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Quantification of the Variance of Estimated Transfer
Functions in the Presence of Undermodeling

Roland Hildebrand and Michel Gevers

Abstract—We study the effect of undermodeling on the parameter vari-
ance for prediction error time-domain identification in open loop. We con-
sider linear time-invariant discrete time single-input–single-output systems
with known noise model. We examine asymptotic expressions for the vari-
ance for large number of data. This quantity depends in general on the
fourth order statistical properties of the applied input. However, we estab-
lish a sufficient condition under which the asymptotic variance depends on
the input power spectrum only. For this case, we deliver exact expressions.
For a stochastic input the undermodeling contributes to the parameter vari-
ance due to the correlation between the prediction errors and its gradients,
while for a deterministic input it has no influence. As an additional contri-
bution, we investigate the parameter variance under the assumptions of the
stochastic embedding procedure.

Index Terms—Asymptotic variance, bias, parameter estimation, sto-
chastic embedding.

I. INTRODUCTION

Identification experiments should deliver along with an identified
model also an uncertainty region, which specifies the quality of the
model. Without this additional information, the model is virtually use-
less for practical purposes. Within the framework of parametric model
structures the uncertainty is usually expressed in terms of the covari-
ance of the identified parameter vector. Often, it is sufficient to consider
the asymptotic variance as the number of data tends to infinity, since
for common data record lengths these expressions are of satisfying ac-
curacy.

In this note, we consider asymptotic variance expressions for dis-
crete-time, linear, and time-invariant systems. Under mild restrictions
on input and noise and under the assumption that the true system
dynamics can be exactly reproduced within the model structure, the
asymptotic variance expressions are tractable functions of the input
power spectrum [7]. In the presence of undermodeling, however, the
situation is considerably more complicated. Although closed-form
expressions for the asymptotic variance are well-known [7], they are in
general intractable. Moreover, they depend on higher order statistical
properties of the noise and the input [8]. Basically, both the time
domain and the frequency domain approach face the same difficulties
when computing exact expressions for the asymptotic parameter
covariance. However, in the past decade much advance was made to
overcome these problems.

Several results on the asymptotic variance for parametric frequency
domain identification were obtained. In [2], the contribution of the
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noise to the parameter variance was computed, while the contribution
of the undermodeling was neglected. In [1], linear model structures and
a deterministic input were assumed. In this case, the expressions for the
asymptotic parameter variance somewhat simplify. In [10], the predic-
tion errors were assumed to be uncorrelated with their gradients, which
also facilitates computations.

For time-domain identification estimators of the asymptotic variance
based on input–output data of the experiment were proposed. In [5] and
[13], different techniques were presented to obtain a sample estimate of
the parameter variance from data gathered during the experiment. One
method consisted in introducing an exponential forgetting factor in the
expression for the parameter estimate. This led to a windowing effect,
which in turn yielded certain ergodicity properties of the so-obtained
sequence of parameter estimates. For long data records the sample co-
variance of this sequence was a good approximation of the true param-
eter covariance. Another method consisted in estimating the undermod-
eling with a high-order ARX model and using bootstrap techniques to
obtain artificial noise realizations for a Monte Carlo simulation.

These techniques thus assume the availability of input–output data.
However, sometimes it is necessary to estimate the parameter variance
prior to the experiment, e.g., for purposes of optimal input design. In
this framework, one is going to perform an identification experiment
and wishes to choose the input sequence for this experiment in order to
let the parameter variance have some desired properties. Therefore, one
has to know how the parameter variance depends on that input. In most
cases, it is sufficient to describe the asymptotic parameter variance as
a function of the input power spectrum.

In [6], these variance expressions were derived for closed-loop time
domain identification asymptotically as the model order tends to in-
finity. In [4], expressions for the asymptotic variance were computed
that were particularly suited for a posteriori error estimation.

In this note, we address the question of computing asymptotic vari-
ance expressions in the presence of undermodeling for prediction error
time domain identification in open loop and for finite-model order. We
further elaborate the expressions derived in [4] and focus on the depen-
dence of the variance on the input power spectrum. For ease of treat-
ment we restrict our considerations to the single-input–single-output
case with known noise properties.

If a stochastic input is used, the asymptotic variance depends in gen-
eral on the undermodeling as well as on higher order properties of the
input. It is known that for parametric frequency domain identification
these dependencies do not hold, if a deterministic input is applied [8].
We establish a similar result for time domain identification. A qualita-
tive investigation of the asymptotic parameter variance for time-domain
identification was conducted in [9]. It was shown that for deterministic
input the variance vanishes as the noise level tends to zero, which is
confirmed by our results.

For the case of a stochastic input, we formulate a condition under
which the asymptotic parameter variance does not depend on higher
order properties of the input. This condition covers a wide class of input
sequences and is satisfied, e.g., for filtered Gaussian white noise. Under
this condition, we establish explicit expressions for the asymptotic pa-
rameter variance as a function of the input power spectrum. We show
that the contribution of the undermodeling to the parameter covariance
has its origin in the correlation between the prediction errors and its
gradients. While this correlation vanishes at lag zero by the nature of
the prediction error identification procedure, it is in general nonzero at
the other lags if undermodeling is present.

In [3], a method called stochastic embedding was introduced. Within
this framework, the undermodeling is treated as being stochastic with
zero mean. Hence, the undermodeling error can be treated as a variance
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error along with the error introduced by the noise. Frequency domain
identification by means of frequency response function measurements
within the stochastic embedding framework was investigated in [12].

In this note, we also consider the parameter variance in the frame-
work of stochastic embedding. For ease of treatment we restrict our
consideration to linear model structures. We derive asymptotic expres-
sions for the total variance and show by an example that the total pa-
rameter variance does not necessarily decrease when the input power
is increased and can even increase. Thus, the usual property of mono-
tonicity of the variance with respect to the input power spectrum is not
satisfied.

The remainder of this note is structured as follows. In Section II, we
give formal definitions and remind the expressions for the asymptotic
variance as given in [7]. We prove that the undermodeling has no effect
on the asymptotic parameter variance if a zero mean periodic input is
used. In Section III, we consider the case of a stochastic input. We es-
tablish a condition under which the parameter variance is independent
of the higher order properties of the input. Assuming this condition,
we deduce expressions for the parameter variance as a function of the
input power spectrum. Section IV, is devoted to the investigation of
the variance expressions in the framework of stochastic embedding. In
Section V, we give an example, which shows that under adoption of
the stochastic embedding paradigms the information matrix need not
be monotonic with respect to the input power spectrum. Finally, we
give some conclusions in Section VI.

II. GENERAL ASYMPTOTIC VARIANCE EXPRESSIONS

In this section, we restate general asymptotic variance expressions in
the presence of undermodeling [7]. We show that undermodeling may
have a worsening effect on the variance only in the case of a stochastic
input.

Let the true system be given by

y = G0u+He

and let � 2 Rn be the parameter vector in the model structure G(�).
Here, u is the scalar input, y the scalar output, G0 is the transfer func-
tion of the system, and e is white noise with variance �0, which is fil-
tered through the monic stable and inversely stable noise filter H . We
assumeH to be known. The input u is assumed to be a quasi-stationary
sequence with zero time average and with power spectrum �u. The fil-
ters G0 and H are functions of the forward shift operator q. They are
represented as analytic functions of the complex parameter z.

Identification of � is performed in open loop by minimizing the
squared deviation of the output y from the 1-step ahead predictor
ŷ(�) = (1 � H�1)y + H�1G(�)u. The prediction error is given by
"(�) = y � ŷ(�) = H�1y � H�1G(�)u. The identified parameter
vector �̂N minimizes the cost function VN (�) = (1=2N) N

t=1
"2t ,

where t indexes the time instants andN is the number of data samples,
�̂N = argmin� VN (�). Under mild assumptions (see [7] for details),
the time average �V (�) = limN!1 VN (�) is defined and �̂N tends to
the minimizer �� of �V (�) as the number of data N tends to 1

�� = argmin
�

�V (�) lim
N!1

�̂N = �� with prob. 1:

It is well known that the vector �� is not completely determined by the
properties of the system, but depends on the input u, specifically on its
power spectrum �u (see [7] and [8]).

The vector �� minimizes the variance of "(�) � e = H�1(G0 �
G(�))u. Hence, �� admits the following frequency domain interpreta-
tion. Define a pseudoscalar product on the spaceH1 of stable transfer
functions by

hA;Bi = 1

2�

�

��

�u(!)

jH(ej!)j2A(e
j!)B�(ej!)d!: (1)

Then, �� corresponds to that transfer function G(��) within the model
structure that realizes the minimal distance to the true transfer function
G0 with respect to the pseudoscalar product (1). In other words, the
mismatch G0 � G(��) is orthogonal to the model structure at G(��)
with respect to (1).

Denote the predictor gradient at �� by  ;  = �(@"=@�) =
H�1(@G=@�)u = H�1G0(��)u, and the difference between the
residual signal " at � = �� and the noise e by ~"; ~" = "(��) � e =
H�1(G0 � G(��))u. Then, we have

1

2�

�

��

�u
jHj2G

0(��)(G0 �G(��))� d! =
1

2�

�

��

� ~" d! = 0:

(2)

Here, � ~" is the cross-spectrum between the signals  and ~".
Moreover, the quantity

p
N(�̂N � ��) is asymptotically normally

distributed and its asymptotic covariance is given by (see [7])

P� = (�V 00)�1( lim
N!1

NE(V 0N(�
�)V 0N

T
(��))(�V 00)�1

with �V 00 = �E(  T ). The central term on the right-hand side is given
by (see also [4])

lim
N!1

N�1E

N

t=1

N

s=1

"t(�
�)"s(�

�) t 
T
s

= lim
N!1

N�1

N

t;s=1

E(et + ~"t)(es + ~"s) t 
T
s

= �0 �E(  
T ) + lim

N!1
N�1

N

t;s=1

E ~"t~"s t 
T
s :

Here, t; s index time instants. Let us denote the second term in the last
expression by �. Then P� can be written as

P� = �0( �E(  
T ))�1 + ( �E(  T ))�1�( �E(  T ))�1: (3)

Thus the asymptotic covariance of the parameter estimate is the sum
of two terms. While the first term in (3) is induced by the noise e, the
second term is due to the undermodeling. A similar situation holds for
parametric frequency domain identification. It is known (see [2], [10],
and [8, Sec. 7.11.4]) that in this case the second contribution in fact is
due to the variability of the input u. Hence, for a stochastic input the
variance of the parameter estimate in general does not vanish even in
the absence of noise. However, it vanishes if the input is deterministic.
A similar result was established in [9] for time-domain identification.
Let us formalize this fact.

The term � can be written as

� = lim
N!1

N�1E

N

t=1

~"t t

N

s=1

~"s 
T
s

= lim
N!1

N�1E

N

t=1

~"t t

N

t=1

~"t t

T

: (4)

Proposition 1: If the input signal u is a multisine, then � = 0. We
hereby assume that the period of the multisine remains constant when
the number of data tends to infinity, i.e., the number of periods tends to
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infinity. Observe that this proposition also covers the case where u is a
square wave signal.

Proof: Suppose u is a multisine. Then the signals ~" and are also
multisines. Since products of trigonometric functions can be expressed
as sums and differences of trigonometric functions, the signal ~" �  is
also a multisine and, hence periodic, with a spectrum consisting of sums
and differences of the frequencies present in the spectrum of u. By (2),
the sum of ~" � over a complete period is zero. But then the cumulative
sum of ~" �  is periodic, specifically bounded. The proposition now
follows from (4).

Proposition 1 states that in the case of a deterministic input the un-
dermodeling has an impact only on the value of the asymptotic estimate
��, but not on the variance of �̂N � ��. The latter is entirely due to the
noise.

In Section III, we quantify the impact of undermodeling on the pa-
rameter variance if a stochastic input signal is used.

III. PARAMETER VARIANCE IN THE CASE OF STOCHASTIC INPUT

In this section, we examine the asymptotic covariance matrix (3) for
zero mean quasistationary stochastic inputs. We establish a condition
under which the asymptotic covariance depends only on the second
order properties of the involved signals. Assuming this condition, we
derive an explicit frequency domain expression for the asymptotic pa-
rameter variance as a function of the input power spectrum �u.

If u is filtered white noise, then the signal ~" � has by (2) zero mean,
but the standard deviation of its cumulative sum grows proportionally to
the square root of the number of summands. Therefore, the term� in (3)
might be nonzero. By (4) the matrix � is positive semidefinite and, as
expected, undermodeling can only increase the asymptotic parameter
variance.

It is known that in the presence of undermodeling the asymptotic
covariance depends on the fourth-order properties of the input and the
noise (see [8, p. 198]). Indeed, the definition of � involves fourth-order
products and powers of the input. Therefore, the asymptotic variance
cannot be described as a function of the second order properties of u
alone. In general, it will depend also on the fourth-order cumulant spec-
trum [11]. This poses serious difficulties, e.g., for input design. How-
ever, if we restrict the fourth-order cumulants of u to be zero, then the
asymptotic variance is a function of the input power spectrum �u only.
Denote the autocorrelation function �E(utut�� ) of u by Ru(�). Then,
the vanishing of the fourth-order cumulants of u can be equivalently
rewritten as the condition

�E(up+tuq+tur+tus+t) = Ru(p�r)Ru(q�s)+Ru(p�s)Ru(q�r)

+Ru(p� q)Ru(r � s) 8p; q; r; s: (5)

Here, the time average is taken with respect to t and the numbers
p; q; r; s are assumed to be fixed. Condition (5) is in fact not very
restrictive. It is satisfied for instance for filtered zero mean white noise,
where the probability density function of the white noise has zero kur-
tosis “peakedness,” see, e.g., [11]. This is equivalent to the condition
that the second and fourth moments m2; m4 of the probability density
function satisfy the relation m4 = 3m2

2. This relation holds, e.g., for
a Gaussian distribution.

We now proceed to compute an expression of � in terms of signal
spectra for the case where condition (5) holds. For this, we need some
technical lemmas.

Lemma 1: Let A;B;C;D be stable transfer functions and
Ak; Bk; Ck; Dk; k = 0; 1; . . . the coefficients of their Lau-
rent expansions around z = 0. Let u be a quasi-stationary
stochastic zero mean process with power spectrum �u and au-
tocorrelation coefficients Ru(�) satisfying condition (5). Let

a = Au; b = Bu; c = Cu; d = Du be signals obtained by fil-
tering u through A;B;C;D and let �; �; ; � be delays. Then

�E(at��bt��ct�dt��) = Rab(� � �)Rcd(� � )

+Rac( � �)Rbd(� � �) +Rad(� � �)Rbc( � �)

where the time average is taken with respect to t and Rgh(�) denotes
the cross-correlation of signals g; h at lag � .

The result is easily verified by direct calculation.
We now compute the asymptotic covariance of the parameter esti-

mate for quasistationary zero mean stochastic input satisfying condi-
tion (5). By Lemma 1 and (2), we obtain from (4)

� =

+1

�=�1

�E ~"t+� ~"t t+� 
T
t

=

+1

�=�1

fR~"~"(�)R  (�) +R~" (0)R~" (0)

+R~" (��)R~" (�)g

=

+1

�=�1

R~"~"(�)R  (�) +R ~"(�)R~" (�) : (6)

Lemma 2: Let A;B;C;D be stable transfer functions. Let u be a
quasi-stationary process with power spectrum �u and let a = Au; b =
Bu; c = Cu; d = Du be signals obtained by filtering u through
A;B;C;D. Then, the following relation holds:

+1

�=�1

Rab(�)Rcd(�)

=
1

2�

�

��

�ab ��cd d!

=
1

2�

�

��

�ac ��bd d! =

+1

�=�1

Rac(�)Rbd(�):

This result is a consequence of Parseval’s theorem.
Applying Lemma 2 componentwise to the products

R~"~"(�)R  (�) in (6) and taking into consideration (2)
leads to

� =

+1

�=�1

(R~" (�) +R ~"(�))R~" (�)

=

1

�=1

(R ~"(�) +R~" (�))(R ~"(�) +R~" (�))
T
: (7)

Thus, we have represented � as a sum of squares for the case where
the input satisfies condition (5). By Lemma 2, representation (7) yields
the following frequency domain expression for �:

� =
1

�

�

��

Re� ~" � Re�
T
 ~" d!: (8)

We obtain the following result.
Proposition 2: Assume an experimental setting as described in Sec-

tion II. Let the input u be a quasistationary stochastic process satis-
fying condition (5). Then undermodeling does not have an impact on
the asymptotic parameter covariance if and only if the cross-spectrum
between the signals  = H�1G0u and ~" = H�1(G0 �G(��))u is a
purely imaginary function of the frequency. If the cross-spectrum has
a nonzero real part, then the undermodeling increases the asymptotic
parameter covariance.

Thus, the condition � = 0 admits the following interpretation. Sup-
pose for some frequency ! we have �u(!) 6= 0. Then Re� ~"(!) = 0
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implies arg(G0(e
j!)�G(��)(ej!))�arg(@G=@�k)(e

j!) = �(�=2)
for all k = 1; . . . ; n. This means that the bias G0 � G(��) is orthog-
onal to the model structure not only in the sense of the pseudoscalar
product (1), but frequency-wise in the Nyquist plane at the excited fre-
quency ranges.

Inserting (8) into (3) yields the following frequency domain expres-
sion for the asymptotic parameter covariance:

P� =
1

2�

�

��

�  d!

�1

�0
2�

�

��

�  d!

+
1

�

�

��

Re� ~" �Re�
T
 ~" d!

1

2�

�

��

�  d!

�1

: (9)

It is valid if (5) holds.
In this section, we considered the case of a stochastic input and de-

rived expressions for the asymptotic parameter covariance as a func-
tion of the input power spectrum under assumption (5). As (7) shows,
the contribution of the undermodeling to the parameter covariance is
caused by the correlation between the prediction errors ~"t + et and its
negative gradients  t at time lags other than zero.

IV. VARIANCE IN THE FRAMEWORK OF STOCHASTIC EMBEDDING

In this section, we compute the asymptotic parameter variance in the
framework of stochastic embedding. In this framework, the parameter
error is entirely described as a variance error. It is then interesting to
compute that part of this variance error that is due to the undermodeling.

For simplicity, we assume a linear model structure. LetG0 = �T0 �+
�TZ , where �0 is a fixed parameter vector, � 2 RL;� is a column
vector of n stable transfer functions, and Z = (Z1; . . . ; ZL)

T is a
vector of L stable transfer functions. Within the stochastic embed-
ding framework, � is assumed to be a random variable with zero mean
and covariance matrix C� . For any given identification experiment the
vector � assumes a fixed value, which is drawn according to its prob-
ability distribution. For details and a justification of the procedure see
[3]. Hence, under the assumptions of stochastic embedding the vector
�0 reflects intrinsic properties of the system and can be considered as
the “true” parameter vector.

Thus, the asymptotic value �� of the parameter estimate as well as its
asymptotic covariance P� become a function of �; �� = ��(�); P� =
P�(�). By (2), we have

�� � �0 =
1

2�

�

��

�u
jHj2

��� d!

�1

1

2�

�

��

�u
jHj2

�Z� d! �

~" = (�0 � ��)T + �TH�1Zu: (10)

Note that both ~" and ����0 are linear in �. Observe that byE � = 0we
haveE�� = �0, where the expectation is taken over �. SimilarlyE~" =
0. Further, � becomes a matrix-valued positive semidefinite quadratic
form in �. Let us write this as ~" =

i
�i~"

i; ��� �0 = i
�i��

i, and
� =

i;j
�i�j�

ij . Here

~"i =
1

2�

�

��

�u
jHj2

Zi�
� d!

�
1

2�

�

��

�u
jHj2

��� d!
�1

H�1�+H�1Zi u

��i =
1

2�

�

��

�u
jHj2

��� d!
�1

1

2�

�

��

�u
jHj2

�Z�i d!

and �ij are matrices, which under (5), are given by

�ij =

1

�=1

(R ~" (�) +R~"  (�))(R ~" (�) +R~"  (�))
T

=
1

�

�

��

Re� ~" � Re�T ~" d!:

Let us now compute the variance of the parameter estimate �̂N after
averaging over �. Since � has zero mean, the expectation of �̂N is equal
to �0. Assuming a normal distribution for �, the asymptotic covariance
PN of �̂N is given by

E(�̂N � �0)(�̂N � �0)
T

=

R

1

(2�)n+LjC�jjN�1P�(�)j

� exp �
(� � ��)TNP�1� (�)(�� ��) + �TC��

2

� (� � �0)(�� �0)
T d�d�

=
R

1

(2�)LjC�j
e� (N�1P�(�)

+ (�� � �0)(�
� � �0)

T ) d�

= �0(N �E(  T ))�1 +
i;j

(C�)ij[N
�1( �E(  T ))�1�ij

� ( �E(  T ))�1 +��i(��j)T ]: (11)

Here (C�)ij are the entries of the covariance matrix C� . Besides the
familiar variance term �0(N �E(  T ))�1 caused by the noise we have
two different contributions from the undermodeling to the total vari-
ance. The term

i;j
(C�)ij��

i(��j)T is due to the bias, i.e., the shift
away from �0 of the asymptotic value �� of the estimate. It is included
into the variance only by the stochastic embedding procedure.

The term
i;j
(C�)ijN

�1( �E(  T ))�1�ij( �E(  T ))�1 is due to
the increase of the asymptotic parameter variance by the undermod-
eling for any fixed �.

Note that the covariance matrixPN does not completely describe the
distribution of �̂N � �0, even if � is normally distributed. The distribu-
tion of �̂N will not be Gaussian if � is not identically zero, because its
asymptotic covariance P�(�) is a function of the random vector �, as
stated before. The same holds for the distribution of the transfer func-
tion in the frequency domain. The definition of uncertainty regions at
certain probability levels will therefore face considerable difficulties.
We stress that this property does in no way contradict the familiar the-
orems on asymptotic normality of the parameter estimate. The nonnor-
mality of �̂N � �0 is an artifact introduced by randomizing the under-
modeling, i.e., by averaging with respect to the probability distribution
of the actually constant undermodeling parameter vector �. However,
if � is zero, i.e., when using multisines as input, then averaging over
� yields a Gaussian probability distribution of �̂N , given � is normally
distributed.

V. NONMONOTONICITY OF THE INFORMATION MATRIX

In this section, we investigate the monotonicity properties of the total
parameter variance with respect to the input power spectrum under the
assumptions of stochastic embedding. We will work with the informa-
tion matrix M , the inverse of the covariance matrix, M = [E(�̂N �
�0)(�̂N��0)

T ]�1. This information matrix depends on the input power
spectrum �u, and one would expect that the usual monotonicity prop-
erty holds, namely M(�u + �0u) � M(�u) for any power spectra
�u;�

0

u. This is in general not true, as demonstrated by the following
example.
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Example: Consider prediction error identification in a stochastic
embedding framework for the following system:

y = �0z
�1u+ �z�2u+ e

with model structure G(�) = �� = �z�1. Thus, n = 1; L = 1; H �
1;� = z�1; Z = z�2. Letxk(�u); k = 0; 1, be the first trigonometric
moments of the power spectrum �u, i.e.,

xk(�u) =
1

2�

�

��

�u(!)e
�jk! d!; k = 0; 1:

Suppose further that the inputs are multisines, so that � = 0. For this
example we have  = z�1u; �E(  T ) = x0(�u); �

� � �0 = �� =
x�1

0
(�u)x1(�u) � using (10). Consequently, by (11) we haveE(�̂N�

�0)
2 = (�0=Nx0) + C�(x

2

1)=(x
2

0), and hence

M(�u) =
�0
Nx0

+ C�

x21
x2
0

�1

=
x20(�u)

�0N�1x0(�u) + C�x21(�u)
:

Let us now consider the three multisine sequences
ut = (

p
3=3) cos(�t) + (2

p
3=3) sin((�=3)t); u0t =

(
p
2=2) cos(�t) + sin((�=2)t);u00t = (

p
30=6) cos(�t) +

sin((�=2)t) + (2
p
3=3) sin((�=3(t). Their respective power spectra

�u;�
0

u and �00

u are related by the equality �00

u = �u + �0

u and
have moments x0(�u) = x0(�

0

u) = 1; x1(�
0

u) = x1(�
00

u) =
�(1=2); x1(�u) = 0; x0(�

00

u) = 2. Hence, the information matrices
of experiments performed with inputs u and u00 are given by

M(�u) =
N

�0
M(�u +�0

u) =
4

2�0N�1 + 1

4
C�

:

Therefore, we have M(�u) � M(�u + �0

u) if and only if C�N �
8�0. Thus, if the SNR is large enough (i.e., �0 is small), if the under-
modeling effects begin to dominate the noise effects, or if the number
of data becomes large, then the input u00 yields a smaller information
matrix than the input u, although its power spectrum �00

u is larger or
equal to �u frequency-wise.

This leads to the counterintuitive conclusion that an increase in input
power at some frequencies without decrease at the other frequencies
does not necessarily imply an increase of information, and may even
lead to a decrease. This is an artifact caused by the stochastic embed-
ding procedure, which randomizes the undermodeling by considering
it as being of stochastic nature and lumping it together with the actual
parameter variance. The increase of variance can therefore be attributed
to an increase of the bias.

A weaker monotonicity property does hold, however. The following
assertion is a consequence of (11).

Corollary 1: Let �u be a power spectrum and let � > 1 be a con-
stant. LetM(�u) denote the information matrix when the input signal
has power spectrum �u and let M(��u) be the corresponding infor-
mation matrix for inputs with power spectrum ��u. Assume further
that the inputs satisfy condition (5). Then M(��u) �M(�u).

VI. CONCLUSION

In this note, we have investigated the asymptotic parameter variance
under time-domain prediction error identification in open loop in the

presence of undermodeling. It was shown that under identification with
a periodic input the undermodeling does not influence the parameter
variance. This result is summarized in Proposition 1.

For stochastic input, undermodeling leads to an increase of the vari-
ance. In general the amount of this increase is difficult to evaluate and
depends on higher order properties of the input signal. Under assump-
tion (5) on the input signal, however, it is proportional to the integral
of the squared real part of the cross-spectrum between the prediction
error and its gradient. This result is formalized in formula (9). Thus, the
undermodeling impacts the parameter variance through the correlation
between the prediction error and its gradient.

Further, we investigated the asymptotic parameter covariance within
the stochastic embedding framework for linear model structures. An
explicit expression is given by formula (11), but note that in general
the distribution of the parameter vector is not normal. This can be at-
tributed to the way the bias error is randomized under the assumptions
of stochastic embedding, and does not contradict the standard asymp-
totic normality theorems of prediction error identification. Normality
of the distribution is preserved under the conditions of Proposition 1.
For the information matrix as a function of the input power spectrum
a weak monotonicity property holds, which is formalized in Corollary
1. A counterexample to the usual monotonicity condition has also been
given.
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