the problem of impractical
control objective was recognized and it was suggested
to perform successive iterates of the criterion achieving
designs which approach the optimum. We illustrate the
procedure by means of an example.

Example 4.1 Consider the data in Example 3.2, a cost
function J(ρ) as in (7) with λ = 0.75, and that the

noise can be described by H(z) = z2−1.15z+0.45
z2−1.4z+0.45 and

σe = 0.1. This system is excited by a square wave ref-
erence with period T = 6 s. The behavior of the cost
function J(ρ) is shown by the starred line in Figure 3
- it presents a local maximum at ρ ≈ 0.6. If the ini-
tial controller is one with very low gain (correspond-
ing to ρ < 0.6), then convergence via gradient descent
to the global optimum ρ∗ ≈ 2 is impossible. Consider
the use of three intermediate reference models, start-
ing from T 1

d (z) = 0.6z
z2−0.8z+0.45 , and going successively to

T 2
d (z) = 1.2z

z2−0.2z+0.45 , T 3
d (z) = 1.8z

z2+0.4z+0.45 and finally

Td(z) = 2.4z
z2+z+0.45 .

Then the intermediate cost functions behave as shown
in Figure 3. There, the final cost function is marked
with ∗ and each intermediate cost function can be iden-
tified visually by the fact that each new intermediate
cost presents a larger global optimum than the previous
one (ρ∗ > ρ∗3 > ρ∗2 > ρ∗1). For the first cost function
(T 1

d (z)) Γ is a candidate DOA and for each intermediate
cost function the global optimum belongs to a candidate
DOA of the next one. ⋄
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Fig. 3. Example 4.1 - cautious control: the H2 cost J(ρ) for
different reference models - at each intermediate step the
global optimum becomes larger.
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4.3 Manipulation of the reference spectrum

It has been proven that the SPR property of a particular
transfer function is sufficient for uniqueness of extrema
within a given set. However, the SPR condition is not a
necessary condition; it can be circumvented by a proper
manipulation of the reference r(t). To realize how to do
that, we first explore the properties of the sensitivity
functions that enter the SPR condition (17).

4.3.1 Properties of the sensitivity

Lemma 4.1 Let S(z, ρ) = (1 + ρT C̄(z)G(z))−1 and let
Γ be the set of all parameter values such that the closed
loop is stable. For all ρ1, ρ2 ∈ Γ:

6 S(1, ρ1) = 6 S(1, ρ2) 6 S(−1, ρ1) = 6 S(−1, ρ2)

Proof:

6 S(eω, ρ) =

n∑

i=1

6 (eω − bi) −

n∑

i=1

6 (eω − ai(ρ))

where bi are the poles of the loop transfer function
C̄(eω)G(eω) and ai(ρ) are the closed-loop poles. For
ω = 0 we have

6 S(1, ρ) =
n∑

i=1

6 (1 − bi) −
n∑

i=1

6 (1 − ai(ρ))

But
∑n

i=1
6 (1−bi) does not depend on ρ and

∑n
i=1

6 (1−
ai(ρ)) = 0 ∀i, ρ ∈ Γ because ai(ρ) belong to the unit disc
for all ρ ∈ Γ. The same argument is valid for ω = π. ⋄

From the property above and the continuity of S(eω, ρ)
we can also conclude that the phase difference between
two sensitivity functions is small for frequencies close to
ω = 0 and ω = π.

Lemma 4.2 For all ρ ∈ Γ, ∃ωl, ωh such that:

| 6 S(eω, ρ) − 6 Sd(e
ω) |<

π

2
∀ω ≤ ωl

| 6 S(eω, ρ) − 6 Sd(e
ω) |<

π

2
∀ω ≥ ωh ⋄

According to the previous results, if only those fre-
quencies for which the phase difference | 6 S(eω, ρ) −
6 Sd(e

ω) | is small are contained in the reference spec-
trum, then the integral in (15) will still be bounded
away from zero, even if the phase difference exceeds π/2
in some frequency ranges. For instance, if the reference
spectrum is concentrated at the borders of the frequency
spectrum - where the phase difference is always small -
then Ms(ρ) will be positive definite and the minimum

is unique in the stability set Γ. This is formalized in the
following theorem.

Theorem 4.1 Let C̄(eω) be full-rank and let r(t) be
PEp. Then ∃ωl, ωh such that Φr = 0 ∀ω ∈ (ωl, ωh)
implies that ρd is the unique extremum of Jy(ρ) in Γ. 4 ⋄

4.3.2 Applying a different reference

Theorem 4.1 tells us that we can always find a reference
for which the candidate DOA of ρd is the entire stability
set Γ. So, whatever reference we have, we can always
choose another reference for which the optimization can
be performed from any initial controller and that will
yield the same final result. In other words, if our cost
function is difficult to minimize, we minimize instead
another one, which is easier and has the same global
minimum. This is also the central idea in VRFT [8] and
some particular designs in MRAC [5]. Note, however,
that this argument no longer holds for the combined cost
Jy(ρ) + Je(ρ), which is the one to be minimized in the
presence of noise. Nevertheless, we could expect that if
Je(ρ) was significantly smaller than Jy(ρ) away from ρd,
the approach would be effective.

Example 4.2 Consider again Example 4.1 and use the
tracking of square-waves with larger periods as interme-
diate objective functions. In making the period larger,
the reference spectrum becomes more concentrated at
low frequencies. The result of optimizing the cost J(ρ)
successively for three different square waves is shown in
Figure 4. It can be observed that for the initial cost,
given by the reference with largest period (T = 30 s),
the global optimum is at ρ1

∗ = 0.65 and Γ is a candidate
DOA. The cost with the second reference (T = 20 s)
has a minimum around ρ2

∗ = 1 and there are no other
extrema in the set (ρ1

∗, ρ
2
∗). Finally, ρ2

∗ is within a candi-
date DOA for the desired cost function. ⋄
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Fig. 4. Example 4.2 - H2 performance criterion J(ρ) for
different reference spectra: square-wave, T = 30, 20, 6 s; as
the period is decreased the global optimum increases.

4 Or, in case Γ is not a connected set, its whole connected
subset which contains the global optimum.
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Similar theoretical results can be established for Je and
Ju, though these are of limited use for cost function shap-
ing, since we cannot manipulate Φν .

Proposition 4.1 Let C̄(eω) be full-rank. Then

• ∃ων
l , ων

h such that Φν ≈ 0 ∀ω ∈ (ων
l , ων

h) implies that
ρe is the unique extremum of Je(ρ) in Γ;

• ∃ωu
l , ωu

h such that Φr + Φν ≈ 0 ∀ω ∈ (ωu
l , ωu

h) implies
that 0 is the unique extremum of Ju(ρ) in Γ. ⋄

4.3.3 Choosing the data window

We have shown that convergence can be achieved by ap-
plying to the process a properly chosen reference. But
the procedure above requires that we actually apply to
the process a reference that is different from the one it is
supposed to track. This is something that will not always
be allowed in practice. Alternatively the cost function
can be manipulated such that it “sees” a different refer-
ence spectrum even though the reference is not actually
changed. To realize this, notice that the cost Jy(ρ) as
originally defined is not computable in practice. What
can be computed is the quantity

Ĵy(ρ, N) =
1

N

N∑

t=1

(y(t, ρ) − yd(t))
2 (27)

If the signal-to-noise ratio is large, then

Ĵy(ρ, N) ≈
1

N

N∑

t=1

[(T (z, ρ)− Td(z))r(t)]2

Under the standing assumption that all signals are quasi-
stationary, it is a standard result that the sum above
converges to Jy(ρ) as the data window size N grows:

lim
N→∞

Ĵy(ρ, N) = Jy(ρ)

It is also clear that Ĵy(ρ, N) is a quadratic function of

ρ−ρd, hence ρd is an isolated global minimum of Ĵy(ρ, N)
provided that N > p (recall that p is the dimension of
the parameter vector).

We would like to have a reference whose spectrum is con-
centrated either at very low or at very high frequencies.
But the spectrum of the same reference is computed dif-
ferently when measured under different time windows.
Indeed, define e(t) = (T (z, ρ)−Td(z))r(t) and the signal
eN(t) obtained as the periodic repetition of a truncation
at t = N of e(t), that is

eN(t + kN) = e(t) t = 1, . . . , N

for all integer k. Now calculate the associated cost:

JN (ρ) = E[eN (t)]2 = lim
m→∞

1

m

m∑

t=1

[eN (t)]2

= lim
k→∞

1

kN
k

N∑

t=1

[eN (t)]2

=
1

N

N∑

t=1

[eN (t)]2 =
1

N

N∑

t=1

[e(t)]2 = Ĵy(ρ, N)

The approximated cost Ĵy(ρ, N) equals the exact cost

that would have been obtained should rN (t)
∆
= [T (z, ρ)−

Td(z)]−1eN(t) have been applied to the system. Hence,
using a different N for the calculations has the same ef-
fect on the cost function as applying a different refer-
ence signal. For instance, if the reference is a step, tak-
ing smaller N is equivalent to applying a reference with
more energy at higher frequencies. On the other hand,
taking data after the transient will make the spectrum
more concentrated at low frequencies. The following ex-
ample illustrates the procedure.

Example 4.3 Reconsider once again Example 4.2.
Take the original reference, with T = 6 s, but include
only four data in the cost function, that is, consider the
minimization of Ĵy(ρ, 4). This cost function presents the
desired quasi-convexity in Γ, as shown in Figure 5. ⋄
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Fig. 5. Example 4.3 - performance criterion Ĵy(ρ, 4) for
square-wave reference, T = 6 s.

5 The unmatched case

Let us analyze now the “unmatched control class” case,
that is, the case where the ideal controller does not be-
long to the control class. We perform the analysis for the
reference tracking criterion Jy; similar results apply to
the two other cost components - Je and Ju. We thus want
to analyze the behavior of the cost function Jy when As-
sumption By is replaced by another, much weaker one:

Assumption Cy - The cost function Jy presents a
unique global minimum ρ∗, that is, ∃ρ∗ ∈ Γ : J(ρ) >
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J(ρ∗)∀ρ 6= ρ∗; moreover, the global minimum satisfies

∇J(ρ∗) = 0,
∂2J(ρ)

∂ρ2
|ρ∗≻ 0

When Assumption By is satisfied, ρd is this global min-
imum (ρ∗ = ρd) and C(z, ρ∗) = Cd(z) - the ideal con-
troller can be achieved. When Assumption By is not
satisfied, the best controller that can be obtained is
C(z, ρ∗) 6= Cd(z) and Assumption Cy replaces Assump-
tion By in our analysis. Assumption Cy rules out the
occurrence of global minima at infinity or at the border
of the stability set Γ, which is quite reasonable: a mean-
ingful performance criterion should not require infinite
control gains or operation of the system at the verge of
instability, where it would not be robust.

The mismatch between the best controller allowed by
the controller class under consideration and the ideal
controller is defined by the following transfer function

K(z)
∆
= Cd(z) − C(z, ρ∗) (28)

Now substitute (28) into (A.6) to get

∇Jy(ρ) =
1

π

π∫

−π

Φr | GS(ρ) |2 ×

ℜ{(C(ρ) − C(ρ∗) − K)∗S∗
dS(ρ)C̄}dω

= M(ρ)(ρ − ρ∗) − m(ρ) (29)

where M(ρ) is as defined previously in (15) and we have
also defined

m(ρ) =
1

π

π∫

−π

Φr | GS(ρ) |2 ℜ{S∗
dS(ρ)C̄K∗}dω (30)

Equation (29) is similar to (13), but perturbed by the
vector function m(ρ). This perturbation is unknown,
continuous and satisfies m(ρ∗) = 0. In addition, m(ρ)
is bounded for all ρ ∈ Γ. Thus, | m(ρ) | can be linearly
bounded, that is, for any given set Υ ⊆ Γ containing the
global optimum ρ∗:

∃αΥ ∈ ℜ+ : | m(ρ) |< αΥ | ρ − ρ∗ | ∀ρ ∈ Υ (31)

Theorem 5.1 Let C̄(eω) be full-rank, r(t) be PEp and
αΥ as defined in (31). Let Υ ⊆ Γ be a connected set such
that ρ∗ ∈ Υ and, for all ρ ∈ Υ:

ℜ{S∗
d(eω)S(eω, ρ)} > 0 ∀ω

If, in addition, the perturbation term m(ρ) is such that
its bound αΥ in (31) satisfies Ms(ρ) ≻ αΥI ∀ρ ∈ Υ, then

(ρ − ρ∗)
T∇Jy(ρ) > 0 ∀ρ ∈ Υ, ρ 6= ρ∗

Proof: Using (29) we have

(ρ − ρ∗)
T∇Jy(ρ) = (ρ − ρ∗)

T [M(ρ)(ρ − ρ∗) − m(ρ)]

(32)

Then the result is proven by simple substitution of the
assumptions of the Theorem into (32). ⋄

Clearly, computing estimates of the mismatch bound
αΥ requires some rough information about the process,
which could be used directly in (30) for this purpose.
How to get the best estimate with minimum prior infor-
mation is an important topic of future research.

Example 5.1 Let G(z) = 1
z−0.5 and consider a refer-

ence tracking performance criterion with Td(z) = 0.3
z−0.7 ;

then Cd(z) = 0.3z−0.15
z−1 . Consider the class of all delay-

free integral controllers: C = {C(z) : C(z) = ρC̄(z), ρ ∈
ℜ, C̄(z) = z

z−1}; then Cd(z) 6∈ C. The global minimum

is ρ∗ = 0.15. The SPR condition (19) yields

Sd(z)

S(z, ρ)
=

z2 + (ρ − 1.5)z + 0.5

(z − 0.7)(z − 0.5)

which is SPR for all 0 < ρ < 1.1. This implies that this
interval is a candidate DOA provided that K(z) - and
hence m(ρ) - is small enough. Indeed, it can be seen in
Figure 6 that the corresponding cost function is quasi-
convex in the predicted interval. ⋄
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Fig. 6. Example 5.1 - reference tracking criterion.

6 Concluding remarks

The typical way around convergence problems in itera-
tive minimization of H2 performance criteria is to pro-
pose more sophisticated or information-demanding al-
gorithms. Instead, we have analyzed the cost function
itself with a view of manipulating some design variables
without compromising the final performance. Our main
concern has been to determine whether or not given do-
mains in parameter space can be made a DOA for a gra-
dient descent optimization algorithm. We have estab-
lished that this is determined by the maximum phase
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difference, over all frequencies and for all parameter val-
ues in a given domain, between the sensitivity functions
obtained for the different parameter values and the de-
sired sensitivity function (the one obtained at the global
optimum). A given domain can be made a DOA for a
gradient descent algorithm if this maximum difference is
smaller than π/2. It may happen that the whole set of
stabilizing controllers is such a domain. Then a gradient
descent algorithm with any “reasonable” initialization -
one which provides a BIBO-stable closed loop - will con-
verge to the global optimum.

From these analytical results it is possible to derive
means to shape the cost function such that it becomes
well-behaved as desired. This cost function shaping
makes use of the variables that the designer has at
his/her disposal: the reference signal, the intermedi-
ate reference models, the data window and the initial
controller. Regarding the reference signal, applying ref-
erences with frequency content sufficiently constrained
to low and/or high frequencies is appropriate. Different
reference spectra can also be simulated by taking dif-
ferent data windows with the same applied reference.
Concerning the intermediate reference models, they
should be sufficiently close to each other so that the
global minimum of one intermediate criterion is within
the DOA of the next, but not too close so that too many
intermediate steps are required to reach the desired
performance. A procedure to safely and effectively gen-
erate intermediate models, introducing an adequate but
not excessive dose of caution into the control design,
would be very welcome, and not only in the context of
data-based design. Hence, an important topic for fu-
ture research is to provide quantitative guidelines for
cost function shaping as well as for estimation of the
mismatch bound αΥ. In this research we foresee the ap-
plication of ν-gap stability margin measures (as in [15])
and of overbounds on the process’ characteristics that
can be directly estimated from the input-output data:
transfer function order and relative degree, L2 gain, etc.

A Gradient calculations of the cost function

In this Section, in the interest of brevity, we drop the
dependence on z and ω for all transfer functions and
signals and define the following notation:

I{X(eω)}
∆
=

1

2π

π∫

−π

X(eω)dω

A.1 Jy

∂Jy(ρ)

∂ρ
= I{[T (ρ)− Td]

∗ ∂

∂ρ
[T (ρ) − Td] +

+[T (ρ) − Td]
∂

∂ρ
[T ∗(ρ) − T ∗

d ]Φr} (A.1)

T (ρ) − Td =
C(ρ)G

1 + C(ρ)G
−

CdG

1 + CdG

= (C(ρ) − Cd)GSdS(ρ) (A.2)

(T (ρ) − Td)
∗ = (C(ρ) − Cd)

∗G∗S∗
dS∗(ρ) (A.3)

∂T (ρ)

∂ρ
=

∂

∂ρ

C(ρ)G

1 + C(ρ)G
= GS2(ρ)

∂C(ρ)

∂ρ
(A.4)

∂T ∗(ρ)

∂ρ
= G∗S∗2(ρ)

∂C∗(ρ)

∂ρ
(A.5)

Inserting (A.2), (A.3), (A.4) and (A.5) in (A.1):

∂Jy(ρ)

∂ρ
= I{Φr[(C(ρ) − Cd)

∗G∗S∗
dS∗(ρ)GS2(ρ)

∂C(ρ)

∂ρ

+(C(ρ) − Cd)GSdS(ρ)G∗S∗2(ρ)
∂C∗(ρ)

∂ρ
]}

= I{Φr | GS(ρ) |2 2ℜ{(C(ρ) − Cd)SdS
∗(ρ)

∂C∗(ρ)

∂ρ
}}

where ℜ{·} indicates the real part of a complex quantity.

Let us use Assumption A from now on. Then

∂Jy(ρ)

∂ρ
= I{Φr | GS(ρ) |2 [(C(ρ) − Cd)

∗S∗
dS(ρ)C̄

+(C(ρ) − Cd)SdS
∗(ρ)C̄∗T ]}

= 2I{Φr | GS(ρ) |2 ℜ{(C(ρ) − Cd)
∗S∗

dS(ρ)C̄}} (A.6)

Finally, if Assumption By is also satisfied:

∂Jy(ρ)

∂ρ
= 2I{Φr | GS(ρ) |2 ℜ{S∗

dS(ρ)C̄C̄∗}}(ρ− ρd)

(A.7)

A.2 Ju

As is clear from (8) and (10), the ρ-dependent part of
the integrand in Ju is the same as in Jy, which allows to
determine the gradient based on the results above.

∂Ju(ρ)

∂ρ
= 2I{(Φr + Φν) | S(ρ) |2 ℜ{C∗(ρ)S(ρ)

∂C(ρ)

∂ρ
}}

= I{(Φr + Φν) | S(ρ) |2 {C∗(ρ)S(ρ)
∂C(ρ)

∂ρ

+C(ρ)S∗(ρ)
∂C∗(ρ)

∂ρ
}}dω (A.8)

Under Assumption A we get

∂Ju(ρ)

∂ρ
= I{(Φr + Φν) | S(ρ) |2 ℜ{S(ρ)C̄C̄∗}}ρ
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A.3 Je

Since e(t) is white noise with variance σ2
e :

Je(ρ) = σ2
eI{| S(ρ)H |2}

Let Se = 1
H

. Then

Je(ρ) = σ2
eI{| HS(ρ) |2} = σ2

eI{| 1 + HS(ρ) − 1 |2}

= σ2
e [1 + I{| H |2| S(ρ) − Se |2}]

where we have used the fact that HS(ρ)− 1 is a strictly
proper transfer function, which implies that the integral
of its real part is zero. Then

∂Je(ρ)

∂ρ
= σ2

eI{| H |2
∂

∂ρ
| S(ρ) − Se |2} (A.9)

∂

∂ρ
S(ρ) =

∂

∂ρ

1

1 + C(ρ)G
= −GS(ρ)2

∂C(ρ)

∂ρ
(A.10)

From (A.10) we get:

∂

∂ρ
| S(ρ) − Se |2= −[S∗(ρ)Se(Ce − C(ρ))

∂C∗(ρ)

∂ρ
+

+S(ρ)S∗
e (Ce − C(ρ))∗

∂C(ρ)

∂ρ
] | S(ρ) |2| G |2

Now, under Assumptions A and Be:

∂

∂ρ
| S(ρ) − Se |2 = | S(ρ) |2| G |2 [S∗(ρ)SeC̄C̄∗

+S(ρ)S∗
e (C̄C̄∗)T ](ρ − ρe) (A.11)

Substituting (A.11) into (A.9) gives

∂Je(ρ)

∂ρ
= Me(ρ)(ρ − ρe) (A.12)

Me(ρ) = σ2
eI{| H |2| G |2| S(ρ) |2 ℜ{S∗(ρ)SeC̄C̄∗}}
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