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Closed-loop Optimal Experiment Design:
Solution via Moment Extension

Roland Hildebrand Michel Gevers Gabriel Solari

Abstract—We consider optimal experiment design for
parametric prediction error system identification of linear
time-invariant multiple-input multiple-output (MIMO) sys-
tems in closed-loop when the true system is in the model set.
The optimization is performed jointly over the controller
and the spectrum of the external excitation, which can
be reparametrized as a joint spectral density matrix. We
have shown in [16] that the optimal solution consists of
first computing a finite set of generalized moments of this
spectrum as the solution of a semi-definite program. A
second step then consists of constructing a spectrum that
matches this finite set of optimal moments and satisfies
some constraints due to the particular closed-loop nature
of the optimization problem. This problem can be seen as
a moment extension problem under constraints. Here we
first show that the so-called central extension always satisfies
these constraints, leading to a constructive procedure for
the o! ptimal controller and excitation spectrum. We then
show that, using this central extension, one can construct
a broader set of parametrized optimal solutions that also
satisfy the constraints; the additional degrees of freedom
can then be used to achieve additional objectives. Finally,
our new solution method for the MIMO case allows us
to considerably simplify the proofs given in [16] for the
single-input single-output case.

I. INTRODUCTION

Optimal experiment design for system identification
has seen an intense development in the last decade.
This advance was initiated by the appearance of mod-
ern convex optimisation methods in the nineties, most
notably semi-definite programming. Accordingly, most
of the recent work focusses on casting different exper-
iment design problems as semi-definite programs, for
which commercial or free solvers are available. One
of the pioneering contributions introducing semi-definite
programming into optimal input design for open loop
identification was [23]. For further motivation and an
extensive reference list we refer to [18].
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In this paper we provide a solution via semi-definite
programming to a general class of optimal experiment
design problems for the identification of parametric
stable linear time-invariant (LTI) systems operating in
closed loop. We work in the frequency domain and
assume that the data set is sufficiently large such that
formulas that are asymptotic in the number of data are
valid. The degrees of freedom which are relevant for
closed-loop experiment design problems are the power
spectrum of the external excitation signal fed into the
system and the feedback controller transfer function.
Both can easily be converted into a joint power spectrum
of some signals present in the loop. These spectra
are frequency-dependent functions and as such infinite-
dimensional objects. Their infinitely many degrees of
freedom have to be condensed into a finite-dimensional
vector of design variables. A semi-definite description of
optimal experiment design problems in this class has for
years b! een elusive.

Two basic approaches to the choice of the design
variables can be distinguished in the literature. The first
is based on a finite dimensional approximation of the
joint spectrum, the second, often called partial corre-
lation approach, is based on expressing the criterion
and the constraints as a function of a finite number of
linear functionals of the joint spectrum, called gener-
alized moments. In both cases, the optimal experiment
design problem is then transformed into a semi-definite
program expressed in terms of the parameters of the
finite dimensional approximation for the first approach,
and the generalized moments for the second approach.

In [17] the finite dimensional approximation approach
was used. A solution was obtained by first parametrizing
the joint spectrum mentioned above using a Youla-
Kucera parametrization to constrain the solution set to
deliver a stabilizing closed loop controller, and then
using a finite dimensional approximation of this joint
spectrum. The optimal design problem is then reduced
to a convex optimization problem under Linear Matrix
Inequality (LMI) constraints over the coefficients of
this finite dimensional approximation. Given that the
solution space is restricted by the finite dimensional
approximation, it leads to a suboptimal solution.

In [16] we provided an optimal solution based on
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the partial correlation approach. Our solution applies to
a wide class of optimal design problems in which the
criterion and the constraints are expressed as integral
functions over the frequency range.

In this framework the criterion and the constraints
can be expressed as linear functions of a finite set of
n+ 1 generalized moments, which are linear functionals
of the joint power spectrum. They become the design
variables of the optimal design problem. The condi-
tions on the vector of design variables to correspond
to a realizable experiment design are then shown to
be equivalent to the satisfaction of an LMI, possibly
involving additional auxiliary variables. The optimal
moment sequence is then obtained by solving a standard
semi-definite program. Geometrically, the optimization
is performed over a finite-dimensional projection of the
infinite-dimensional cone of possible joint power spectra.
The optimal finite moment sequence will then in general
correspond to an infinite set of spectral density matrices
rather than a single spectrum, and every possible spec-
trum is represented by some point in the cone generated
by the finite set of optimal moments, thus re! sulting in
a truly optimal solution.

The construction of a spectrum or a set of spectra
whose first n+1 generalized moments coincide with the
optimal moments that solve the semi-definite program
is known as the Carathéodory extension problem. The
case of scalar-valued moments has been well studied in
the last century [6], [28], [2], [22], [19], [1]. The scalar
theory can be generalized to the case of matrix-valued
moments [25], [26], [3], [21], [9], [10]. The key result
for solving the Carathéodory extension problem is the
Carathéodory-Fejer theorem. This theorem implies that
a given finite sequence of moments is indeed generated
by a positive power spectrum if and only if it satisfies
a certain LMI [20, Chapter VI, Theorem 4.1]. Such a
spectrum can be represented in a number of equivalent
ways. Thi! s includes the representation as a matrix-
valued positive semi-definite measure on the unit circle,
as an infinite sequence of moments, or as a Carathéodory
function, i.e., a matrix-valued holomorphic function de-
fined on the open unit disc whose Hermitian part is
positive semi-definite. The representations can easily be
transformed in one another [25, Section II].

The set of all possible infinite extensions of a finite
moment sequence may be parametrized by an infinite
sequence of complex contractive matrices [9, Theorem
1]. The first k contractive matrices in the sequence define
the first k undetermined moments of the extension, i.e.,
the first k moments which follow the n + 1 moments
given by the solution of the semi-definite program. In
this way, fixing the contractive matrices one by one,
the user can consecutively construct all moments of

the extension. These matrices hence represent a choice
sequence. The contractive matrices can be defined in
different ways and carry different names, e.g., Schur
parameters, Szegö parameters, reflection parameters,
canonical moments, or Verblunsky coefficients [8], [1],
[26], [25], [4]; see [7] and [27, p.30] for a discussion.

The particular extension corresponding to the case
when all Verblunsky coefficients vanish is called central
extension [9], [10], [29, Section 3.6], and the measure on
the unit circle which defines the corresponding positive
semi-definite spectrum is called central measure [4,
Remark 8.4, p.104]. If a non-degeneracy condition is
satisfied, then the power spectrum defined by the central
measure can be expressed in closed-form as a ratio-
nal function with coefficients depending in an explicit
manner on the optimal truncated moment sequence [25],
[29].

A more compact way to parametrize the set of all
possible extensions of a given finite moment sequence is
via the representation of the extensions as Carathéodory
functions. The set of all such functions which can be
obtained from the finite moment sequence is given by a
linear-fractional transformation (LFT) of a single param-
eter. This parameter takes values in the Schur class, i.e.,
the set of all holomorphic matrix-valued functions on the
open unit disc which are contractive. The coefficients of
the LFT depend explicitly on the original finite moment
sequence [5, Theorem 1.1]. The central extension then
corresponds to the case when the Schur function is
identically zero. The Carathéodory function correspond-
ing to the central measure, called central Carathéodory
function, is hence a rational function with coefficients
depending explicitly on the finite set of optimal moments
[11], [5, Theorem 1.3].

The classical Carathéodory-Fejer theorem, which es-
tablishes conditions under which an infinite extension of
the finite set of optimal moments exists, holds only if
no restrictions are imposed on the spectrum other than
to produce the truncated sequence of moments under
consideration, and positivity. In other words, a finite
sequence of moments can be extended to an infinite
sequence of moments of a positive spectrum if and
only if it satisfies the LMI condition, but no additional
constraint on the moments of this extension can be guar-
anteed to be satisfied. However, in closed-loop optimal
experiment design, where the controller is part of the
design variables, constraints have to be imposed on the
matrix-valued joint power spectrum under consideration,
and hence on the infinite moment extension. These con-
straints reflect the fact that the controller must produce
a stable closed loop, and that some elements of a joint
spectrum defined by signals in the loop are fixed. The
constraints on this joint power spectrum translate into
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additional constraints on the infinite moment extensions
in order for these extensions to define an admissible
spectrum.

In [16] we have shown that the Carathéodory-Fejer
theorem also holds for the type of structured gener-
alized moment problem arising in closed-loop optimal
optimal experiment design. Namely, if a finite sequence
of moments satisfies the additional stability constraints,
then the LMI condition given by the Carathéodory-Fejer
theorem not only insures the existence of a general
extension of this moment sequence, but the existence
of an extension which also satisfies the constraints.

The proof of this main result in [16] had several draw-
backs. First it was written for single-input single-output
(SISO) systems, even though an extension to multiple-
input multiple-output (MIMO) is easily obtained. More
importantly, it proved the existence of an extension that
satisfies the constraints on the joint spectrum, but it
was not constructive. Finally, the proof was very long
and complicated, as it relied on the partial positive
definite matrix completion theorem from [14], which
itself required to appeal to graph-theoretical properties of
the Toeplitz matrix made up of the generalized moments.

The present paper makes progress in several directions
with respect to [16]. First we allow the system to have
multiple inputs and outputs. Our main contribution is to
show that the stability constraints are satisfied by the so-
called central extension, which under a non-degeneracy
condition can be explicitly computed from the set of
n+ 1 optimal moments. The central extension defines a
unique power spectrum, which solves the optimal exper-
iment design problem. Thus once the optimal truncated
moment sequence has been obtained by solving the semi-
definite program, an optimal joint power spectrum can be
immediately written down in closed form, shortcutting
the somewhat ad hoc and complicated recovery step in
[16].

Our second main contribution is to show that the set of
all extensions which satisfy the additional constraints on
the joint power spectrum can also be parametrized by a
choice sequence of contractive matrices. These matrices
have a smaller size than the Verblunsky coefficients, be-
cause at each step, a part of the degrees of freedom given
by the Verblunsky coefficient is fixed by the additional
constraint on the corresponding moment. We call these
contractive matrices restricted Verblunsky coefficients.
The central extension corresponds to the case when
all restricted Verblunsky coefficients vanish. This result
allows one to generate a finite-dimensional, explicitly
parametrized family of optimal solutions by first fixing
a finite number of restricted Verblunsky coefficients,
constructing the corresponding finite moment extension,
and then using the central extension of this already

finitely extended moment sequence. The additional de-
grees of freedom embodied by the restricted Verblunsky
coefficients can be used to satisfy additional performance
criteria, constraints, or robustness properties that the user
may want to inject into the problem.

Feasibility of the central extension actually implies
the validity of the Carathéodory-Fejer theorem for the
structured generalized moment problem. This allows us
to significantly shorten the proof of this result given in
[16]. For this reason, and in order to make the present
contribution self-contained, we also provide the new
proof of the structured Carathéodory-Fejer theorem here.

The remainder of the paper is organized as follows.
In the next section we define the class of input design
problems to be solved. In Section III we introduce
the concepts of central extensions, central measures,
Carathéodory functions and Verblunsky coefficients. Our
main result is in Section IV, where we show the feasi-
bility of the central extension for optimal closed-loop
experiment design and parametrize the set of all feasible
solutions by the choice sequence of restricted Verblunsky
coefficients. In Section V we present a complete solution
algorithm for the proposed class of problems, including a
semi-definite description of the feasible set of truncated
moment sequences. In Section VI we illustrate via an
example that even in the case where the Toeplitz matrix
made up of the n + 1 optimal moments is singular, the
central extension may produce an optimal spectrum that
remains finite. In the Appendix we provide au! xiliary
results on a special case of the partial positive matrix
completion problem.

II. PROBLEM FORMULATION

In this section we define the class of optimal exper-
iment design problems treated in this paper. We intend
to perform parametric prediction error identification of
a stable MIMO LTI system in closed loop. The system
dynamics is given by the relation

y = G0(q)u+H0(q)e, (1)

where the signal u is of dimension m, and e, y are
of dimension p. Here G0 is the plant transfer function
matrix, H0 is the noise transfer function matrix, q is the
forward-shift operator, e is a vector-valued zero mean
white noise with (co-)variance λ0Ip where Ik is the
k× k identity matrix, u is the input vector, and y is the
output vector of the system. The transfer function ma-
trices G0(z), H0(z) are embedded in a model structure
G(z; θ), H(z; θ) and correspond to some true parameter
value θ0, G0(z) = G(z; θ0), H0(z) = H(z; θ0). We
assume that the plant transfer function G0 is stable, and
the noise model H0 is stable and inversely stable.
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The parameter vector θ0 is to be identified by an
experiment, which consists in collecting a set of input-
output data u, y on the system, which is possibly under
closed-loop control according to the relation

u = −K(q)y + r, (2)

where r is a quasistationary process of dimension m,
and K(q) is a m× p matrix-valued feedback controller.
The configuration of the identification experiment is
schematically depicted in Fig. 1. The estimator θ̂ of
the true parameter value θ0 is then evaluated as the
minimizer of some prediction error criterion.

The design variables at our disposal for this identifi-
cation experiment are thus the power spectrum Φr(ω)
of the external vector-valued input signal r and the
controller K(q). The experiment design problem studied
in this paper consists of choosing Φr(ω) and K(q) such
that some cost function Γ(Φr,K) is minimized and some
constraints Γk(Φr,K) ≤ γk on the pair (Φr,K) are
satisfied.

Following [17], we first move from the quantities
Φr,K to the spectra Φu,Φue, which yield an equivalent
description of the experimental conditions. The pow-
er spectrum Φr of r and the controller K determine
Φu,Φue by the formulas

Φu(ω) = λ0(Im+KG0)−1KH0H
∗
0K
∗(Im+KG0)−∗

+(Im +KG0)−1Φr(ω)(Im +KG0)−∗, (3)

Φue(ω) = −λ0(Im +KG0)−1KH0, (4)

where the transfer functions on the right-hand side are
evaluated at z = ejω. By A∗ we denote the complex
conjugate transpose of the matrix A and by A−∗ the
inverse of A∗. On the other hand, Φr and K can be
recovered from Φu,Φue by the formulas

Φr = (Im +KG0)(Φu−λ−1
0 ΦueΦ

∗
ue)(Im +KG0)∗,

K = −Φue(λ0H0 +G0Φue)
−1. (5)

Thus there is a one-to-one relationship between (Φr,K)
and (Φu,Φue). Note that the matrix inverses in (3)–(5)
exist by the stability of the loop.

Parametrizing the experimental conditions by the joint
power spectrum

Φχ0 =

(
Φu Φue
Φ∗ue λ0Ip

)
(6)

of the signals u, e instead of the quantities Φr,K has the
advantage that the feasible set becomes convex, which
is a prerequisite for a semi-definite representation [17].
The matrix Φχ0

is of size (m+ p)× (m+ p).
Within the framework of the partial correlation ap-

proach, the ultimate design variables are a finite set of
moments of the joint power spectrum Φχ0 . Accordingly,

Fig. 1. Experimental setup

the cost criterion and the constraints of the optimal
experiment design problem have to be expressible in a
tractable manner in terms of these moments. Apart from
this compatibility requirement, we do not impose any
condition on the cost criterion and the constraints.

Assumption 1. There exist integers n ≥ s ≥ 0 and
a polynomial d(z) =

∑s
l=0 dlz

l of degree s with the
following properties. The coefficients dl are real, obey
d0 6= 0, ds 6= 0, and the polynomial d(z) has all roots
outside the closed unit disk. Define (m+ p)× (m+ p)
matrices

mk =
1

2π

∫ +π

−π

1

|d(ejω)|2
Φχ0

(ω)ejkω dω (7)

for integral k. Then the constraints of the experiment de-
sign problem can be written as a linear matrix inequality

A(m0,m1, . . . ,mn, x1, x2, . . . , xN ) � 0 (8)

and the cost function of the experiment design problem
can be expressed as a tractable convex function

f0(m0, . . . ,mn, x1, . . . , xN ), (9)

where (m0, . . . ,mn) are defined in (7) and where A
and f0 may depend on N additional auxiliary variables
(x1, . . . , xN ).

The matrices mk defined by (7) are called the gen-
eralized moments of the spectrum Φχ0

. Note that the
moments mk are real and obey the relation mk = mT

−k.

In [15], [16] we presented a semi-definite description
of the set of finite moment sequences (m0, . . . ,mn)
corresponding to valid experiment designs. A se-
quence (m0, . . . ,mn) can be realized by a closed-
loop experiment design if and only if a certain LMI
B(m0, . . . ,mn) � 0 holds. Under Assumption 1, the
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optimal experiment design problem stated above

min
Φr,K

Γ(Φr,K) subject to Γk(Φr,K) ≤ γk (10)

can thus be recast as a convex program with semi-definite
constraints:

min
{mk,xl}

f0 subject to A � 0, B � 0. (11)

The solution of this optimization problem yields the
optimal truncated moment sequence (m0, . . . ,mn).

Under some mild assumptions the asymptotic in the
number of data average per data sample information
matrix of the experiment is given by [24]

M =
1

2πλ0

p∑
k=1

∫ +π

−π
Fk(ejω)Φχ0(ω)F ∗k (ejω) dω,

(12)
where p = dim(y), and the l-th row of the ma-
trix Fk is given by the k-th row of the matrix
[H−1

0 G′θl(θ0), H−1
0 H ′θl(θ0)]. Here G′θl , H

′
θl denote the

gradients of G(z; θ), H(z; θ) with respect to the l-th
entry of the parameter vector θ. If the model structure
is rational, then (12) is affine in the moment matrices
m0,m1, . . . ,mn for a suitably chosen polynomial d(z).
In addition, most experiment design criteria are formu-
lated as scalar functions of M . Therefore, Assumption 1
covers a wide variety of problem formulations in closed-
loop optimal experiment design, see also [23], [18], [17].
In particular, all classical designs (D-optimal, A-optimal,
L-optimal etc.) subject to variance constraints on the
signals fall within the framework of Assumption 1.

Example: We now demonstrate by an example how to
construct the polynomial d(z), the constraints A, and the
cost function f0 for a concrete closed-loop experiment
design problem. Let us consider an ARX model structure
G = bz−1

1+az−1 , H = 1
1+az−1 with true parameters b0, a0,

where |a0| < 1 to ensure that the plant G is stable.
We wish to identify the system in closed-loop under a
constraint on the output power, Ey2 ≤ c, where c >
λ0, such that the determinant of the information matrix
is maximized (D-optimality). Equivalently, we minimize
the negative logarithm of the determinant.

Since the plant and noise model are scalar, the system
dimensions are given by m = p = 1. The joint
power spectrum Φχ0

is thus of size 2 × 2. The matrix

F1 from (12) is given by
(
H−1G′b H−1H ′b
H−1G′a H−1H ′a

)
=(

z−1 0

− bz−2

1+az−1 − z−1

1+az−1

)
, where b, a are evaluated at

their true values b0, a0.
Our goal is now to express the information matrix (12)

as a linear function of the generalized moments mk, or
equivalently, as a convolution of a polynomial in z = ejω

with the ratio Φχ0

|d(z)|2 . To this end, we set d(z) equal to
the common denominator 1 + a0z of the elements of
F ∗1 . Then the elements of the information matrix and
the output power can be expressed by the generalized
moments as

M11 = λ−1
0 ((1 + a2

0)m0,11 + 2a0m1,11), (13)

M12 = λ−1
0 (−b0(a0m0,11+m1,11)−a0m1,21−m0,12),

M22 = λ−1
0 (b20m0,11 + 2b0m1,21 +m0,22),

Ey2 = b20m0,11 + 2b0m1,21 +m0,22.

The constraint Ey2 ≤ c and the cost function f0 =
− log detM involve only the moments m0,m1, and we
can set n = 1. Moreover, we do not need auxiliary
variables and can set N = 0. We then get

A(m0,m1) = c− Ey2 ≥ 0,

f0(m0,m1) = − log(M11M22 −M
2

12),

where for Ey2 and the elements of M we have to insert
expressions (13).

III. CENTRAL EXTENSIONS

In this section we introduce the concept of moment
extensions, and in particular, central extensions. Before
we focus on the generalized moments (7) of the struc-
tured power spectrum (6), we will first consider the case
of moment sequences of general power spectra. First we
shall consider different ways to represent a positive semi-
definite power spectrum in Subsection III-A. Then the set
of all possible moment extensions and its parametriza-
tions is considered in Subsection III-B. In Subsection
III-C we introduce the central extension, which is a
particular moment extension. Finally, we consider the
central extension under the assumption of a certain non-
degeneracy condition in Subsection III-D.

A. Representations of power spectra

Let Φ(ω) be an integrable 2π-periodic matrix-valued
complex-Hermitian positive semi-definite function of
size l× l, possibly containing a singular part consisting
of Dirac δ-functions. The moments of Φ are defined by

mk =
1

2π

∫ +π

−π
Φ(ω)ejkω dω. (14)

Note that m−k = m∗k. Then the block-Toeplitz matrices

Tk =


m0 m∗1

. . . m∗k−1 m∗k

m1 m0
. . . m∗k−2 m∗k−1

. . . . . . . . .

mk mk−1
. . . m1 m0

 (15)
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are positive semi-definite for all k ≥ 0. On the other
hand, given an infinite sequence of matrices mk, k ∈ Z,
satisfying m−k = m∗k and such that all block-Toeplitz
matrices Tk, k ≥ 0, are positive semi-definite, there
exists a unique Hermitian positive semi-definite function
Φ(ω) producing the matrices mk as in (14) [25, Theorem
1]. Note that if Φ(−ω) = Φ(ω)T , then all moments mk

are real, and the complex conjugate transpose in (15)
becomes the ordinary transpose.

There exist other representations of the function Φ(ω)
than by its infinite moment sequence. One of these is the
Carathéodory function

F (z) =
1

2π

∫ π

−π

ejω + z

ejω − z
Φ(ω)dω, (16)

which is an analytic function defined on the open unit
disc such that its Hermitian part 1

2 (F (z) + F ∗(z))
is positive semi-definite and F (0) is Hermitian. The
spectrum can be recovered from F as the limit

Φ(ω) = lim
r→1−

1

2
(F (rejω) + F ∗(rejω)). (17)

If Φ has a singular part, then the limit has to be
understood in the sense of a distribution [25, Section II].
The Carathéodory function F (z) can be also determined
from the moment sequence by the Taylor expansion [25,
p.151]

F (z) = m0 + 2

∞∑
k=1

m−kz
k. (18)

B. General moment extensions

We have shown in Section II that the optimal exper-
iment design problem can be reformulated as a convex
program with semi-definite constraints whose solution
takes the form of an optimal finite moment sequence
m0, . . . ,mn. In order for this finite moment sequence
to deliver an optimal spectrum Φχ0

, which in turn will
deliver an optimal pair (Φr,K), it needs to be extended
to an infinite sequence m0, . . . ,mn,mn+1, . . . which
must define a valid positive semi-definite Hermitian
function via the formula (14). Such extension is by no
means unique (and hence the corresponding spectrum is
by no means unique); the problem of generating such
extension is called the moment extension problem.

An obvious necessary condition for a finite sequence
m0, . . . ,mn of l × l matrices to be extendable to an
infinite sequence m0, . . . ,mn,mn+1, . . . which can be
obtained from some positive semi-definite function Φ
by formula (14) is that the block-Toeplitz matrix Tn is
positive semi-definite, Tn � 0. The Carathéodory-Fejer
theorem (see, e.g., [20, Chapter VI, Theorem 4.1]) states
that this is also a sufficient condition.

We call such infinite sequence m0, . . . ,mn,mn+1, . . .
an (infinite) extension of the finite sequence m0, . . . ,mn.
Recall that these infinite extensions are by no means
unique (actually there are infinitely many extensions),
but they must all obey the property that Tk � 0 for
all k. Our goal in this subsection is to parametrize
this set of infinite extensions. We present two ways of
parametrizing all infinite extensions of a finite moment
sequence. The first is by parametrizing the successive
moments mn+1,mn+2, . . . as a function of m0, . . . ,mn

and of a free parameter; the second is by parametrizing
the Carathéodory functions F (z) of all spectra Φ(ω)
whose first moments coincide with m0, . . . ,mn.

Parametrization of the successive moments
Since the condition Tk � 0 implies Tk′ �

0 for all k′ ≤ k, it makes sense to first con-
sider extensions by a finite number mn+1, . . . ,mn′

of matrices and to parametrize these. The sequence
m0, . . . ,mn,mn+1, . . . ,mn′ is a finite extension of the
sequence m0, . . . ,mn if and only if Tn′ � 0. We
first parameterize all extensions of the finite sequence
m0, . . . ,mn by one additional matrix mn+1.

Theorem 1. [29, Theorem 3.4.1],[4, Theorem 2.11b] Let
m0, . . . ,mn be a sequence of l × l matrices such that
the block-Toeplitz matrix Tn defined by (15) is positive
semi-definite. Then the l × l matrix mn+1 extends the
sequence m0, . . . ,mn in such a way that Tn+1 � 0 if
and only if it can be written as

mn+1 =


m1

...
mn


∗

T †n−1

m
∗
n

...
m∗1

+ Ln+1∆n+1Rn+1


∗

(19)
with

Ln+1 =

m0 −

m1

...
mn


∗

T †n−1

m1

...
mn




1/2

,

Rn+1 =

m0 −

m
∗
n

...
m∗1


∗

T †n−1

m
∗
n

...
m∗1




1/2

, (20)

and ∆n+1 a l × l contractive matrix, i.e., a matrix
satisfying σmax(∆n+1) ≤ 1. Here T †n−1 denotes the
pseudo-inverse of Tn−1.

If the moments m0, . . . ,mn are real and the extending
moment mn+1 is also required to be real, then the set
of all extensions is parametrized by a real contractive
matrix ∆n+1.

The contractive matrix ∆n+1 is called Verblunsky
coefficient [7]. It has been shown in [8] that up to a
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possible sign change it is equal to the Schur or Szegö
parameters, which are contractive matrices defined in a
different way [1], [25], [26].

A longer extension m0, . . . ,mn′ of the sequence
m0, . . . ,mn can be obtained step by step. We proceed
by first choosing a contractive matrix ∆n+1 and
calculating the next moment mn+1 from it. Then we
choose a matrix ∆n+2 and compute mn+2. Note that
mn+2 then depends also on ∆n+1 via its dependence
on mn+1. Then we choose ∆n+3 and so on, until the
final choice of ∆n′ which determines the last moment
matrix mn′ of the extension. In this way, all extensions
m0, . . . ,mn′ can be parametrized by n′ − n contractive
l × l matrices ∆k, k = n + 1, . . . , n′. In the same
way, an infinite extension is determined by an infinite
sequence of matrices ∆n+1,∆n+2, . . . , and the set of
all such extensions is parametrized by the set of all
such sequences.

Parametrization of all Carathéodory functions

A more compact way to parametrize the set of all
extensions of a finite sequence m0, . . . ,mn is via the
Carathéodory function (16). In order to formulate this re-
sult, we need a couple of definitions. For every 0 ≤ k <
n, we define from the sequence m0, . . . ,mk the positive
semi-definite l×l matrices Lk+1 and Rk+1 as in (20). For
a polynomial f(z) which is formally of degree k, define
the reciprocal polynomial f̃ [k](z) = zkf∗(1/z̄). Let the
matrix-valued polynomials ak,bk, ck,dk, formally of
degree k in z, be recursively defined by

a0 = c0 = m0, b0 = d0 = Il,

ak+1(z) = ak + zc̃
[k]
k (z)L†k+1∆k+1Rk+1,

bk+1(z) = bk − zd̃[k]
k (z)L†k+1∆k+1Rk+1,

ck+1(z) = ck + zLk+1∆k+1R
†
k+1ã

[k]
k (z),

dk+1(z) = dk − zLk+1∆k+1R
†
k+1b̃

[k]
k (z), (21)

where ∆k+1 is any contractive matrix satisfying (19)
with n replaced by k. Its existence is guaranteed by
Theorem 1 and the polynomials (21) do not depend on
the choice of ∆k+1.

The following result then provides a parametrization
of the Carathéodory functions F (z) of all spectra Φ(ω)
whose first n + 1 moments coincide with m0, . . . ,mn.
They are parametrized by a Schur function φ(z).

Proposition 1. [5, Theorem 4.1] Let m0, . . . ,mn be a fi-
nite sequence of l×l matrices such that the block-Toeplitz
matrix (15) satisfies Tn � 0. Then the Carathéodory
function (16) obtained from an infinite extension of the

sequence m0, . . . ,mn has the general form

F (z) =
(
an(z)− zc̃[n]

n (z)L†n+1φ(z)Rn+1

)
·

·
(
bn(z) + zd̃[n]

n (z)L†φ(z)Rn+1

)−1

=
(
dn(z) + zLn+1φ(z)R†n+1b̃

[n]
n (z)

)−1

·

·
(
cn(z)− zLn+1φ(z)R†n+1ã

[n]
n (z)

)
,

where φ(z) is an arbitrary Schur function of size l × l,
i.e., an analytic function on the open unit disc which
is contractive. Moreover, the denominator matrices are
invertible.

The function F (z) is hence a matrix-valued LFT
of the Schur function φ(z), with coefficients given by
polynomials which are explicit functions of the moments
m0, . . . ,mn. For a given Schur function φ(z), the spec-
trum Φ(ω) can be recovered from F by the limit (17).

C. Central extensions

In Subsection III-B we have seen that every extension
of a finite sequence m0, . . . ,mn is determined by the
choice of a sequence of contractive l × l matrices
∆n+1,∆n+2, . . . or, alternatively, by the choice of a
Schur function φ(z) of size l × l. In this subsection we
introduce a special moment extension, called the central
extension.

Definition 1. [4, Def. 2.12] Let m0, . . . ,mn be a finite
sequence of l × l matrices such that the block-Toeplitz
matrix (15) satisfies Tn � 0. The central extension of
m0, . . . ,mn is the extension determined by the specific
choice ∆k = 0, k ≥ n+ 1. The corresponding measure
Φ(ω) is called the central measure.

The next result shows that the central extension can
also be obtained as a special case of the parametrization
of moment extensions given by Proposition 1, providing
a simple closed-form expression for the Carathéodory
function (16) defined by the central measure.

Proposition 2. [11, Prop. 2.2, Theorem 2.3], [5, Theo-
rem 1.3] Let m0, . . . ,mn be a finite sequence of l × l
matrices such that the block-Toeplitz matrix (15) satisfies
Tn � 0. Then the Carathéodory function (16) obtained
from the central extension of the sequence m0, . . . ,mn

is given by the rational functions

F (z) = an(z)b−1
n (z) = d−1

n (z)cn(z),

where an,bn, cn,dn are the polynomials defined in (21).
In other words, it corresponds to the choice φ ≡ 0 of
the contractive Schur function.

The function F (z) in Proposition 2 is called the
central Carathéodory function. The central measure can
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then be recovered from the central Carathéodory function
by the limit (17). If the rational function F has poles on
the unit circle, then the corresponding spectrum Φ might
have a singular part, and the limit is to be considered
in the sense of a distribution. Otherwise Φ is just the
restriction of the Hermitian part of F on the unit circle
and is also rational. If the matrices m0, . . . ,mn are
real, then the central Carathéodory function F (z) is real-
rational. In this case all moments of the central extension
will be real, and Φ(−ω) = Φ(ω)T .

Let mn+1,mn+2, . . . denote the subsequent mo-
ments of the central extension of the moment sequence
m0, . . . ,mn. They relate to the central measure Φ as
in (14). From the construction in [5, p.256] it follows
that the central Carathéodory function F (z) produced by
the extended moment sequence m0, . . . ,mk for k ≥ n
as in Proposition 2 is the same as that produced by
the sequence m0, . . . ,mn. Hence the central extension
of the sequence m0, . . . ,mn,mn+1, . . . ,mk coincides
with the central extension of m0,m1, . . . ,mn for every
k ≥ n, and they all have the same central measure and
the same central Carathéodory function. The polyno-
mials ak,bk, ck,dk defined by the extended sequence
m0, . . . ,mk for k > n coincide with the polyno-
mials an,bn, cn,dn defined by the original sequence
m0, . . . ,mn, respectively [5, Prop. 4.4]. Although the
central Carathéodory function F (z) produced by the
sequence m0, . . . ,mk is formally rational of degree k,
k ≥ n, it is then effectively rational of degree n due to
a pole-zero cancellation at z =∞.

D. Central extension in the regular case

In this subsection we consider the case when the ma-
trix Tn constructed from a finite sequence m0, . . . ,mn

of l × l matrices is positive definite, Tn � 0. Then the
central measure can be written in a closed form as a
function of the moments m0, . . . ,mn. Following [25],
define the l × l matrix-valued polynomial

An(z) = Un(z)T−1
n UTn (0) =

n∑
k=0

Aknz
k.

where Uk(z) is a l× (k+ 1)l matrix-valued polynomial
defined by1

Uk(z) =
(
zkIl zk−1Il · · · Il

)
(22)

The matrix coefficient Akn of zk is given by the (n+1−
k, n + 1)-th l × l block of the inverse T−1

n . Note also
that An(0) = A0

n is positive definite. By [25, Theorem

1The order of the components in the matrix Un in (22) differs from
that in [25, eq. (9)] because the definition (14) is different from [25,
eq. (7)].

6] the polynomial An(z) has no zeros in the closed unit
disk. By [29, Section 3.6] the central measure is then
given by the l × l matrix-valued function

Φ(ω) = An(ejω)−∗An(0)An(ejω)−1. (23)

By [25, Theorem 3] the function Φ is positive definite
at all ω. Note that Φ is rational when considered as a
function of z = ejω on the unit circle.

IV. MOMENT EXTENSIONS FOR CLOSED-LOOP
EXPERIMENT DESIGN

In this section we return to our optimal closed-loop
experiment design problem described in Assumption 1.
In Subsection IV-A we describe the constraints on the
infinite generalized moment sequence m0, . . . ,mn, . . .
which result from the particular structure (6) of the
joint spectrum and the constraint (4) on Φue. We show
that these constraints impose linear relations between
s successive moments, where s is the degree of d(z).
In Subsection IV-B we determine necessary and suf-
ficient conditions such that a finite moment sequence
m0, . . . ,mn is extendable to an infinite moment se-
quence satisfying these specific constraints; we call such
extension a feasible extension. We do this by showing
that the central extension is a feasible infinite extension.
In particular, we can use the central extension of the
truncated moment sequence (m0, . . . ,mn) to recover
the jo! int power spectrum (6) which realizes the se-
quence according to formula (7). In Subsection IV-D
we parameterize all infinite extensions corresponding
to valid experiment designs by a choice sequence of
restricted Verblunsky coefficients. The central extension
corresponds to the case when all restricted Verblunsky
coefficients are zero.

Throughout this section, the moments
m0, . . . ,mn, . . . are defined by formula (7). This
means that the mk are the generalized moments of
the joint power spectrum Φχ0 . Since in Section III the
moments have been defined by formula (14), the power
spectrum Φ(ω) from this section has to be identified
with the quotient 1

|d(ejω)|2 Φχ0
(ω).

A. Structure of the infinite moment sequence

In this subsection we deduce linear relations between
the moments m0 = mT

0 ,m1, . . . ,mn, . . . from the
particular structure of the power spectrum Φχ0 in (7).
Set m−k = mT

k and partition the l × l matrix moments
mk into 4 blocks mk,11,mk,12,mk,21,mk,22, accord-
ing to the partition of Rl into a sum Rm ⊕ Rp. The
moment matrices mk depend on the spectra Φu,Φue,
which in turn determine the experimental conditions.
However, as a result of the constraints (3), (4) and (6),
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not all pairs (Φu,Φue), and hence not all sequences
(m0, . . . ,mn, . . . ), correspond to valid experiment de-
signs.

From (7) it follows that

mk,22 =
1

2π

∫ +π

−π

λ0Ip
|d(ejω)|2

ejkω dω (24)

for all k ∈ Z. The positivity of the joint power spectrum
Φχ0 implies by the Carathéodory-Fejer theorem that the
block-Toeplitz matrix

Tk =


m0 mT

1

. . . mT
k−1 mT

k

m1 m0
. . . mT

k−2 mT
k−1

. . . . . . . . .

mk mk−1
. . . m1 m0

 (25)

is positive semi-definite for all k ≥ 0. Further, the
transfer functions from the signals r, e to the signals
u, y are stable. Let T ⊂ C be the unit circle. Then
the function fue : T → Cm×p, defined by the cross
spectrum Φue by means of fue(ejω) = Φue(ω), can be
extended to a holomorphic function outside of the unit
disc, including the point at infinity (compare also [17]).
From

mk,12 =
1

2π

∫ +π

−π

1

d(ejω)

Φue(ω)

d(e−jω)
ejkω dω

it follows that
s∑
i=0

dimk+i,12 =
1

2πj

∫
T

fue(z)

d(z−1)
zk−1 dz.

Since all zeros of d(z−1) are in the open unit disc, the
ratio fue(z)/d(z−1) is also holomorphic outside of the
unit disc. It follows that

∑s
i=0 dimk+i,12 = 0 for all

k < 0, and hence
s∑
i=0

dimk−i,21 = 0 (26)

for all k > 0. Similarly it follows that the matrices (24)
satisfy

s∑
i=0

dimk−i,22 = 0 (27)

for all k > 0. The next result shows that these relations
are also sufficient.

Theorem 2. Let m0 = mT
0 , . . . ,mn, . . . be an infinite

sequence of real l × l matrices, and set m−k = mT
k ,

k > 0. Then the sequence m0, . . . ,mn, . . . is generated
by formula (7) from a joint power spectrum Φχ0

as in
(3),(4),(6) if and only if Tk � 0 for all k ≥ 0, and
relations (24),(26) hold for all k ∈ Z and k > 0,

respectively.
Proof: The only if part has been demonstrated

above. Let us show the if part.
Assume that Tk � 0 for all k ≥ 0, and relations

(24),(26) hold. We have to show that the moment
sequence m0, . . . ,mn, . . . is generated by some joint
power spectrum Φχ0

such that its lower right p × p
subblock is given by λ0Ip, as required in (6), and its
upper right m× p subblock is a stable transfer function.
This allows to construct the controller and external input
spectrum K,Φr in (3),(4) by virtue of (5), obtaining a
stable control loop.

By [25, Theorem 1] there exists a unique positive
semi-definite power spectrum Φ(ω) which produces
the moment sequence m0, . . . ,mn, . . . as in (14). Set
Φχ0

(ω) = |d(ejω)|2Φ(ω). Then (7) holds.
Let Φχ0,22 be the p × p lower right sub-

block of Φχ0
. Relations (7) and (24) imply that∫ +π

−π
ejkω

|d(ejω)|2 (Φχ0,22(ω)−λ0Ip)dω = 0 for all k. Again
from [25, Theorem 1] it then follows that Φχ0,22(ω) =
λ0Ip.

Denote the upper right m×p subblock of Φχ0
by Φue.

Relation (26) implies
∑s
i=0 dimk+i,12 = 0 for all k < 0.

Writing this out, we obtain
∫ +π

−π
Φue(ω)
d(e−jω)e

jkω dω = 0 for
all k < 0. It follows that the function f̃ue : T→ Cm×p
defined by f̃ue(e

jω) = Φue(ω)
d(e−jω) can be extended to a

holomorphic function outside of the unit disc, including
the point at infinity. The product fue(z) = f̃ue(z)d(z−1)
is then a holomorphic extension of the function fue :
T → Cm×p defined by fue(e

jω) = Φue(ω). Thus Φue
represents a stable transfer function, which concludes the
proof.

B. Feasibility of the central extension

In this subsection we consider finite sequences m0 =
mT

0 ,m1, . . . ,mn of real l× l matrices and their central
extensions in relation to Theorem 2. Set m−k = mT

k for
k = 1, . . . , n.

In order for the finite sequence (m0, . . . ,mn) to
be extendable to an infinite sequence m0, . . . ,mn, . . .
satisfying the conditions of Theorem 2, it must clearly
satisfy the following necessary conditions:

Tn � 0, (28)

mk,22 =
1

2π

∫ +π

−π

λ0Ip
|d(ejω)|2

ejkω dω,

k = 0, . . . , n, (29)
s∑
i=0

dimk−i,21 = 0, k = 1, . . . , n. (30)

In [16, Theorem 1] we have shown for the SISO case
that conditions (28)—(30) are also sufficient to guarantee

February 16, 2014 DRAFT



10

the existence of a positive semi-definite joint power
spectrum (6), satisfying Φχ0

(ω) = Φχ0
(−ω)T , such that

Φue represents a stable transfer function, which repro-
duces the truncated moment sequence (m0, . . . ,mn) by
formula (7). This proof extends without modifications
also to the MIMO case considered here. The result
[16, Theorem 1] is, however, non-constructive, because
it does not yield an explicit power spectrum Φχ0

, but
merely proves its existence.

We will now give a constructive proof by showing that
the explicit power spectrum obtained by virtue of the
central extension yields a feasible optimal experiment.

Theorem 3. Let m0 = mT
0 ,m1, . . . ,mn be a finite

sequence of real l× l matrices, and set m−k = mT
k for

k = 1, . . . , n. Assume that conditions (28)—(30) hold.
Then the central extension of the sequence (m0, . . . ,mn)
satisfies the conditions of Theorem 2.

Proof: The condition Tk � 0 is fulfilled for all k ≥
0 because the central extension is by definition a positive
semi-definite moment extension. It remains to show the
equality conditions (24),(26) for k > n.

This can be done by induction over k. Indeed, the
central extension m0, . . . ,mn,mn+1, . . . of the finite
sequence (m0, . . . ,mn) coincides with the central exten-
sion of the finite sequence (m0, . . . ,mn,mn+1). Sup-
pose we are able to show that the moment matrix
mn+1 satisfies the conditions (24),(26) for k = n + 1.
Incrementing n by one and repeating the reasoning will
then prove the conditions for k = n + 2. Repeating the
process, we prove the conditions for all k > n.

We shall hence consider the case k = n+1. Note that
s∑
i=0

di

(
1

2π

∫ +π

−π

λ0Ip
|d(ejω)|2

ej(n+1−i)ω dω

)
=

1

2πj

∫
T

λ0Ip
d(ejω)

ejnω dejω = 0,

because the integrand in the second integral can be
extended to a function which is holomorphic inside the
unit disc. It follows that (24) is valid for k = n + 1 if
and only if (27) is valid for k = n+ 1.

Now let the blocks of the matrix M in Lemma 2
have the values A = m0, B =

(
mT

1 . . . mT
n

)
, C =

Tn−1, DT =
(
mn,21 mn,22 . . . m1,21 m1,22

)
,

E = m0,22. By virtue of the condition Tn � 0 the
matrix M in this lemma is partial positive semi-definite.
Let now the block X from Lemma 3 be defined by
XT =

(
mn+1,21 mn+1,22

)
. The relation X = BC†D

then follows from Definition 1. Let further FT con-
sist of the last p rows of the l × (n + 1)l matrix(
0 0 · · · 0 dsIl ds−1Il · · · d0Il

)
. Then the

relation
(
C D

)
F = 0 follows from (26),(27) for

k = 1, . . . , n. It then follows from Lemma 3 that

(
B X

)
F = 0 which is! equivalent to (26),(27) for

k = n+ 1.
Thus both conditions (24),(26) are valid for k = n+1,

which completes the proof.

Theorem 4. Let m0 = mT
0 ,m1, . . . ,mn be a finite

sequence of real l × l matrices, and set m−k = mT
k

for k = 1, . . . , n. Then (m0, . . . ,mn) is extendable
to an infinite sequence m0, . . . ,mn, . . . satisfying the
conditions of Theorem 2 if and only if conditions (28)—
(30) hold.

Proof: The only if part follows from the fact that
the conditions in Theorem 2 imply (28)-(30). The if part
follows from Theorem 3.

Theorem 4 identifies (28)-(30) as the conditions on
a finite sequence m0 = mT

0 ,m1, . . . ,mn of real l × l
matrices to be realizable as a truncated sequence of gen-
eralized moments as in formula (7), with the joint power
spectrum Φχ0

defining valid experimental conditions by
virtue of (5),(6). This allows us to rewrite experiment
design problems satisfying Assumption 1 as a convex
program with the linear and semi-definite constraints
(28)—(30). This will be accomplished in Section V.

Theorem 5. Let (m0, . . . ,mn) be a (n + 1)-tuple of
real l × l matrices satisfying m0 = mT

0 , and define
m−k = mT

k for all k = 1, . . . , n. Suppose that these
matrices satisfy conditions (28)-(30). Let F (z) be the
central Carathéodory function defined in Proposition 2.
Then the power spectrum Φχ0

(ω) = |d(ejω)|2 · Φ(ω),
where Φ(ω) is given by the limit (17), satisfies the
following properties: it is of the form (6), positive semi-
definite, satisfies Φχ0(ω) = Φχ0(−ω)T , its upper right
block Φue represents a stable transfer function, and it re-
produces the truncated moment sequence (m0, . . . ,mn)
by formula (7).

Proof: The theorem follows from Proposition 2,
Theorem 2, Theorem 3, and formula (17).

C. Description of all feasible extensions

In Proposition 1 we have given the general form of the
Carathéodory function of an infinite moment extension
of a given finite moment sequence m0, . . . ,mn. How-
ever, not every extension corresponds to a valid closed-
loop experiment design. As we established in Section
IV-A, a necessary and sufficient condition for this are
the constraints (24), (26). We shall now express these
conditions in terms of the Carathéodory function itself.

Theorem 6. Let (m0, . . . ,mn) be a (n + 1)-tuple
of real l × l matrices satisfying m0 = mT

0 , and
define m−k = mT

k for all k = 1, . . . , n. Suppose
that these matrices satisfy conditions (28)-(30). Let
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Fc(z) be the central Carathéodory function of the fi-
nite moment sequence (m0, . . . ,mn), and let F (z) be
the Carathéodory function of an arbitrary infinite mo-
ment extension m0, . . . ,mn,mn+1, . . . . Let Φχ0(ω) =
|d(ejω)|2 · Φ(ω), where Φ(ω) is the power spectrum
constructed from F (z) by the limit (17). Then Φχ0

(ω)
is the joint power spectrum corresponding to a valid
closed-loop experiment design if and only if the last p
columns of the matrix-valued functions F (z) and Fc(z)
coincide.

Proof: Partition the matrix-valued functions F =
(F1 F2), Fc = (Fc1 Fc2) into submatrices with m and
p columns, respectively. From (18) we obtain

F (z)d(z) = m0d(z) + 2

s∑
i=0

∞∑
k=1

dim
T
k z

k+i

= m0d(z) + 2

s∑
i=0

∞∑
k=i+1

dim
T
k−iz

k

= m0d(z)− 2

s∑
i=0

i∑
k=1

dim
T
k−iz

k

+2

∞∑
k=1

zk
s∑
i=0

dim
T
k−i. (31)

Suppose now that Φχ0
(ω) corresponds to a valid

closed-loop experiment design. Then relations (26), (27)
hold for all k > 0. From (30) and (31) we then obtain
that the product F2(z)d(z) is given by the last p columns
of the expression m0d(z) − 2

∑s
i=0

∑i
k=1 dim

T
k−iz

k.
Thus F2(z) is a rational function of degree s which
depends only on the moments m0, . . . ,ms−1. Since
s ≤ n by Assumption 1, it follows that every joint power
spectrum Φχ0

(ω) corresponding to a valid closed-loop
experiment design produces the same rational function
F2(z). By Theorem 5 this holds in particular for the pow-
er spectrum Φχ0

(ω) coming from the central extension.
Therefore we have F2(z) = Fc2(z).

Suppose now that F2(z) = Fc2(z). Note that by (17)
the lower right p× p subblock of Φχ0

(ω) depends only
on F2. It has thus to be the same as that coming from
the central extension, namely λ0Ip by Theorem 5. This
proves (24) for all k ∈ Z. By the preceding paragraph,
the product Fc2(z)d(z) is given by the last p columns
of the expression m0d(z) − 2

∑s
i=0

∑i
k=1 dim

T
k−iz

k.
The product F2(z)d(z) is given by the same expression.
But then from (31) it follows that the last p columns
of the sum

∑∞
k=1 z

k
∑s
i=0 dim

T
k−i are identically zero.

Therefore the moment extension satisfies (26),(27) for all
k > 0. Finally, we have Tk � 0 for all k ≥ 0 because
m0, . . . ,mn,mn+1, . . . is a moment extension. Thus by
Theorem 2 the power spectrum Φχ0(ω)! corresponds to
a valid closed-loop experiment design.

Theorem 6 allows to deduce a linear necessary and
sufficient condition on the Schur function φ(z) in Propo-
sition 1 guaranteeing that the Carathéodory function
F (z) defined by the parameter φ(z) defines a feasible
extension.

Corollary 1. Let (m0, . . . ,mn) be a (n + 1)-tuple of
real l × l matrices satisfying m0 = mT

0 , and define
m−k = mT

k for all k = 1, . . . , n. Suppose that
these matrices satisfy conditions (28)-(30). Let φ(z) be
a Schur function of size l × l, and let F (z) be the
Carathéodory function defined by φ(z) as in Proposition
1. Let Φχ0

(ω) = |d(ejω)|2 · Φ(ω), where Φ(ω) is the
power spectrum constructed from F (z) by the limit (17).
Then Φχ0(ω) is the joint power spectrum corresponding
to a valid closed-loop experiment design if and only if
the function φ(z) satisfies the condition(
cn(z)− zLn+1φ(z)R†n+1ã

[n]
n (z)

)( 0
Ip

)
=(

dn(z)+zLn+1φ(z)R†n+1b̃
[n]
n (z)

)
d−1
n (z)cn(z)

(
0
Ip

)
.

Proof: The corollary follows from the expression
for F (z) in Proposition 1, Theorem 6, and the fact that
Fc(z) = d−1

n (z)cn(z).

D. Parametrization of all feasible extensions

In Section III we have considered finite and infinite
extensions of a finite moment sequence m0, . . . ,mn.
Not every matrix mn+1 defines an extension of the
sequence m0, . . . ,mn. In Theorem 1 of Subsection III-B
we have parametrized the set of such matrices mn+1 by a
contractive matrix ∆n+1, the Verblunsky parameter. The
moment mn+1 is an explicit function of the parameter
∆n+1 and the preceding moments m0, . . . ,mn, and
the dependence on ∆n+1 is affine. Once the moment
mn+1 is specified by the choice of a contractive matrix
∆n+1, it becomes available for defining the coefficients
of the parametrization of the next moment mn+2 by
the next Verblunsky coefficient ∆n+2. In this manner,
one can construct step by step an extension of the
sequence m0, . . . ,mn of arbitrary length, by choosing
subsequently contractive matrices ∆n+1,∆n+2!, . . . . An
infinite extension is then determined by the choice of an
infinite number of Verblunsky coefficients. The central
extension is determined by a special choice of these
coefficients, namely ∆k = 0 for k > n.

However, an arbitrary choice of contractive matrices
∆n+1,∆n+2, . . . does not necessarily lead to a feasible
extension as defined in the introduction to Section IV,
i.e., an infinite moment sequence which may be real-
ized by a valid closed-loop experiment design setup. In
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Theorem 2 we have shown that in order to be feasible
in this sense, the moments of the extension have to
satisfy the constraints (24), (26). An arbitrary choice
of ∆n+1 may lead to a moment mn+1 violating these
conditions and precluding the possibility to achieve a
feasible extension. In Subsection IV-B we have shown
that the central extension is a feasible extension, and
hence the choice ∆n+1 = 0 leads to a moment mn+1

such that the sequence m0, . . . ,mn,mn+1 still possesses
a feasible extension.

The purpose of this subsection is to deduce an analog
of Theorem 1 providing a parametrization of the set of
moments mn+1 such that the sequence m0, . . . ,mn+1

possesses a feasible extension. The parameter will also
be a contractive matrix ∆̂n+1, which we call restricted
Verblunsky coefficient. It will have smaller size and hence
less degrees of freedom than the Verblunsky coefficient
∆n+1, reflecting the stronger requirements on mn+1.
The moment mn+1 will also affinely depend on the
parameter ∆̂n+1, and the choice ∆̂n+1 = 0 will lead
to the moment mn+1 defined by the central extension.

We shall determine all real l× l matrices mn+1 such
that the block-Toeplitz matrix Tn+1 is positive semi-
definite and relations (24),(26) hold for k = n + 1.
By virtue of d0 6= 0 the lower p rows of mn+1 are
uniquely determined by the equivalent relations (26),(27)
for k = n+ 1. Namely, we have

mn+1,2α = −d−1
0

s∑
i=1

dimn+1−i,2α, α = 1, 2.

These lower p rows must in particular coincide with the
lower p rows of the moment mc

n+1 defined by the central
extension.

Now consider the positive semi-definite block-Toeplitz
matrix Tn+1. The entries of this matrix which are
determined by the moments m0, . . . ,mn and the lower p
rows of mn+1 are specified, while the entries determined
by the upper m rows of mn+1 remain unspecified. We
shall now use Lemma 4 of the Appendix to describe this
partially specified matrix. By setting A = E = m0, B =(
mT

1 . . . mT
n

)
, C = Tn−1, DT =

(
mn . . . m1

)
,

XT
2 =

(
mn+1,21 mn+1,22

)
in this lemma, the partially

specified matrix M̂ becomes equal to Tn+1. In order
to describe the remaining unspecified entries, we set
XT

1 =
(
mn+1,11 mn+1,12

)
. Let the matrices D,E be

partitioned as in Lemma 4 into submatrices of m and
p columns. The relation X2 = BC†D2 required by the!
conditions of the lemma then follows from the definition
of the central extension in Subsection III-C. By Lemma
4, the matrix X1 containing the elements of the upper m
rows of mn+1 is parametrized as in (33) of that lemma
by a contractive l ×m matrix ∆̂.

This yields us the required parametrization of the

set of moments mn+1 which may appear in a feasible
extension of the sequence m0, . . . ,mn. We will denote
the parameter ∆̂n+1 and call it restricted Verblunsky
parameter.

Having determined the moment mn+1 by the choice
of the restricted Verblunsky parameter ∆̂n+1, we may
proceed in an analogous manner to the definition of
the next moment mn+2 by the choice of the restricted
Verblunsky parameter ∆̂n+2. In this way, all the infinite
moment extensions of the sequence (m0, . . . ,mn) which
satisfy the conditions of Theorem 2 can be parametrized
by the infinite choice sequence ∆̂n+1, ∆̂n+2, . . . of
contractive l ×m matrices.

By Lemma 5 in the Appendix, the choice ∆̂k = 0
for all k > n leads to the central extension of the
sequence (m0, . . . ,mn). In the same way, the choice
∆̂k′ = 0 for all k′ > n+k leads to the central extension
of the sequence (m0, . . . ,mn,mn+1, . . . ,mn+k). Here
the moments mn+1, . . . ,mn+k are parameterized by
the remaining k free restricted Verblunsky parameters
∆̂n+1, . . . , ∆̂n+k. In this way, we obtain a set of infinite
moment extensions which is parameterized algebraically
by the klm elements of these matrices.

Note that mn+1 is affine in ∆̂n+1. The Verblunsky
parameter ∆n+1 in (19) and hence the polynomials
an+1,bn+1, cn+1,dn+1 can then also be written as
affine functions in ∆̂n+1. If only the first parameter
∆̂n+1 is free, while the other parameters are fixed to
zero, then by Proposition 2 the Carathéodory function
associated to the joint power spectrum Φχ0

is rational in
∆̂n+1. The parameter ∆̂n+1 can then be chosen in order
to achieve additional goals of the experiment.

V. SOLUTION ALGORITHM

In this section we outline a general scheme for the
solution of optimal experiment design problems satisfy-
ing Assumption 1. The scheme consists of two steps.
First we find the optimal truncated moment sequence by
solving a convex program with semi-definite constraints,
and then we recover the experimental conditions (i.e.,
the power spectrum Φr of the external input and the
controller K from this moment sequence) from the
central extension of this finite moment sequence.

Apart from the constraints following from the for-
mulation of the particular problem instance under con-
sideration, the moment sequence (m0, . . . ,mn) has to
satisfy conditions (28)—(30). Condition (28) amounts
to a linear matrix inequality. Condition (29) determines
the blocks mk,22 explicitly, while condition (30) yields
linear relations on the blocks mk,21. The optimal exper-
iment design problem defined in Assumption 1 is thus
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turned into the following convex program.

min
mk,xl

f0(m0, . . . ,mn, x1, . . . , xN ) (32)

subject to the constraints

A(m0,m1, . . . ,mn, x1, x2, . . . , xN ) � 0,

mk,22 =
1

2π

∫ +π

−π

λ0Ip
|d(ejω)|2

ejkω dω, k = 0, . . . , n,

s∑
i=0

dimk−i,21 = 0, k = 1, . . . , n,

Tn =


m0 mT

1

. . . mT
n

m1 m0
. . . mT

n−1

. . . . . . . . . . . .

mn mn−1
. . . m0

 � 0,

where m−k = mT
k . By solving this convex program,

the user obtains the optimal truncated moment sequence
(m0, . . . ,mn) and the optimal value of the cost function.
Note that if the cost function f0 is linear, then the convex
program is a semi-definite program.

The power spectrum (6) can be obtained as a rational
function with possibly a singular part by the formula
Φχ0

(ω) = |d(ejω)|2 ·Φ(ω), where Φ(ω) is given by the
limit (17) and F (z) is the central Carathéodory function
given in Proposition 2. Note that this solution works even
if Tn is singular. We shall give an example in the next
section when the singular part is absent even if Tn is
singular.

The power spectrum Φr and the controller K can then
be recovered from Φue and the upper left m×m block
Φu by formulas (5).

If the matrix Tn corresponding to the solution happens
to be positive definite, then (23) allows to recover the
joint power spectrum (6) in a more straightforward
manner by the explicit formula

Φχ0
(ω) = |d(ejω)|2 ·A(ejω)−∗A(0)A(ejω)−1,

where A(z) = U(z)T−1
n UT (0) and U(z) =(

znIl zn−1Il · · · Il
)
.

As is often the case in optimal experiment design,
the calculation of the optimal experimental conditions
requires knowledge of the transfer functions G0, H0 to
be identified. This obstacle can be circumvented by per-
forming a preliminary identification experiment and/or
applying an iterative procedure, using the estimates from
the previous iteration for the design of the experimental
conditions in the current one.

VI. EXAMPLES

Example 1
In this first example, we illustrate the construction by

virtue of the Carathódory function (16) of the spectrum
Φ corresponding to the central extension of a singular
moment matrix. In this example the spectrum defined by
this central extension remains finite. Let n = 1, l = 2,
and consider the moment matrix

T1 =

(
m0 mT

1

m1 m0

)
=


1 0 2

3
2
3

0 1 − 2
3

1
3

2
3 − 2

3 1 0
2
3

1
3 0 1

 .

This matrix is positive semi-definite and singular. From
(19), (20) we get L1 = R1 = m

1/2
0 = I2,

∆1 = mT
1 . The polynomials (21) are then given by

a1(z) = c1(z) = m0 + zmT
1 , b1(z) = d1(z) =

m0 − zmT
1 . By Proposition 2, the Carathéodory func-

tion (16) obtained from the central extension of the
sequence (m0,m1) is given by F (z) = (m0 +
zmT

1 )(m0 − zmT
1 )−1 = (m0 − zmT

1 )−1(m0 + zmT
1 ) =

1
1−z+ 2

3 z
2

(
1 + 1

3z −
2
3z

2 4
3z

− 4
3z 1− 1

3z −
2
3z

2

)
. The poly-

nomial in the denominator has all roots outside of the
unit circle, and hence F (z) can be analytically extended
to a neighbourhood of the unit disk. From (17) we then
obtain

Φ(ω) =
1

2
(F (ejω) + F ∗(ejω))

=

 2+ejω+e−jω

9|1−ejω+ 2
3 e

2jω|2
2(ejω−e−jω)

9|1−ejω+ 2
3 e

2jω|2
2(e−jω−ejω)

9|1−ejω+ 2
3 e

2jω|2
8−4(ejω+e−jω)

9|1−ejω+ 2
3 e

2jω|2

 .

The spectrum is not positive definite, but still finite.

Example 2
Here we shall solve the problem given in the example

in Section II. Following Section V, we obtain the maxdet
problem

min
m0,m1

(
− log(M11M22 −M

2

12)
)

under the constraints

c− Ey2 ≥ 0,

mk,22 =
1

2π

∫ +π

−π

λ0Ip
|d(ejω)|2

ejkω dω, k = 0, 1,

m1,21 + a0m0,21 = 0,

Tn =

(
m0 mT

1

m1 m0

)
� 0,

where for Ey2 and the elements of M we have to
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insert expressions (13). The integrals evaluate to m0,22 =
λ0

1−a20
, m1,22 = − λ0a0

1−a20
. The other elements of the

moment matrices are given by the explicit solution

m0,11 =
(c(1− a2

0) + λ0a
2
0)(ca2

0 + c− λ0)

b20(1− a2
0)(c+ (c− λ0)a2

0)
,

m0,12 =
λ0a0(2c− λ0)

b0(1− a2
0)(c+ (c− λ0)a2

0)
,

m1,11 = − λ0a0(ca2
0 + c− λ0)

b20(1− a2
0)(c+ (c− λ0)a2

0)
,

m1,12 = −m0,12a0(Ξ + (c− λ0)λ0(1− a2
0)2)

Ξ
,

m1,21 = −a0m0,12,

where we denoted Ξ = c2(1 + a2
0)2 − cλ0(2a4

0 + a2
0 +

1) + λ2
0a

4
0. This solution gives rise to a positive definite

block-Toeplitz matrix T1. The controller K and power
spectrum Φr resulting from the central extension of T1

are given by

K = − a0(2c− λ0)(ca2
0 + c− λ0)(1 + a0z

−1)

b0(Ξ + a0(2c(c− λ0)(1 + a2
0) + λ2

0a
2
0)z−1)

,

Φr =
(c− λ0)(ca2

0 + c− λ0)(c+ (c− λ0)a2
0)Ξ|ejω + a0|2

b20|Ξejω + a0(2c(c− λ0)(1 + a2
0) + λ2

0a
2
0)|2

.

Let us compare this solution to the optimal open-
loop experiment. In this case Φue = 0, and the off-
diagonal elements of the moment matrices are fixed
to zero. Moreover, for an open-loop experiment to be
feasible the condition c ≥ λ0

1−a20
is necessary. Under

this condition the remaining moments have the optimal
values m0,11 = b−2

0 (c− λ0

1−a20
),

m1,11 =

{
sgn(a0)m0,11, c ≤ λ0

1−|a0| ,
λ0a0

b20(1−a20)
, c > λ0

1−|a0| .

Thus for c ≤ λ0

1−|a0| the input power spectrum for
the optimal open-loop experiment is discrete and giv-
en by Φu(ω) = 2π(1 + |a0|)2m0,11δ(ω − ω0), with
ω0 = 0 if a ≥ 0, and ω0 = π if a0 < 0. For
c > λ0

1−|a0| the continuous input power spectrum given

by Φu(ω) = m0,11|1 + a0e
jω|2 m2

0,11−m
2
1,11

|m0,11−m1,11ejω|2 is
optimal. Incidentally, for this latter case the determinants
of the information matrices obtained from the optimal
open-loop and closed-loop experiment designs have the
same value. For c < λ0

1−|a0| the optimal closed-loop
experiment design leads to a strictly smaller value of
the cost function than the optimal open-loop design.

Simulation results. For the values λ0 = 1, c = 1.4,
b0 = 0.5, a0 = 0.4 we first identify the system
with an open-loop experiment using white noise with
variance σ2 = 1 as input. From the identified parameters
two experimental configurations are computed, namely

Fig. 2. Identified parameter vectors for optimal open-loop (top) and
closed-loop (bottom) experiments

the optimal open-loop input, and the optimal closed-
loop input-controller pair. An optimal open-loop and
an optimal closed-loop experiment are then performed
and the parameter vector identified. The data length in
each of the experiments is N = 1000. The identified
parameter vectors for 500 runs are plotted in Fig. 2.
The empirical covariance matrices of the 500 identi-
fied parameter vectors have determinant 0.49736N−2

and 0.38796N−2 for the open-loop and the closed-
loop experiments, respectively. We see that the empirical
covariance matrix has a 28% smaller determinant for the
closed-loop experiments.

VII. CONCLUSIONS

We have provided a solution to the closed loop optimal
experiment design for MIMO systems. The solution uses
the so-called partial correlation approach in which the
criterion and the constraints are expressed as a function
of a finite set of generalized moments. The optimal
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moments are then obtained as the solution of a semi-
definite program. The key difficulty of this approach,
which had been a stumbling block so far, is to extend
the finite set of optimal moments into an infinite set, or
equivalently into a spectrum, because the spectrum must
obey some constraints which are due to the closed loop
setup. Thus, the classical Carathéodory-Fejer theorem
cannot be used to produce a feasible extension.

Our main contribution has been to show that the so-
called central extension is a feasible extension, which
satisfies these constraints. In addition, using properties
of the central extension, as well as results on the positive
matrix completion theorem, we have shown how to con-
struct families of parametrized optimal extensions which
also obey the constraints of the optimal experiment
design problem.

One of the key advantages of the solution method
developed in the present paper is that it allows one to
explicitly compute an optimal solution for the spectrum
Φr of the external excitation signal and the feedback
controller K. They can be computed straightforwardly
from the optimal moments that result from the solution
of the semi-definite program. This is a significant
progress over our previous result [16] which only
proved the existence of an optimal spectrum, but
without an explicit computational procedure.

Appendix

In this Appendix we provide auxiliary results related
to the positive matrix completion problem. This is the
problem of completing a real symmetric matrix, only part
of whose entries are specified, to a full positive semi-
definite matrix. A partially specified matrix M is said
to be partial positive semi-definite if all diagonal entries
of M are specified, and every principal submatrix of
M which is fully specified is positive semi-definite. A
partially specified matrix M is said to be positive semi-
definite completable if there exists a specification of the
unspecified entries of M such that the resulting fully
specified matrix is positive semi-definite. Clearly partial
positive semi-definiteness is a necessary condition for
positive semi-definite completability. There exist specifi-
cation patterns for which this condition is also sufficient.
These patterns have been completely described in [14]
by graph-theoretic! means. We shall need only a special
case of such specification patterns, namely when the
unspecified entries can be arranged in a rectangular block
by a suitable permutation of the row and column indices
of M . In this case the set of all completions has a closed-
form description as an affine image of a matrix ball. This
fact has been brought to our attention by Keith Glover.

The results in this Appendix, and in particular Lemma

2 and Lemma 4, are required to prove that the moment
extension in Theorem 1 is an admissible extension in
that it produces Tn+1 � 0.

Lemma 1. [12, Theorem 16.1, p.435] A real symmetric

matrix M =

(
A B
BT C

)
is positive semi-definite if and

only if C � 0, (I−CC†)BT = 0, and A−BC†BT � 0.
In this case we have the factorization

M =

(
I BC†

0 I

)(
A−BC†BT 0

0 C

)(
I 0

C†BT I

)
.

Here C† denotes the pseudo-inverse of C, and I denote
identity matrices of appropriate size.

Lemma 2. [13] Let M =

 A B ∗
BT C D
∗ DT E

 be

a real partial positive semi-definite matrix, where
A,B,C,D,E are blocks of compatible sizes. Then the

matrix MX =

 A B X
BT C D
XT DT E

 is a positive semi-

definite completion of M if and only if the block X can
be written as X = BC†D + (A − BC†BT )1/2∆(E −
DTC†D)1/2, where ∆ is a real matrix satisfying the
condition σmax(∆) ≤ 1. Here σmax denotes the maxi-
mal singular value and W 1/2 the positive semi-definite
matrix square root of the positive semi-definite matrix
W .

Proof: Since M is partial positive semi-definite, the

matrices
(
A B
BT C

)
and

(
E DT

D C

)
are positive semi-

definite. Applying Lemma 1 to these matrices, we obtain
that C � 0, (I −CC†)BT = 0, (I −CC†)D = 0, A−
BC†BT � 0, E −DTC†D � 0. Applying Lemma 1 to

the matrix

 A X B
XT E DT

BT D C

, we obtain that MX � 0

if and only if(
A X
XT E

)
−
(
B
DT

)
C†
(
BT D

)
=

(
A−BC†BT X −BC†D

(X −BC†D)T E −DTC†D

)
� 0.

The claim of the lemma now easily follows.
The next result deals with the specific choice ∆ = 0.

Lemma 3. Assume the conditions of Lemma 2, and set
X = BC†D. Assume that there exists a matrix F of
appropriate size such that

(
C D

)
F = 0. Then we have

also
(
B X

)
F = 0.

Proof: Partition F =

(
F1

F2

)
into subblocks of

appropriate size. We have CF1 + DF2 = 0, and hence
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BF1 +XF2 = B(F1 +C†DF2) = B(I−C†C)F1 = 0.
Here the last equality follows from Lemma 1.

Lemma 2 permits to obtain a parametrization of all
positive semi-definite matrix completions not only in the
case when the unspecified elements form a rectangular
block in the upper right corner, but also when such a
situation can be achieved by a suitable permutation of
the row and column indices.

Lemma 4. Assume the conditions of Lemma 2, but let
the unknown block be partitioned as X =

(
X1 X2

)
.

Let the blocks D =
(
D1 D2

)
, E =

(
E11 E12

ET12 E22

)
be

partitioned in a compatible manner.

Then the partially specified matrix M̂ =
A B ∗ X2

BT C D1 D2

∗ DT
1 E11 E12

XT
2 DT

2 ET12 E22

, where X2 = BC†D2,

is partial positive semi-definite. The general form of a
positive semi-definite completion X1 of M̂ is given by(
B X2

)( C D2

DT
2 E22

)†(
D1

ET12

)
+ (33)

+

(
A−

(
B X2

)( C D2

DT
2 E22

)†(
BT

XT
2

))1/2

∆̂

×

(
E11 −

(
DT

1 E12

)( C D2

DT
2 E22

)†(
D1

ET12

))1/2

,

where ∆̂ is any real matrix of size compatible with those
of A and E11 such that σmax(∆̂) ≤ 1.

Proof: The choice ∆ = 0 in Lemma 2 leads to
Xα = BC†Dα, α = 1, 2. Hence M̂ is positive semi-
definite completable. In particular, it must be partial
positive semi-definite. The general form of its positive
semi-definite completion X1 follows by application of
Lemma 2 to M̂ , after an appropriate permutation of rows
and columns.

Lemma 5. Assume the conditions of Lemma 2 and
Lemma 4. Completing the matrix M by X = BC†D,
i.e., by the choice ∆ = 0, leads to the same result
as first setting X2 = BC†D2 and then completing M̂

by X1 =
(
B X2

)( C D2

DT
2 E22

)†(
D1

ET12

)
, i.e., by the

choice ∆̂ = 0.

Proof: We have to show that BC†D1 =(
B BC†D2

)( C D2

DT
2 E22

)†(
D1

ET12

)
. By Lemma 1 we

have (
C D2

DT
2 E22

)
=

(
I 0

DT
2 C
† I

)
·

·
(
C 0
0 E22 −DT

2 C
†D2

)(
I C†D2

0 I

)
,

and hence(
C D2

DT
2 E22

)†
=

(
I −C†D2

0 I

)
·

·
(
C† 0
0 (E22 −DT

2 C
†D2)†

)(
I 0

−DT
2 C
† I

)
.

It follows that
(
I C†D2

)( C D2

DT
2 E22

)†
=
(
C† 0

)
,

which implies our claim.
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