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For Model-based Control Design, Closed-loop 
Identification Gives Better Performance* 

H]kKAN HJALMARSSON,1- MICHEL GEVERS~t and FRANKY DE BRUYNE~ 

In identification for control with no unmodelled dynamics, the best 
controller performance is achieved by performing the identification in 

closed loop. 
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A l a n ' S - - W e  compare open loop versus closed loop 
identification when the identified model is used for control 
design, and when the system itself belongs to the model class, 
so that only variance errors are relevant. Our measure of 
controller performance (which is used as our design criterion 
for identification) is the variance of the error between the 
output of the ideal closed loop system (with the ideal 
controller) and that of the actual closed loop system (with 
the controller computed from the identified model). Under 
those conditions, we show that, when the controller is a 
smooth function of the input-output dynamics and the 
disturbance spectrum, the best controller performance is 
achieved by performing the identification in closed loop with 
an operating controller that we characterize. For minimum 
variance and model reference control design cirteria, we 
show that this 'optimal operating controller for identification' 
is the ideal controller. This then leads to a suboptimal but 
feasible iterative scheme. Copyright C) 1996 Elsevier Science 
Ltd. 

1. INTRODUCTION 

Consider that a linear time-invariant system, 
perturbed by noise, is to be controlled and that a 
control design criterion has been selected. In this 
paper we shall focus particularly on model- 
based control design criteria for which the 
controller at any frequency is a smooth function 
of the plant input-output model and of the 
disturbance spectrum (i.e. the noise description) 
at that same frequency. We shall comment on 
the situation when the controller depends on the 
input-output dynamics only. In particular, we 
shall study in detail minimum-variance (MV) 
and model reference (MR) control design. If the 
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plant input-output transfer function G(q) and 
its noise model H(q) were known exactly, the 
solution of the control design problem would 
lead to the (one- or two-degree-of-freedom) 
controller,§ C(q) = c(G, H). Throughout this 
paper we shall denote this controller that would 
result from the design criterion applied to the 
true system [G, H] as the ideal controller. The 
corresponding closed loop system is represented 
in Fig. 1, which has been drawn in all generality 
for a two-degree-of-freedom controller, and 
which we will call the ideal closed-loop system. 
We denote this ideal closed-loop system as 
N(G, H, C). 

We now consider the situation where the 'true 
system' of Fig. 1 is unknown and the controller is 
computed on the basis of the same criterion 
as above from a model that is to be obtain- 
ed by identification from a finite set of N 
input-output data collected on the true system. 
We further assume that the model set 
{G(q, 0), H(q, 0), 0 ~ Do} used during the iden- 
tification is sufficiently complex that this set 
contains the true system. Thus the identified 
model contains only variance errors (i.e. errors 
caused by noise on a finite data set). In modern 
day engineering-speak we say that 'the system is 
in the model set' or that 'there is no bias error'. 
Because the identified model [~N, f/N] = 
[G(ON),H(ON)] is not identical to the true 
system [G, HI, the controller computed from 
[~N, /~N] using the control design criterion, 
denoted by ~N = C(~N, fiN), will differ from the 
ideal one C = c(G, H) described above. When 
this controller is applied to the actual system, the 
'ideal closed loop' of Fig. 1 is replaced by the 
actual (or achieved) closed-loop system of Fig. 2. 

§ l'n the case of a two-degree-of-freedom controller, C(q) 
denotes the vector [Cl(q) C2(q]. 
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Fig. 1. The ideal two-degree-of-freedom control loop. 

We denote this closed loop system as 
~(G, H, ~'). 

Since the objective of the identification of 
[ON, // ,]  is only to compute the controller (i.e. 
the model is only used as a vehicle to do control 
design), what really matters is not the error 
between the paris [G, H] and [(~N, //N], but the 
error between C and ~N, o r - - m o r e  

importantly--the difference between the be- 
haviour of the ideal closed-loop system 
~(G,  H, C) of Fig. 1 and that of the actual 
dosed-loop system ~(G, H, ~N) of Fig. 2. There 
are of course many ways of measuring the 
mismatch between two closed-loop systems. 
Since we shall deal in this paper with //2 
identification criteria, we shall measure this error 
by the variance of the error between the output 
signals of these two loops, i.e. by 
limr_.. T-1E{~,rt=l [y(t) - y N ( t ) ] 2 } ,  when these 
two loops are driven by the same signals r and e: 
see Figs 1 and 2. This is a control performance 
measure: it is a measure of the degradation that 
results from applying the suboptimal controller 
~N=C(ON,  fiN) to the plant [G, H], instead 
of the optimal controller C = c(G, H). Since t~N 
results from the identification, this control 
performance measure is a 'control-oriented 
measure' of the quality of the identification. 
Thus we shall take this control performance 
measure as our identification design criterion; 
that is, we shall determine the identification 
design that minimizes this control performance 
measure. Our results carry over easily to other 
control performance measures, such as any 

frequency-weighted measure of E[IC(e i ')  - t~N 
(ei')12], or a measure of the form limr__,, 
r-'e L, [y (t) - yN(t)] 2 + A [u (t) - UN(t)]2}, more 

appropriate in the case of LQG design. 
The problem addressed in this paper is that of 

identification design, in the context explained 
above where the identified model is just a tool 
for the computation of a controller (with an a 
priori chosen control design criterion), and 
where the error on [ON,. f/N] is only due to the 
noise on the realization used for identification. 
The error on the controller, that is C -  ~N, is 
then also due to noise only, i.e. there is no bias 
error on ~N- We observe that ~N = C(ON, fiN) is 
a random variable. The identification design 
problem is then to design the identification 
experiment in such a way as to minimize the 
performance degradation between the ideal and 
the actual dosed loops, as measured by the 
output error variance described above. We will 
assume here that the length of the experiment, 
i.e. the number of data N that can be collected, 
is fixed and that a direct least-squares prediction 
error method based on N input-output data is 
used (Ljung, 1987). The identification design 
problem then involves questions such as 

• should one perform the identification in open 
or closed loop? 

• if the identification should be performed in 
closed loop, which controller should one apply 
during identification? 

Our contribution is threefold. First we show 

Fig. 2. The actual two-degree-of-freedom control loop. 

y,v 
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that, when the system is in the model set, when 
both G and H are estimated and when the 
controller C =c(G,  H) at any frequency is a 
smooth function of both G and H at that 
particular frequency, the ideal experimental 
conditions are to perform the identification in 
closed loop, with some ideal controller C°$ t 
operating on the plant. This result holds 
independently of the level of external excitation 
or of possible constraints on input or output 
power, as long as the classical closed-loop 
identifiability conditions are satisfied (see e.g. 
S/SderstriSm et al., 1976). 

Next we show that, for minimum-variance 
(MV) or model reference (MR) control, this 
controller C°a ~t that should be applied during 
closed-loop identification is the ideal controller 
C = c(G, H). For MV control design, this result 
is well known (by those who know): Gevers and 
Ljung (1986) showed that for minimum-variance 
control design the optimal identification setup is 
to perform closed-loop identification with the 
optimal (MV) controller operating during data 
collection. The problem with these results, as 
with most optimal experiment design results, is 
that the optimal identification design depends on 
the unknown system that is being identified, 
since it requires knowledge of the ideal 
controller. An obvious question then is whether 
applying a controller that is close to this optimal 
controller is any good, or is at least better than 
just doing open-loop identification. Gevers and 
Ljung (1986) had nothing to say about this. 

Our third contribution is to show that, under 
the conditions outlined above (a finite set of N 
noisy data, no bias error on the model, a control 
design such that the controller depends on both 
G and H) and under an additional stabilizability 
condition that is, for example satisfied for MV 
and for MR control design, one can obtain a 
better control performance on the actual system 
by computing the controller from a model that 
has been identified partly on closed-loop data, 
provided N is large enough. More precisely, we 
shall compare two identification designs. 

1. Identify the model [GN,/f/N] using N data 
collected in open loop; then compute the 
controller ~N from this model. 

2. Identify a model [GN,/~N,] from open-loop 
data using a fraction N1 of the total 
experiment length; compute the correspond- 

O t . ing optimal controller for identification ~i~.N,, 
apply it to the system and identify the model 
[ON,/c/N] using the remaining N - N 1  data 
collected on the corresponding closed-loop 
system. Compute the controller ~N from this 
model. 

We show that one can always obtain a better 
performance (i.e. a smaller degradation vis-,~-vis 
the optimal controller as measured by our 
output error variance criterion) with the second 
design than with the first, provided N is large 
enough. This new result is a practical one. It 
suggests a practically implementable identifica- 
tion design in which the experiment itself does 
not require knowledge of the system that is 
being identified. This design is not optimal (since 
the optimal design depends on the unknown 
system), but it is implementable. 

A number of recent results tend to support the 
idea that if a model is identified for the purpose 
of designing a controller then closed-loop 
identification is to be preferred over open-loop 
identification: see Schrama (1992), and the 
survey papers by Gevers (1993) and Van den 
Hof and Schrama (1994, 1995) with the many 
references therein. Most of this recent work 
focuses on bias errors, and the arguments 
developed in these papers are heuristic and 
supported by simulations. However, see Hjal- 
marsson et al. (1994) for an analysis of the 
convergence/divergence properties of the itera- 
tive identification and control schemes that 
includes the case of unmodelled dynamics. Our 
results in this paper are focused on variance 
errors only, and in that sense they can be 
criticized for requiring high-order models. 
However, given this limitation, they are probably 
the first hard results that demonstrate that one 
can achieve better performance with a controller 
obtained from a model identified on closed-loop 
data than from a model identified on open-loop 
data, with a practically feasible experiment 
design scheme. 

Finally, we note that all our results are 
derived for the situation where a 'direct' 
prediction error method is used for both 
open-loop and closed-loop identification, i.e. a 
prediction error method based on input-output 
data only. Alternative indirect methods for 
closed-loop identification that use knowledge of 
the controller or of the reference signal (see e.g. 
Van den Hof and Schrama, 1994, 1995) have not 
been examined here. 

The organization of the paper is as follows. In 
Section 2 we introduce the problem and we 
define the error criterion that is relevant in this 
context of identification for control with high 
order models. In Section 3 we compute the 
optimal identification conditions for any control 
design criterion leading to a one-degree-of- 
freedom controller. We show that the optimal 
experimental condition is always to perform 
closed-loop identification, and we compute the 
optimal controller for identification, C°aPt(q), as a 
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function of controller sensitivity functions. In 
Section 4 we show that, given enough data, an 
iterative closed-loop identification design can 
always outperform open-loop identification in 
the sense of leading to more accurate controllers 
for the same number of data. We illustrate this 
iterative design by a simulation in Section 5; at 
the same time, our simulation gives an idea of 
the performance gains that are typically achieved 
by performing an optimal or iterative suboptimal 
identification design as compared to classical 
open loop identification. In Section 6 we show 
that, for MV and MR control design, the optimal 
controller to be applied during identification, 
C°,t't(q), is the ideal controller C. Conclusions 
are given in Section 7. 

2. STATEMENT OF THE PROBLEM 

The system 
We consider that the task is to design a 
controller for some 'true' linear time-invariant 
system described by 

~: y(t) = G(q)u(t) + H(q)e(t), (1) 

where G(q) and H(q) are scalar rational transfer 
functions, with G(q) strictly proper and H(q) 
stable, proper and monic. Here q-a is the 
backward shift operator (q- lu( t )=u( t -1) ) ,  
u(t) is the control input signal, y(t) is the 
observed output signal and e(t) is white noise of 
zero mean with variance o .2 and bounded fourth 
moments. 

The identification 
The controller is to be designed on the basis of 

a model of the plant identified using a finite set 
of N input and output data {y(t),u(t) , t= 
1 , 2 , . . . , N }  collected on the plant. A 
parameterized model set d~ = {M(0): 0 e Do c 
R d} is used, where M(O) is described by 

M(0): y(t) = G(q, O)u(t) + H(q, O)e(t). (2) 

We shall use the following set of technical 
assumptions. 

Assumptions A1. 

1. The system 5e is in the model set d~, i.e. there 
exists a 00 E Do such that 

G(q) = G(q, 0o), n(q)  = n(q, 00). (3) 

2. The model structure d~ is uniformly stable, 
i.e. we assume that the predictor filters 
H-a(q, O) and H-l(q, O)G(q, O) that corres- 
pond to this model set along with their first- 
and second-order derivatives with respect to 0 
are uniformly stable for all 0 e Do (Ljung, 
1987), 

3. A fixed time interval is available to perform 
the data collection for the identification. For 
any given sampling interval, this corresponds 
to assuming that N is fixed. 

In addition we shall assume throughout that least 
squares prediction error identification is used. 
The data collection can be done in open loop or 
in closed loop. In the case of closed-loop 
identification, we shall denote by Cid = 
[Cl,id C2,id ] the controller that operates during 
identification: 

u(t) = Ca.ia(q)r(t) - C2,id(q)y(t), (4) 

where r(t) is the reference excitation signal used 
during identification, which we assume to be 
qausi-stationary (Ljung, 1987). 

The focus of this paper will be the design of 
the identification, given that the identified 
model is to be used for control design. The key 
design issues are 

• open-loop or closed-loop identification; 
• choice of ~)u, id(W) if open-loop identification is 

used; 
• choice of ~br,id(tO) and Cid(q) if dosed-loop 

identification is used. 

All these design issues will be handled in this 
paper. Since only variance errors are considered 
(i.e. S e e d 0 ,  the use of a data prefilter is 
irrelevant (Ljung, 1987). 

The least-squares prediction error method 
applied to N input-output data delivers an 
estimate ON of 0: 

N 
ON = arg rain ~ e(t, O) 2, (5) 

O~Do t=l 

,(t, o ) = - -  
H(q, O) 

[y(t) - G(q, O)u(t)]. (6) 

In turn, this produces a model 

~ N  = ~N(eic°) = G(e  i~, ON), 
/e/N =/ /N(e i°') = H ( e  i'°, ON)- 

(7) 

We shall sometimes use the vector notation 

?N = [ON T, r = [G H] T. (8) 

The control design 
We consider at this point that the controller is 

designed on the basis of one of several possible 
control design mechanisms for which the 
controller is a smooth function of both the plant 
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and the noise model, i.e. we shall make the 
following assumptions. 

A s s u m p t i o n s  A 2. 

1. At any given frequency to, C(e i ')  only 
depends on G(e i'~) and H(e i ')  at that 
particular frequency (and not on G(.) and 
H(.) at other frequencies), i.e. C(ei'°) = 
c(G(ei'~), n(ei'~)). 

2. At any given frequency to, i.e. at any given 
point (G(ei°'), H(ei ' ))  in C 2, the controller 
C(e i°') is a complex differentiable function of 
G(e i ')  and H(e i°') (Henrici, 1974). 

In addition, we assume that the certainty 
equivalence principle is used: the control design 
mechanism acts as a mapping c(.) that uniquely 
maps a plant model [~ , /~]  into a controller 

= c ( ~ ,  riO. For example, for a MR design 
criterion, the corresponding mapping is defined 
by the solution (~ = [~1, t~2] of the following 
equations: 

t2l - Gye, ~ 1  _ Gyr. (9) 
1 + ~ 2  1 + ~ 2  

Here Gye is the designer's choice of the transfer 
function from disturbance input e to plant output 
y, while Oyr is his/her choice of the transfer 
function from reference signal r to plant output 
y. Relation (9) takes into account that the 
reference model ~yr can be a function of the 
estimated model, e.g. when ~ has non- 
minimum-phase zeros. It is assumed, of course, 
that these design choices are feasible; in 
particular, they are compatible with the delay 
structure of the system and do not produce 
unstable pole-zero cancellations. 

The first of Assumptions A2 implies that, at 
any given frequency to, we have 

C(e i,°) = c(a(ei'o), n(ei'~)) 

= Cr(gr(to), gi(to), hr(to), hi(to)) 
q- ici(gr(to), gi(to), hr(to), hi(to)), 

where gr(to), gi(to), hr(to), hi(to), c~(to) and ci(to) 
are respectively the real and imaginary parts of 
G(ei'°), H(e i°') and C(ei'°). The second of 
Assumptions A2 implies that, at any given 
frequency to, the Cauchy-Riemann conditions 
are satisfied at 

(G(ei'~), n(ei'~)) 

= (gr(to) + igi(to), hr(to) + ihi(to)), 
i.e. 

0C r 0C i 0C r 0C i 

Ogr Ogi' Ogi Ogr' 
(lO) 

OC r c~C i OCr OCi 

Ohr Ohi Ohi Ohr 

Therefore, by the properties of the differentials 

Oct + i 0c--2 Ocr Oci 
Fc=og--~r Ogr' Fn = Oh-~ + i ~ r  ' (11) 

we have 

c(G(e i ')  + AG(ei '°) ,  n ( e  i'°) + z~t--/(ei'°)) 

= c ( G ( e i ° ~ ) ,  H(ei°')) + [F~ Fn] o, 

+ 0(AG(ei~'), all(d°')), (12) 

where 

~(AG(d ' ) ,  An(ei°')) = o(AG(d°'), AH(d°')) 

(13) 

uniformly for every to, i.e. 

~(hG(d'°),  Mar(ei'°)) 
lim = 0, 

ac--.o AG(e i'°) 
AH--*O 

lira g'(ac(ei )' a/-/(e°')) 
ao--,0 AH(e i~') 
AH---~O 

=0. 

(14) 

Here AG(e i°') and M4(e i°') approach 0 in an 
arbitrary way (Henrici, 1974). 

Notice that the second of Assumptions A2 on 
the control design mechanism is not satisfied in 
general for H~ control, LQG control and, in the 
case of a non-minimum-phase system, for MV 
control. 

The degradation measure 
Consider that a control design criterion has 

been chosen. Suppose first that the plant [G, H] 
was known exactly. Then the control design 
mapping would yield C--c(G,  H): this is the 
ideal controller, which is not computable. The 
corresponding ideal closed loop is that of Fig. 1: 
with the external signals r and e, it generates the 
ideal control signal u and output signal y. 

With a model [¢~N, /~N] ident i f ied  from N data 
pairs, the same control design mapping generates 
~N=C(dN,  f l,). when this controller t~N is 
applied to the actual plant, it produces the actual 
closed loop of Fig. 2. We denote by UN and YN 
the control and output signals in this actual 
closed loop when it is driven by the exact same 
external signals r and e that drive the loop of Fig. 
1. 

One measure of the degradation that results 
from using the suboptimal controller ~N on the 
plant instead of the optimal C is the variance of 
the error between the outputs of the ideal and 
the actual closed-loop systems, when the two 
closed-loop systems are deriven by the same 
signals, the reference r with spectrum ~b,(to) and 
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the white noise e with variance tt 2. We denote 
this degradation measure by :Iv: 

1 r 
Jv = lim - ~ E t ~  [y(t)--yN(t)]2}. (15) 

T----~ ~ I I.t= 1 

In the case of a minimum-variance regulation 
criterion, Jv is a measure of the control 
performance degradation since the achieved 
performance J(G, H, ON) can be written as 

J(G, H, ON) = J(G, H, C) + Yv, (16) 

where J(G, H, C) is the optimal performance. 
Thus if Jv can be made very small then the 
achieved cost J(G, H, ON) is very close to the 
ideal cost J(G, H, C). 

Thus our objective from now on will be to 
derive experimental conditions for the identifica- 
tion of [tiN, fiN] that make Jv as small as 
possible. We shall first compute the optimal but 
non-feasible experimental conditions. We shall 
then show that, for some control design criteria, 
a feasible iterative scheme can always lead to a 
smaller Jv than open-loop identification. 

G(q) 
yN(t) - 1 + G(q)ON(q) 

3. OPTIMAL SOLUTION FOR ONE-DEGREE-OF-  
F R E E D O M  CONTROLLERS 

For pedagogical reasons, we start with a 
control design criterion that produces a 
one-degree-of-freedom controller, i.e. C l ( q ) =  1 
and C(q) = C2(q). As before, we denote by 
CN=C(ON, fin) in the feedback controller 
that results from a model [ON, fin] obtained 
from N noisy input-output data, and by C the 
ideal controller corresponding to [G, H]. 

From Figs 1 and 2, we note that 

G(q) r(t~ + H(q) e't" 
y(t) = l + G--~C(q) "" l + G(q)C(q) (), 

(17) 

H(q) 
r(t) + 1 + G(q)ON(q) e(t). 

(18) 
At any given frequency to, using our assumptions 
on the control design mechanism, we can write 

1 1 
1 + G(ei'°)0N(e i°') - 1 + G(ei°')C(e i'°) 

- G ( e  i°') 
+ [1 + G(ei°')C(eio°)] iACN(°~) + o(ACN(OJ)), 

(19) 

where ACN __a (~N -- C. Also, 

,rAGN( o)] 
ACN = [Fa rHILAHN(OO) j +o(AGN(~o), AHN(m)), 

(20) 

H. Hjalmarsson et al. 

where AGN ~= ~ N  -- G, AHN A_ fin - H and F6 
and FH are defined in (11). The sensitivity 
functions Fc and FH exist by our differentiability 
assumption on the control design mapping 
C = c(G, H). We shall assume throughout that, 
whatever the identification and control design, 
the model error ATN(tO), and the controller error. 
ACN(tO) at any given frequency to are sufficiently 
small that the last terms in (19) and (20) can be 
neglected. Notice that this holds for sufficiently 
large N, provided the closed-loop identifibability 
conditions are satisfied, given our assumptions 
on the model set and the control design 
mechanism. Assuming that the reference signal 
r(t) and the noise signal e(t) are bounded, we 
can therefore write (dropping the operators q): 

G 
y(t) - yN(t) ~ [1 + GC] 2 ACN[Gr(t) + He(t)], 

G 
"~1 + GC ACNy(t)" (21) 

Alternatively, note that, without approximation, 

G 
y(t) - yN(t) -- 1 + GON ACNy(t). 

It is important for the subsequent argument to 
note that the right-hand side of (21) contains 
two independent random quantities: the first, 
ACN, results from the signal realizations 
{y(t), u(t), t = 1 . . . .  , N} during the identification 
phase that resulted in a model [(~N, fiN], and 
hence a controller 0N. The second, y(t), is the 
output realization that would result from the 
application of the random signals r(t) and e(t) to 
the ideal closed-loop system through (17): these 
signals r(t) and e(t) are the same as those that 
are applied to the actual system of Fig. 2 during 
the application phase, i.e. after the identification 
and control deisgn phase. 

Using Parseval's relation, and the indepen- 
dence of ACN and y(t), we now get 

} E ~ [y(t)'yN(t)] 2 Jv = lim "~ , 
T-+oo t=l 

1 IGI2 4,y iACNi2 d o. (22) 
~ f-,, I1 + GCI 2E 

Here the expected value is taken with respect to 
the probability distribution of the noise during 
the identification experiment, which produces 
the random variable ON = C((~N, f i l l) .  

Using the vector notation ATN ~= ~N-  T (see 
(8)), we can then write 

E IACN(e/°')I 2~. 

(23) 
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where the superscript * denotes the conjugate 
transpose. We note that all the expressions are 
frequency functions. For brevity of notation, the 
argument to has been dropped in this and 
subsequent expressions. 

We can now apply the covariance formula of 
Ljung (1987) that allows one to compute the 
covariance of the vector of transfer-function 
errors ATN at a frequency to for high-order 
models: 

n 2 0.2[ ~,, ~ ' 1 - '  
E[AT, v ATe] ~ ~! IHI L,;be* o-" J 

way by introducing two artificial signals that are 
filtered versions of the signals r(t), u(t) and e(t): 

z(t) a= FHU(t) -- FGe(t), 
(28) 

0-nCid e(t) 0- r(t). 
w(t) a___ 0-u(t) + 1 + GCi-------~a 1 + GCi------~d 

Observe that 

Fn 1 
z ( t ) -  - -  r(t) 

1 + GC~d 1 + GCid 

X (FG + FGGCid + FHHC,d)e(t). (29) 

n IHI 2 :  r o2 
,b.J' 

(24) 

Here n is the model order, N the number of 
data, H the noise description and 0-2 the 
white-noise variance of the true system (1), while 
~b~ is the spectrum of the input applied during 
identification and ¢~ue the cross-spectrum be- 
tween this input and the white-noise source. This 
formula has been derived under the assumption 
that the model order tends to infinity, but has 
been shown to produce good approximations 
even for low-order models, We refer the reader 
to Ljung (1985) for details as well as the full set 
of technical assumptions. These are essentially 
the assumptions that we have made on the 
system. The model set and the controller C~d at 
the beginning of Section 2. The formula applies 
to both open-loop identification (~b~e = 0) and 
closed-loop identification (~b,e ~ 0). 

Combining (23) and (24) now yields 

n Inl 2 0 -2 
E IaCN(ei'°)l 2 ~ N 0-2~b, - I~,el 2 

x ( ~ .  IFHI 2 --  FGfh~b*~e - F~Fh~*~. + 0-2 IFGI2). 

(25) 

If the identification is perfromed in closed loop, 
we have 

1 HCid 
u(t) - 1 + GCi------~d r(t) 1 + GCi~ e(t), (26) 

It follows from (25)-(29) that 

E IACN(ei°')I 2 ~ n IHI 2 ~r2¢z 
N ~b~ 

n in12 {IFHI2 0-2 ~ N  + ~-~ lEG 

(FoG + FHH)Cidl21. + 
J 

(30) 

We observe from this last expression that the 
variance of the controller error is minimized at 
every frequency if the identification is performed 
in closed loop with an operatingt controller: 

c i . f  _ Fc  (31)  
id -- F~G + FHH" 

This optimal choice of course also minimizes the 
closed-loop degradation cirterion Jr: see (22). 

There is no guarantee that the controller 
defined by (31) is stabilizing or proper, and in 
fact it will not always be, as we shall illustrate 
later. In order to obtain the stabilizing controller 
that minimizes (30), we introduce the Youla 
parameterization of all stabilizing controllers: see 
e.g. Vidyasagar (1985). 

Proposition 1. Let G and Co have fractional 
representations G = N c D b  I and C o = N c D c  ~, 
where No, De,  Nc and Dc belong to S, the ring 
of proper stable transfer functions. Assume that 
the B6zout identity N c N c +  DGDc = 1 holds. 
For any S ~ S, define 

where Cid(q) is the controller that operates 
during data collection. Therefore 

¢~ue -HCid  0-2. (27) 
1 + GCid 

We now rewrite the formula (25) in a simpler 

Ns = Nc - DeS,  Ds = Dc + NcS. (32) 

1. Then C(S )=  N s D s  1 is a stabilizing controller 
for G = N ~ D ~  1. 

2. Furthermore, any linear time-invariant (LTI) 

t The superscript 'inf' stands for infirnum. 
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controller that stabilizes G has a fractional 
representation (32) for some S ~ S. 

Let Co = NcDc ~ be any stabilizing controller 
of G, and let the stabilizing controller used for 
identification, Cad, correspond to Sid ~ S such 
that Cad = C(Sid). Using the coprime factors of G 
and Co, we can rewrite (30) as 

E IAC~I 2 ~- N IHI2 IFHI2 

X 1 + 0"2 IHI 2 rnr~uc [ ] .  
\ alp, Dc + SiriNG I / 

H. Hjalmarsson et al. 

Case 1: the controller does not depend on the 
estimated noise model 

This corresponds to FH = 0. We then have 

n Inl 2 lEG] 2 l1 + aCidl 2 0"2 
E [ACN(ei')I 2 ~ N O, 

n IHI 2 iFol2 0"2 

= N [DG(Dc + SidNG)[ 2 ~/)r' (38) 

1 I ~ [G[ 2 ~by n [HI 2 lEd 2 l1 + aCid[ 2 0"2 
Jv ~2-~ .-,~ll + GCI2 N {~)r doJ. 

(39) 

We observe that Jv is minimized by performing 
(33) closed-loop identification with a reference 

spectrum ~br that is as large as possible, or with a 
controller C~d = C ( S i d )  that makes l1 + GCidl as 
small as is compatible with the constraints on Sid 
and on the input spectrum ~bu: see (26). 

We observe that the variance of the controller 
error is minimized at every frequency if the 
identification is performed in closed loop with 
the controller (31) that corresponds to 

s i n f -  1 ( FG ) (34) 
i d - - ~  NC+F-~-DG . 

Observe that O~dOnf need not be proper and stable, 
and hence the corresponding controller ~dr'inf 
defined in (31) is not necessarily stabilizing and 
proper. The stabilizing optimal controller for 
identification, Coop t , is obtained by minimizing 
(33) over all Sid ~ S. Let S°OP t be defined by 

S°op t = arg min {Jr(Sial)}. (35) 
SideS 

Then the stabilizing optimal controller for 
identification is given by Coop t =  C(S°opt) .  

The optimality of closed-loop identification 
follows from the fact that COo pt is nonzero. We 
observe that the only case where open-loop 
identification is optimal is when Fc = 0. This 
corresponds to a control design criterion in 
which the controller is independent of the 
input-output  mode l - -a  rather unlikely situation. 
In such a case, we obtain 

E IACN(ei°')l z 

n 2 0-2 iHi 2 N c -  S~dDG 2~ 
~IHI IFHI2(1 + ¢~r ~ T SidNG I]. (36) 

If the plant is stable, this is indeed minimized by 
taking Sid=NcD~ 1, i.e. Cid =0 .  This is open- 
loop identification, leading to 

E IAfN(ei°')[ 2 ~ n IHI2 [FHI2. (37) 
N 

We now consider two special cases. 

Case 2: open-loop identification 
If G is stable, one can always take N6 = G, 

Da = 1, Nc = 0 and Dc = 1. With Cid = 0, we get 

n IF l 2 
E IACN(ei'°)12o~ ~ IHI 2 ~IFHI 2 ~ (40) 

N ~b, /" 

We observe that, when the input spectrum goes 
to infinity, this controller error variance goes to 

E IACN(eio')t 2 ~ n IHI2 iFHi2. 
lV 

Comments. 

1. As is typical of optimal experiment design 
results, the optimal design depends on the 
unknown system [G, H] and is therefore not 
feasible. If also depends on the control design 
criterion through the sensitivity functions FG 
and Fn. However,  we shall exploit this result 
later to propose a feasible suboptimal design. 

2. For MV control, it was shown in Gevers and 
Ljung (1986) that C°opt(q)=C(q). One 
contribution of this paper will be to show in 
Section 6 that this also holds for M R  control 
design. Thus, for these control design criteria 
(and possibly for others), the optimal 
experiment design is to perform closed-loop 
identification with the ideal controller C(q) 
operating in the loop. 

3. The sensitivity functions Fc and FH are easily 
computable only in the cases where the 
controller depends explicitly on the plant 
[G, H]. In other cases, such as L Q G  or H~ 
control, it is not clear how to define these 
sensitivity functions. 
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4. A particular intriguing question1" is for what 
other classes of controllers, besides MV and 
MR control, does the property hold that the 
optimal controller for identification coincides 
with the ideal controller, i.e. C°,[ 't = C? This is 
an open question! 

5. In general, the optimal controller for 
identification, C°8 t, depends on the reference 
signal spectrum ~br, because S°8 t depends on 
~br. However, the optimal experiment design 
is indeed independent of the reference signal 
spectrum when C°,~ t = I"~ inf  W i d  • 

If identification can be performed under the 
ideal closed-loop condition with C°a°t(q) = 
C~$f(q), the control error variance is~t 

E [ACN(eiO')lZdcl ~ N In12 IFnl2' (41) 

and the error degradation measure Jv becomes 

n f_~ 1612 Inl 2 IFHI 2 , j~pt ~ -~ - ~ - ~  ¢py d¢o. (42) 
2trN 

By comparison, with open-loop identification, 
the control error variance has the additional 
term (see (40)): 

n o'2 IHI 2 ifcl 2 

N ~b, 

We have thus proved the following result. It is 
an extension to arbitrary control design criteria 
of a result obtained in Gevers and Ljung (1986) 
for MV control design. 

Theorem 1. Let G have a fractional representa- 
tion G = N G D ~  1. Consider some stabilizing 
controller Co = N c D c  I and assume that No, DG, 
Nc and Dc belong to S with the B6zout identity 
NcNc + DcDc = 1 holding. Consider the direct 
prediction error identification of a system 
5¢ = [G, H] using a model set ~ = 
{[G(0),H(0)], 0 ~Do} with 9 ° ~ ,  for the 
purpose of designing a controller C using a 
mapping C(O) = c(G(O), H(O)). Assume that 
the model set J /  and the control design 
mechanism c(.) are respectively subject to 
Assumptions A1 and A2. Let ~N denote the 
controller obtained from [G(0N), H(0N)] by this 
indirect scheme, where 0N is the parameter 
estimate obtained from N input-output data; let 
C denote the ideal controller, C = c(G, H), and 
assume that the controller ~'N depends on both 
G(ON) and H(ON). 

1" At least one that has intrigued the authors of this paper for 
months. 
* The subscript 'idcl' stands for ideal closed loop. 

Under these assumptions, whatever the 
control design criterion, the variance of C -  ~u 
is minimized by performing the identification in 
closed loop with a feedback controller: 

CO~ t _ Nc - DGSi°,{ 't (43) 
Dc + NGS% Pt 

where S°,[ 't is defined in (35). 
In the particular ease where S~i,q f defined in 

(34) belongs to S, we have 

C O d ~ t  / ~ i n f  __ FG (44) 
= ,-.id -- F G G  + F . H "  

Under those ideal closed-loop experimental 
conditions, at every frequency E IACN(ei°')I 2 is 
smaller than the corresponding variance under 
open-loop identification, whatever the input or 
reference signal power, provided identifiability is 
guaranteed. 

We observe that the optimal control error 
variance (41) is indeed independent of 4~,, and 
that the open-loop variance error formula (40) 
approaches (41) for infinite input energy. A 
similar observation had already been made in 
Gevers and Ljung (1986) for the case of 
minimum-variance control design. 

As already pointed out, the result of Theorem 
1 is theoretically interesting but practically not 
feasible, because C°d 't depends on the unknown 
system. In the next section, we build on this 
result to produce a feasible identification design. 

4. ITERATIVE CLOSED-LOOP DESIGN 
OUTPERFROMS OPEN-LOOP IDENTIFICATION 

In this section we shall assume that the 
controller inf Cid (q) defined in (31) is stabilizing, 
i.e. (44) is satisfied. We first elaborate on (30) to 
connect the variance of ACN, the error on the 
designed controller, with the 'error' between the 
optimal controller for identification, C°d't(q), and 
the controller that is actually applied during 
identification, Cia(q). We denote this error by 
ACid(q) a= Cid(q) - -  C°,{'t(q). By replacing Cio 
by C°g t + ACid in (30), we get immediately 

g IACNI 2 -~ n IHI2 
N 

×[IFH, 2 °'2 AC,d,2]. (45) + --~I(FGG + FzH) 

This expression holds for open-loop and 
closed-loop identification, regardless of the 
control design criterion§ and regardless of the 
size of ACid. The open-loop formula (40) is 
J 
§The control design criterion enters into the expression 
through Fc and FH. 
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recovered by setting ACid = C°8 ' and ~r ~---I~u" 
The following result follows immediately from 
(45). 

Theorem 2. At some frequency to, the designed 
controller error variance E IACNI 2 obtained by 
closed-loop identification with an operating 
controller C~d(q) and a reference signal spectrum 
(/),(oJ) is smaller than that obtained by open-loop 
identification with input spectrum ~b,(~o) if and 
only if 

Cid(ekO)_ COdVt(eioJ) 2 <  ~r(O)._.....~) 
(46) 

c?g'(e ''°) - 

This holds for any control design mechanism 
subject to the set of Assumptions A2. 

Comment. This theorem tells us how close (in 
relative terms) the controller C~d applied during 
identification must be to the optimal controller 
C°,t 't for closed-loop identification to out- 
perform open-loop identification in terms of 
yielding a smaller controller error E IACNI 2, This 
relative distance is a function of the ratio 
between the signal spectra, ¢. and 4'., applied in 
closed-loop and open-loop identification respec- 
tively. An alternative way to read this result is 
that, for any given relative distance a(to) 
between Cid and C°,l 't at frequency to, closed- 
loop identification will outperform open-loop 
identification if and only if 4),(oJ) -> a(oJ)d),(oJ). 

We now turn to iterative identification. We 
assume again that (44) is satsified. We shall show 
in Section 6 that this is indeed the case for MV 
and MR control design, in which case we even 
have C°dt't(q) = C(q). We then consider the idea 
of splitting up the total data collection interval of 
length N into two subintervals. In the first 
subinterval the identification is performed in 
open loop with input signal spectrum 4),. Let 
01, d l  and/?/1 denote the estimates of 0, G and 
H at the end of the first subinterval of length N1, 
and let ~o~ be the corresponding optimal 
controller for identification: 

Pc (47) 
~i°~ : P G ~ I  "4- ~HB1 " 

In the second subinterval the data are collected 
in closed loop, with this controller applied to the 
system and reference signal spectrum Cr. The 
parameter vector On is computed at the end of 
the second subinterval with 01 as initial value. 

We now compare two strategies--open-loop 
identification and iterative identification--with 
the objective being the best possible controller 
estimate at the end of the total interval of length 
N. 

Consider first that a data set of length N is 
collected with the plant operating in open loop 
and that the identified model is used to compute 
the certainty equivalence controller ~o,.N. Den- 
ote by J~) the corresponding degradation 
measure. Then 

1 f f  IGI 2 
Jg)  = I1 + GCI 2 E IACo,,NI 2 dto (48) 

with  ACoI,N A ~oI,N -- C and,  by (40), 

EIAC°t'NI2=NIHI2(IFI412+ IFG12~r2%(l)u /. (49) 

Consider next that the first ( 1 -  a)N data 
(0< ot < 1) are collected on the plant operating 
in open loop with input spectrum ~b~, and that 
the model that is estimated from these (1 - a)N 
data is used to compute the optimal certainty 
equivalence controller for identification design, 
~°~I_,)N, which is then applied to the plant 
for the remaining interval of length aN. A new 
model is estimated using the data from the 
subinterval of length aN. Let t~it,N bet  the 
certainty equivalence controller computed from 
this model and let J~) denote the corresponding 
performance degradation measure. Denote 
ACO~,,~I_a)N A_ ~o~  1 -a)N -- C°a Pt. Using the same 
arguments as in the previous section, it is 
possible to compute the variance of this error: 

o t 2_ n 2 (iPn]2 4 ]PGl.~z 0'!~ 
E IACi~,O_.)NI (1 --a)N Inl ¢ ,  /, 

(50) 

where Fa and Fn are defined as in (11) with C 
replaced by C°8 t. 

At the end of the second interval, we have 

1 r~  IG 12 ,h j 2) _ ) J v-y 
- ~ J-|,~ I1 + GCI 2 E IACit,NI 2 dto (51) 

with ACit,N __a ~ i t , N  - -  C and 

n 
E IACit.NI 2 = ~ IHI 2 

x (IFHI 2 (r2 + -~IFGG + FHHI2E laC°~h_.)NI2), (52) 

where E denotes the expectation over the whole 
interval of length N. 

"~ The subscript 'it' stands for iterative. 
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Denote 

IFH(e~O)I2 4~,(a,)IFc(e~')G(e~') 

+ FH(eiO')H(ei'°)12, (53) 

g(to) __a n In(ei')FH(ei~')l 2, (54) 

h(~o) =a 1 IGI 2 ~by 
27r I1 + GCI 2' (55) 

Yl hg doJ, 

f" . IF~I 2 tr 2 , 
y 2 ~ J  ng ,~-TF~--TTaco, 

J - .  IFHI 4'u 

Y3 = , hgfn IHI 2 IFnl 2 1 + i/~n12 ~b,} 

(56) 

(57) 

dto. (58) 

Note that the quantities ")/1, Y2 
positive. Then 

1 1 [ 
./9) = + "/2), ",'1+ 

Therefore J~) < J9) if 

and ~/3 are 

(1-~3-a)N]" 

(59) 

")/1 "{- " ) / 3  < Ot(]/l ..~ V2)" 
(1  - a)U 

A necessary condition for this is 

Yl 

Yl + Y2 
- - <  a < 1. ( 6 0 )  

Thus, choose any a such that (60) holds and 
denote 

No(a)  ~ V3 
(1 - a ) [ o t y 2  - (1  - a ) y , ]  " ( 6 1 )  

Observe that the necessary condition (60) makes 
the denominator of (61) positive. Then, for any 
N > N0(a), we have J~) <J~).  

This holds regardless of which reference signal 
spectrum is used in the second subinterval, as 
long as N can be chosen large enough; it is, for 
example true even if the power of the reference 
signal in the closed-loop experiment is smaller 
than the power of the input signal in the 
open-loop experiment. This remarkable fact is 
because the minimal criterion (42) does not 
depend on the reference signal used in the closed 
loop identification step. 

The idea developed here with two subintervals 
can of course be repeated, leading to iterative 
identification and control design. We conclude 
that the iterative approach can always yield a 

smaller degradation than open-loop identifica- 
tion, provided enough data can be collected. 

We summarize these results on iterative 
identification in the following theorem. 

Theorem 3. Consider that a model [tiN, ~N] of 
a system [G,H] is identified by a direct 
prediction error method using N noisy input- 
output data with the purpose of computing the 
certainty equivalence controller ~N = c(t~N, HN). 
Assume that the system is in the model set, and 
that the controller design mapping C = c(G, H) 
is such that (44) holds. Then iterative closed- 
loop identification leads to a smaller perfor- 
mance degradation measure Jv than open-loop 
identification, provided the number of data N is 
large enough. In particular, if the total interval 
of length N is split up in a fraction of (1 - a)N 
data collected in open loop using an input 
spectrum ~bu, followed by aN data collected in 
closed loop with an arbitrary reference signal 
spectrum, then the performance measure Jv 
achieved by such an iterative design is better 
than theat achieved by open-loop identification 
using the same input spectrum ~bu as in the first 
step of the iterative procedure, provided a is 
larger than the bound given by (60) and N is 
larger than No(a) given by (61). 

We make the final comment that the scheme 
presented here reties crucially on the relation 
(44). We shall prove in Section 6 that this result 
holds for MV and for MR control design with 
the additional property that C~',I ' t= C. But first 
we present some simulations to illustrate our 
results and to give the reader a respite from 
heavy-duty formulae. 

5. SIMULATIONS 

In order to get a feeling for the performance 
improvements that can be achieved by using the 
iterative scheme suggested in Section 4, we have 
performed the following simulations. 

We have taken a 'true system' that has the 
following ARX structure: 

(1 - 1.5q -1 + 0.7q-2)yt = q-l(1 + 0 . 5 q - 1 ) u ,  + e,, 

with e, white noise of unit variance. The optimal 
MV controller (corresponding to the true 
system) is 

1.5 - 0.7q-1 
u, = 1 + 0 .5q  -1 Yt + rt. 

By the results of Section 3 (or by reading Gevers 
and Ljung, 1986) we know that the optimal, but 
infeasible, identification conditions (in order to 
compute the best certainty equivalence MV 
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controller) are to perform the identification in 
closed loop with this optimal controller in the 
loop. The objective of our simulations was to 
compare the performance degradation ,Iv 
obtained with this infeasible optimal design with 
that obtained by open-loop identification and by 
the feasible iterative scheme. 

With N =  1000 data points allowed to be 
collected and a MV control design criterion, we 
have compared the following three experiments. 

1. The identification is performed in dosed loop 
using 1000 data generated with the ideal MV 
controller operating in the loop, using an 
external white reference signal with spectrum 
~ r = / 3 .  

2. The identification is performed in open loop 
using 1000 data generated with a white input 
with spectrum ~bu =/3. 

3. The identification is performed in open loop 
first using ( 1 -  a)1000 data (with 0 < a  < 1) 
generated with a white input with spectrum 
~b, =/3; at the end of that first interval, the 
corresponding certainty equivalence MV 
controller ~o-~,)1ooo is applied to the plant, 
and the remaining al000 data are collected 
on the closed-loop system with an external 
white reference signal with spectrum ~b, =/3. 
The final parameter estimate 01ooo is com- 
puted using all the 1000 datat thus collected. 
This has been done for all values of a 
between 0 and 1. 

In each case the certainty equivalence MV 
controller Clooo is computed from the model 
[(~l~1000, ~1000] obtained at the end of the 1000 
data, and the corresponding performance de- 

t If a model other than ARX is used (such as OE or B J) then 
the estimate 0o-~)~00o obtained at the end of the open-loop 
phase is used as initial estimate for the closed-loop phase. 

O . ~  

0.02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0.015 
0.01 ~ 

0.005 
. . . . . . . . . . . . . . . .  j ~ J  

, , , , --T---g-- ~- q -T--- 
0.1 0.2 0.3 0.4 0.5 0.8 0.7 0.8 0.9 

4OOO 

3O00 

200O 

1000 

o 

Nurn~lr of unstab~ runl ~rllus iiIplla 

01, 0~ o:3 01, 0:s 0:s 01, 0.8 o.g 

Fig. 3. Mean performance degradation and number of 
unstable closed loops versus a for/3 = 1. 

025 

0.2t 

0.15 

0.1 

0.0e 

o.5 o,. o, .  o, .  - -  

Nurnt~r of unmble runs venms adpha 
8OO0 

- 

o:1 o'.2 0:3 o:4 o:s 0:6 i 0., 0:. 0:0 
Fig. 4. Mean performance degradation and number of 

unstable closed loops versus ~ for/3 = 0.1. 

gradation Jv vis-a-vis the optimal controller 
achieved on the 'true system' is computed 
experimentally. To do so, 1000 Monte Carlo 
simulations have been run for the ideal 
closed-loop experiment, for the open-loop 
experiment and for each of the iterative 
open/closed-loop experiments in order to comp- 
ute the experimental estimates of Jv. The  results 
are shown respectively in Figs 3(a) and 4(a) for 
/3 = 1 and/3 = 0.1. 

The dashed lines in Figs 3(a) and 4(a) 
represent the performance degradation that 
results from identifying the system using 1000 
data collected under the ideal experimental 
conditions, i.e. with the optimal controller in the 
loop. We get J~)=0.0014 and J~)=0.0029 
respectively for/3 = 1 and/3 = 0.1. Observe that, 
even under these ideal experimental conditions, 
J~) # 0 since the ideal controller C is estimated 
on the basis of 1000 noisy data. The dotted lines 
represent the performance degradation that 
results from identifying the system using 1000 
data collected in open loop. We get J~) = 0.0199 
and J~)=0.214 respectively for /3=1  and 
/3 = 0.1; i.e. open-loop identification performs 
respectively 14 and 74 times worset than 
closed-loop identification w i t h  the ideal 
controller. 

The full lines represent the performance 
degradation that results from using open-loop 

t Now, ~, = 1 and ~, = 0.1 in closed-loop identification lead 
to an input variance that is approximately 9 and 54 times 
larger than that in open-loop identification. However, both 
for 4), = 1 and ~, = 0.1, using a reference signal for the ideal 
identification design that yields the same input variance as in 
the open loop case would still give more than 50% 
performance improvement over the open-loop design, but 
with a considerably smaller output variance. Notice also that 
it follows from Theorem 3 that, provided N is large enough, 
the iterative procedure outperfroms the open-loop procedure 
for any reference signal spectrum. 
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followed by closed-loop identification, for 
different values of the fraction a of 'closed-loop 
identification time'. We observe that for most 
values of a,  this feasible two-stage scheme 
performs almost as well as the infeasible ideal 
experiment design. Except for oe close to 0 
(mostly open-loop identification) or close to 1 
(mostly closed-loop identification), the curve is 
fairly insensitive to the choice of a; thus it 
appears that it would not make much sense to 
optimize the design parameter a. 

A word of caution is in order, however. If a is 
taken too large, that is, if the open-loop fraction 
of the total experiment time is too short, then 
the model obtained at the end of open-loop 
identification may be so poor that the corres- 
ponding controller destabilizes the true system. 
This is indeed what happens. To give a honest 
representation of this phenomenon, we have 
represented in Figs 3(b) and 4(b) the total 
numbers of runs that produced unstable closed 
loops as a function of a,  until 100 stable runs 
were produced. The averages in Figs 3(a) and 
4(a) are computed on the stable runs only. 

6. OPTIMAL IDENTIFICATION CONDITION FOR 
MV AND MR CONTROL DESIGN 

In this section we show that, for minimum- 
variance (MV) and model reference (MR) 
control design, the optimal design (31) yields 

inf __ inf Cid(q)-C,  and hence Cad(q ) is stabilizing. 
Thus, for these control design criteria, if the 
objective of the identification of [G, H] is to 
design the controller C then the best experimen- 
tal condition is to perform closed-loop identifica- 
tion with the ideal (MV or MR) controller 
operating. This is a lovely theoretical, but 
apparently useless result--except that it implies 
(44), which is essential for our feasible iterative 
design of Section 4. 

We first consider MV control in the situation 
where the plant is minimum-phase with unit 
delay. The MV control law is then given by 
C = ( H - 1 ) / G :  see Ljung (1987). For this 
situation, it was shown in Gevers and Ljung 
(1986) that the optimal identification design is 
closed-loop identification with the optimal 
controller in the loop during identification. The 
proof in Gevers and Ljung (1986) did not use 
(31). From Theorem 1 and this formula, we get 
the desired result immediately, noting that 
Fa = - ( H  - 1)/G 2 and Fn = 1/G. 

We now consider that the control design 
criterion is the model reference (MR) design 
criterion (9), which defines the two-degree-of- 
freedom controller ~ = [(~'1 ~2] as a function of 
[0 , /~]  and of a prespecified model [Gy,, Gye]. 

If C is the MR controller corresponding to 
[G, H], we write 

GC1 0~1 
1 + G C  2 - -  Gyr' 1 + 0(;----------% - O y r '  (62) 

n 
1 + GC2 1 + 0~2 Gye" (63) 

We first compute the error y ( t ) -  yu(t) between 
the outputs of the ideal and actual closed-loop 
systems. We assume again that the number of 
observed data is large enough that AGN, AHN, 
Oyr-Gyr and A C N & ~ N - C  at any given 
frequency to are small.t Using the same 
arguments as in Section 3, we can write 

GC1 GCi \ 
y ( t ) -  yN(t) = 1 + GC2 1 +--G-~2 )r(t) 

( H H )e(t) 
+ 1 + GQ 1 (22 

G 
(1 + GC2) 2 [[-(1 + GQ) AC. 

+ GCI AC2]r(t) + H AC2 e(t)} 

G ACz]M[r(t)] 
(1 + GC2) ~ [AC, e(t) ' 

(64) 
where 

+ o7. (65) 
L GCi 

Compare this expression with (21) for the 
one-degree-of-freedom controller. The closed- 
loop degradation criterion Jv can then be written 
a s  

1 f f  1612 
Jv ~ ~ . I1 + GCE[ 4 

2- , f A c l ~ q )  
×E{[ACl ACz]Mdiag{~b., o" }M [AC.Jj  ~ do) .  

(66) 

In this expression [AC 1 AC2] is a random vector, 
a function of the random model error 
[AGN, AHN]. We now compute these sen- 
sitivities, i.e. the relationships between errors in 
[G, H] and errors in [C1, C2], assuming small 
errors in the plant model. From (62) and (63), 
we get, after some calculations in which we 
neglect all second-order error terms, 

[AC, AC2] = [AGN AHN]F, (67) 

t Recall that ACN denotes [AC1.N AC2.N] in the present case 
of, a two-degree-of-freedom controller. 
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where the sensitivity matrix F is given by 

-G- -G- (68) 
F = C1 1 + G C 2  " 

Therefore lf , ( 
A, ~ ~ ,~ I1 + aC214 tr diag {4),, o.2} M'F* 

AG~, 

We now compute 

1 -C2 H ] FM =-~ [ oC1 (70) 
1 + GC2J' 

and we substitute (70) and the expression (24) 
for the covariance matrix of the transfer function 
error [AGN AHN] into (69). After rather lengthy 
manipulations, this leads to 

n f~  tr4 IHI2 

Jv ~'2-~ J-,,ll + GC2I 4 (0"2~b~ -I~b,el 2) 

X {ICll 2 (k, + tr 2 IC212 IHI 2 

+ 2 Re [6~,C2H(1 + G*C~] 
+ 4,. I1 + GC212} do). (71) 

We now need to minimize Jv with respect to the 
experimental conditions, i.e. with respect to ~b~ 
and (h.,. We write Jv as the sum of two terms, 
and show that they are both minimized by the 
same experimental conditions. 

Consider first 

n f "  o,4 inl 2 iCll 2 ~b, 
J [ l '=2gNJ_, t [  1 +G-~2]~(-~-- i~b, ,12)  do). (72) 

During closed-loop identification with a two- 
degree-of-freedom controller [Cia,l(q) Cid,2(q)], 
we have 

Cid,1 Cid,2H u( t ) -  r(t) e(t). (73) 
1 + GCid,2 1 + GCid,2 

Therefore 

(~ue Cid 2H = , tr2, (74) 
1 + GCid,2 

and 
0 -2 [Cia,ll 2 

tr2~b" -14)~'12 = 11 + GC,a,2[ 2 6r, (75) 

THUS, minimizing J~) with respect to (~b,, 4)u¢) is 
equivalent with 

• n U 0"2 Inl 2 
mill - -  L c~,c.u 2~rN ,~ I1 + GC212 

C1 2 1 + GCid2 2 
× I do). (76) 

By the same argument as used in Ljung (1987, 
p. 226), it follows that the optimum is achieved 
by 

Cid,l(q) = Cl(q), Cid.e(q) = C2(q). (77) 
Note that 

j~)opt n ('~ tr21HI2 j 
= 2~rN J_,~ I1 ~ ~212  uo). 

Now consider the remaining term: 

n [~: tr2 [HI2 
J~) 

2trN J_,~ I1 + GC214 

1 
x tr24>u _ 14'uel 2 {tr41612 IHI 2 

+ o .2 Re [~b.eC2H(1 + G*C~] 

+ tr24,, l1 + GC212}do). 

After some manipulations, it can be rewritten as 

n I t 0 -2 IHI 2 
J~) = ~ - N  ~-,~ I1 + GC212 

I ~  (78) 1+  tr2~b--'-~ _-- to. 

Clearly, the minimum is achieved for 

C~ue A Cicl2 H ,  0" 2 ~. C 2 H  tr 2, (79) 
1 + GCid,2 1 + GC2 

and hence Cia,2 = C2. We note that for this 
optimal value of Cid,2 , j~)opt becomes indepen- 
dent of Cid,l: 

n f,r trZlHi2 
j~)opt = 2It'S J.-~¢ I1 ~ G'-~2[ 2 do3. 

Theorem 4. Consider the identification of a 
system 5e=[G,H] using a model set d~= 
{[G(O), H(O)], 0 ~ Do} with ~ E A/, for the 
purpose of designing a two-degree-of freedom 
model reference controller [C1, C2] specified by 
the mapping (62), (63). Then the closed-loop 
degradation measure Jv defined by (15) is 
minimized if the identification is performed in 
closed loop with the ideal controller [C~ C2] 
operating on the plant. Under  those optimal 
experimental conditions, 

jo-t 2n ¢'~ tr 2 IHI 2 

2n 2 (80) 
N try, 

where tr2 is the variance of the noise 
contribution in the output of the ideal 
closed-loop system. 
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7. CONCLUSIONS 

We have presented three distinct contribu- 
tions. The first was about optimal experiment 
design. We showed that, when a model is 
identified with a view to computing a controller 
C=c(G, H) that, at each frequency to, is a 
smooth function of the model at that same 
frequency, and when the system is in the model 
set so that no bias errors occur, then the optimal 
experimental setup is to identify the system in 
closed loop with some optimal controller C°d' t 
operating on the plant. The second was to show 
that, for MV and MR control criteria, this 
controller C°d' t happens to be the ideal 
controller: C°l 't= C. Here ideal means that it is 
the controller that would be designed if the true 
plant were known. 

Our third contribution has been to exploit this 
apparently useless result (at least from a 
practical point of view) to establish that, 
provided the identification time is long enough, 
one can always obtain a more accurate controller 
estimate (and better closed-loop behaviour on 
the real plant) by performing at least part of the 
identification on closed loop data, with the 
current controller estimate operating on the 
plant. This gives theoretical support to the idea 
of iterative identification and control design--at 
least when the system is in the model set. 

Several interesting open problems remain, the 
most intriguing being a characterization of all 
control design criteria for which the best 
controller to be applied during identification, 
C°d' t, is the ideal controller C. 
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