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A Personal View of the Development of System Identification
A 30-year Journey Through an Exciting Field

MICHEL GEVERS

ment of system identification in the

control community as I have
observed it over the last 30 years, both
as a student of the subject eager to
learn and understand the work of my
colleagues and as an active participant
in these developments. This article
should not be read as a survey of the
subject but rather as a story told
through the eyes of one of the actors in
the field. I tend to believe that the way
a particular field of science develops
depends on a combination of two
forces: the sociotechnological environ-
ment created by the evolution of the
neighboring fields of science and by
the demands of the applications world
as well as the creative role played by a
few individuals who suddenly make it
possible to venture into a completely
new direction or to establish a useful

I n this article I describe the develop-

link with another field of science that
sheds totally new light on the subject.
This article attempts to exhibit both
the continuity and the motivation for
developments in system identification
in the last 30 years and also the signifi-
cant new departures and insights that
came as the result of some important
breakthroughs. To see the evolution of
system identification in this socio-
historical perspective has always
helped me a great deal. The main rea-
son for writing this story is to share my
experience with others, in the hope
that this might also help them, and
particularly newcomers to the field,
understand the connections between
successive developments of system
identification. Because this article is
not meant to be a survey but rather
the story of my own journey through
system identification, some topics of
importance in system identification
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and their contributors are mentioned
only briefly or are simply omitted
because they have not played a major
part in my own experience as a
researcher. These contributions will be
part of somebody else’s story.

EARLY HISTORY

The development of identification the-
ory in the control literature followed
on the heels of the development of
model-based control design around
1960. Up until the late 1950s, much of
control design relied on Bode, Nyquist,
and Nichols charts or on step response
analyses. These techniques were limit-
ed to control design for single-input,
single-output (SISO) systems. Around
1960, Kalman introduced the state-
space representation and laid the foun-
dations for state-space-based optimal
filtering and optimal control theory,
with linear-quadratic (LQ) optimal
control as the cornerstone of model-
based control design.

The availability of model-based
control-design techniques created a
desire in the scientific and engineer-
ing community to extend the fields of
application of modern control design
beyond the realm of mechanical,
electrical, and aerospace applica-
tions, for which reasonably accurate
low-dimensional dynamical models
could be obtained from first princi-
ples. The need arose, therefore, to
develop data-based techniques for
developing dynamical models for
diverse applications such as process
control, environmental systems, bio-
logical and biomedical systems, and
transportation systems.

Much of the early work on identifi-
cation was developed by the statistics,
econometrics, and time-series com-

munities. Although the statistical the-
ory of parameter estimation has its
roots in the work of Gauss (1809) and
Fisher (1912), most of the theory of
stationary stochastic processes was
developed between 1920 and 1970; an
insightful and comprehensive review
of the history of system identification
and time-series analysis in the statis-
tics, econometrics and time-series
communities can be found in [1].

Although many results on system
identification had already been estab-
lished in the statistics and econometrics
literature, 1965 can be viewed as the
birth year for identification theory in
the control community due to the publi-
cation of the seminal papers [2] and [3].
These papers paved the way for the
development of the two mainstream
identification techniques that dominate
the field today, namely subspace identi-
fication and prediction-error identifica-
tion. The former is based on projection
techniques in Euclidean space, while
the latter is based on minimizing a
parameter-dependent criterion.

The Ho-Kalman paper [2] provided
the first solution to the determination
of a minimal state-space representation
from impulse response data. The solu-
tion of this deterministic realization
problem was extended in the early
1970s to a stochastic realization prob-
lem, where a Markovian model is
obtained for a purely random process
on the basis of covariance data [4], [5].
This stochastic realization technology,
based on canonical correlation analysis,
was extended in the early 1990s to
processes that involve a measured
(control) input, becoming known as
subspace state-space identification. The
identification work of the early nineties
will be described later in this article.
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The Astrém-Bohlin paper [3] intro-
duced into the control community the
maximum likelihood framework that
had been developed by time-series
analysts for estimating the parameters
of difference equation models [6], [7].
These models, which were known in
the statistical literature by esoteric
names such as ARMA (autoregressive
moving average) or ARMAX model
(autoregressive moving average with
exogeneous inputs), later gave rise to
the immensely successful prediction-
error identification framework.

In 1970, Box and Jenkins published
their book [8], which gave a major
impetus to applications of identifica-
tion. Indeed, [8] gave a rather complete
recipe for identification, all the way
from initial data analysis to the identi-
fication of a model and its validation.
In the spirit of the time-series analysis
methods of the time, [8] relied heavily
on correlation analysis to determine
model structure. For about 15 years, [8]
remained the major high quality refer-
ence book on system identification.
Important references of this time peri-
od also include the survey paper [9] as
well as the special issue on system
identification and time series analysis
published by IEEE Transactions on
Automatic Control in December 1974.
The Astrom and Eykhoff survey [9],
which was used by many young
researchers as a stepping stone for
future work, explained the state of the
art as much as it displayed some of the
important open questions of the time.
One of these questions was the identi-
fication of closed-loop systems, for
which Hankel-based projection meth-
ods based on cross-correlation infor-
mation had been shown to fail [10].

From the mid-1970s, the predic-
tion-error framework came to com-
pletely dominate identification theory
and, perhaps more importantly, iden-
tification applications. Much of the
research activity focused on identifia-
bility problems for both multivariable
systems and closed-loop systems. The
key identifiability problem for these
two classes of systems was to find con-
ditions on the parameterization and

the experimental conditions under
which the estimated model would
converge to a unique representation of
the true system. Just about all of the
activity of that time period focused on
the search for the true system, address-
ing questions of identifiability, conver-
gence to the true parameters, statistical
efficiency, and asymptotic normality
of the estimated parameters.

Around 1976 the first attempts
were made to view system identifica-
tion as an approximation theory, in
which one searches for the best possi-
ble approximation of the true system
within a given model class [11]-[13].
The prevailing view in the identifica-
tion community thus changed from a
search for the true system to a search
for and characterization of the best
approximation. Hence, characterization
of model errors became the focal
point of research. For control engi-
neers, the object of primary interest is
the model, rather than the parameters,
which are just a vehicle for describing
the model. An important break-
through came when Ljung introduced
the concept of bias and variance error
for an estimated transfer function [14].

The work on bias and variance analy-
sis of identified models during the 1980s
led, almost naturally, to a new perspec-
tive in which identification became
viewed as a design problem. By under-
standing the effect of experimental con-
ditions, model structure, and choice of
criterion on the bias and variance errors
of the identified model, it is possible to
tune these design variables toward the
objective for which the model is being
identified [15], [16]. In this regard, the
book [17] has had a profound impact on
the engineering community of system
identifiers. In particular, [17] squarely
put forth the view of system identifica-
tion as a design problem, in which the
intended use of the model use plays a
central role. This viewpoint clearly dis-
tinguishes the engineering approach to
system identification from the statistical
approach to system identification and
time-series analysis, where the prevail-
ing view is that the model must explain
the data as well as possible.
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The observation that model quality
can be influenced by choosing design
variables to reflect the objective for
which the model was being built
opened the way to a flood of new
activity in the 1990s, which continues
up to this day. The major application
of this new paradigm is identification
for the purpose of model-based con-
trol design. Consequently, identifica-
tion for control has blossomed since
its beginnings around 1990. Because
identification for control embraces
many aspects of identification and
robust control theory, it has activated
or reactivated research areas such as
experiment design, closed-loop identi-
fication, frequency-domain identifica-
tion, uncertainty estimation, and
data-based robust control analysis
and design.

THE MILESTONE PAPERS

Deterministic Realization Theory
In 1965, [2] provided a first solution to
a challenging system-theoretic prob-
lem that became known as the state-
space realization problem. It can be stated
as follows.

Construct a minimal state-space
realization

Xip1 = Axy + Buy,

yr = Cxt,

for the input-output model

o0
yi= Y Huyg
k=1

described by its impulse response
matrices (also called Markov parame-
ters) Hy € RP*™,

The problem is to replace the
infinite description

o0
H(z) = Zsz’k,
k=1

with a  finite  description
A e R™" B e R™™ C e RP" so that

H(z) = C(zI — A)~1B,

and A has minimal dimension. This
problem can be divided into two parts,



namely, find the McMillan degree of
H(z) [18], which is then the minimal
dimension of A, and compute the matri-
ces A, B, C. The key tool for solving this
problem is the Hankel matrix H, whose
factorization into the product of an infi-
nite observability matrix and infinite
controllability matrix is given by

FH1 H» H; Hy
H, Hs Hy Hs
H=|H, H, Hs Hg
- C
CA
=|ca2|[B AB A?B ...].
€))
The Ho-Kalman realization

method [2] is based on the following
important properties: If the McMillan
degree of H(z) is n, then
1) rank H = n, and
2) There exist A e R,
B e R™ ™ and C e RP*" such
that H, = CA*1B for all k > 1.
It took years of research to go from
the theoretical results described in [2]
to a numerically reliable realization
algorithm [19], [20]. However, all of
the key insights were present in the
1965 paper [2], and they were to have
a profound impact on linear system
theory in general and on realization
and identification theory in particular.

The Maximum Likelihood Framework

In complete contrast to the state-space
formulation of Ho and Kalman, the
landmark 1965 paper of Astrom and
Bohlin [3] introduced the maximum
likelihood method for estimating the
parameters of input-output models in
ARMAX form

A Yy = B g+ ACE Ve,

where {e;} is a sequence of indepen-
dent identically distributed zero-
mean, unit-variance Gaussian random
variables. The maximum likelihood
method had been widely studied in
mathematical statistics, including

applications to time-series models [6].
The Astrém-Bohlin paper [3] not only
gave a complete algorithmic deriva-
tion of ML identification for ARMAX
models but also summarized all of the
analysis results that were available at
that time, such as consistency, asymp-
totic efficiency, and asymptotic nor-
mality of the parameter estimates,
persistence of excitation conditions on
the input signal in connection with
the order of the model, and model-
order validation on the basis of the
whiteness of the residuals.

The concepts and notation intro-
duced in [3] have been with us for
almost 40 years now. The following
household notation of the identifica-
tion community can be found in [3]:

» the residuals C(z 1)e; =

Ay - BG D,
» the cost criterion
o) =1y, e
» the parameter estimate
6 = argmin 1(6)
» the white noise variance
estimate A2 = (2/N) V(é).

The publication of [3] gave rise to a
flurry of activity in parametric identi-
fication and established the basis for
the prediction-error framework. The
step from maximum likelihood to pre-
diction error essentially consists of
observing that, under the assumption
of white Gaussian noise in the
ARMAX model, maximization of the
likelihood function of the observations
is equivalent to minimizing the sum of
the squared prediction errors. The pre-
diction-error framework consists of
adopting the minimization of a norm
of the prediction errors as the criterion
for parameter estimation, even when
the probability distribution for the
observations is unknown. As observed
in [21], this idea had already been sug-
gested by Gauss himself [22].

FROM DETERMINISTIC TO

STOCHASTIC REALIZATION THEORY
The combination of deterministic real-
ization theory based on the factoriza-
tion of the Hankel matrix, with the
theory of Markovian and innovations
representations (described below), gave

rise to the stochastic theory of minimal
realizations. The stochastic realization
problem can be stated as follows.

Let {y;} be a zero-mean stationary
vector stochastic process whose
covariance sequence {Rg}p>; is given,
with Ry = E{ ytytTik}. Then find a mini-
mal Markovian representation for {y;}
of the form

X1 = Axt + Gy (2)
v = Cxt + vy, 3)

where (Zz':[‘) is a zero-mean stationary
white noise sequence with covariance
matrix

weel(2)(4)']
SEIH I

This problem amounts to finding
state-space matrices A, G, C, where
the dimension of A is minimal, and
the blocks Q, S, R of the covariance
matrix W so that the covariance of the
output of (2), (3) is given by {R}p2 ;.

Observe that the covariance of
the output y; of the Markovian repre-
sentation (2) and (3) is given by
Ry =CA¥IN,  where N=AI
cl +Gs for k>1, and
Ro = CICT + R, where IT £ E{xux])}
is the state covariance matrix.

The stochastic realization problem
was studied intensively during the
early 1970s in connection with innova-
tions theory and spectral factorization
theory [5], [23], [24]. The first step of the
solution consists of observing that the
Hankel matrix H of the covariance
sequence can be factored as

[R1 Ry Rs Ry
Ry R3 Ry Rs
Ry R, Rs Rg

g
Il

- C
CA
=1 ca2 |[NANAZNAPN ... ],

®
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where Ry = CA*IN with N defined
as above. The similarity between the
factorizations (1) and (5) shows that
the Ho-Kalman solution to the deter-
ministic realization problem [5] can be
used to determine the minimal
dimension # as the rank of H and to
compute C, A, and N from the factor-
ization of H.

There are various ways to perform
the second step, which consists of
computing the remaining elements
G,Q, R, S of the Markovian represen-
tation (2) from C, A, N and the output
variance Rp. One way to compute
these elements is to use a specialized
Markovian representation, known as
the innovations model, of the form

&1 = A&+ Key, (6)
yr = C& + ey, (7)

where {¢;} is a stationary vector white
noise sequence with covariance
matrix X = E{stetT}.

Denoting I1 = E{&£]} and requir-
ing that the covariance sequence of
the output y; of this innovations
model (6), (7) is {Ry} yields three con-
straints on the unknown quantities I,
K, and X of the form

M= AfAT + K=KT, 8)
N = AfCT + K%, )
Ry = CICT + 3. (10)

Observe that the Lyapunov equation
(8) follows directly from (6), while
constraints (9) and (10) are imposed
by matching the output covariance Ry.
Substituting K and X from (9) and
(10) into (8) yields a Riccati equation
for I of the form

1= AfAT + (N — Afich)
x (Rg — CT1IcT)~1 (N — ATICT)T.
(11)

By solving (11) for [T, the remaining ele-
ments K and ¥ are obtained from I1
using (9) and (10). The stochastic real-
ization problem, as well as the proper-
ties of its associated Riccati equation

(11), was extensively studied through
the late 1960s and 1970s in connection
with the spectral factorization problem;
see [24]. A comprehensive treatment of
the stochastic realization problem can
be found in [25], while a tutorial presen-
tation is given in [26].

An interesting aspect of the sto-
chastic realization solution given by
Akaike in [27] is the definition of the
state of the innovations model as the
set of canonical correlations obtained
by projecting the vector space
spanned by the present and future
outputs onto the vector space
spanned by the present and past out-
puts. Stated otherwise, the state of the
innovations model forms a basis for
predicting future output signals from
past signals. These canonical correla-
tions can be computed by a singular
value decomposition. This insight
formed the basis for later work on
subspace identification and gave rise
to extensive studies of the interface
between these spaces of future and
past observations [25], [28].

Another outcome of the stochastic
realization and innovations theories
of the 1970s was the covariance equiv-
alence between the Markovian real-
ization (2), (3) and its innovations
realization (6), (7). This equivalence
implies that a Markovian model (2),
(3), which may have been constructed
as a first principles model based on
the laws of physics, and where y; is
driven by two independent white
noise sources w; and v; (thus with
S =0), can be rewritten as the Mar-
kovian innovations model (6), (7) dri-
ven by a single white noise source &;
that yields the same output covari-
ance {Ry} as the Markovian model.
This equivalence also applies to mod-
els with deterministic inputs, that is,
every state-space model

Xt+1 = Axt + Buy + Guwy,
yr = Cxt + 04,

possibly derived from physics laws,
can be rewritten for all u; as an inno-
vations model driven by a single
noise source &;, that is,
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12)
(13)

&ty1 = A&t + Buy + Key,
yr = C& + &y

The input-output equation of this
state-space innovations model is

yr = C(zl — A) " Buy + [C(z] — A)~!
x K+ I]et,
= G(@)ur+ H(z)ey,

where
G(z) = C(zI— A)~ B,
H(z) = [+ C@zI— A)~K.

Observe that the transfer function
matrices G(z) and H(z) have the
same poles, and that the indepen-
dent term in the series expansion of
H(z) is the identity. The model (12),
(13) is therefore equivalent to the
ARMAX model

A Yy =B Hug + Cz Heg, (14)

where A(z™1), B(z™1), and C(z™1) are
now matrix polynomials in the delay
operator z7! with Az™Y and Cz™1)
monic, that is,

A Y =T+mz '+ +a,z7",

B(Zil) = b1271 +-+ bnbzinb,

CeH=I4cazt+ - +oyz

This theory established a link between
a Markovian model obtained from
first principles modeling driven by
possibly independent noise sources w;
and v, the equivalent state-space
innovations model driven by a single
noise source &¢, and the corresponding
ARMAX model used in maximum
likelihood or prediction-error identifi-
cation. The theory also gave a solid
theoretical justification for the use of
ARMAX models for representing sta-
tionary linear Markov processes,
whether these processes are physically
driven by one or several noise sources.

THE GOLDEN YEARS: 1975-1985
The Big Cleanup

The years 1975-1985 saw frantic activity
in system identification in the engineering



community. The methods based on a pre-
diction-error criterion together with
input-output models completely took
over the field, at the expense of methods
based on realization theory. Their theo-
retical superiority over stochastic real-
ization methods was based on the
statistical properties of the parametric
estimates: not only are prediction-error
methods asymptotically efficient (since
their covariance achieves the Cramér-
Rao bound), but the asymptotic accura-
cy can also be evaluated. The main
reason for the growing appeal of predic-
tion-error methods, however, was that
increased computer speed and the
development of special purpose identifi-
cation software made it more feasible to
iteratively minimize a cost criterion over
a range of possible model structures.
During this period many authors put
their names on new combinations of
model structures and methods, with
claims about the supremacy of their
new combination over existing meth-
ods. New “methods” appeared con-
stantly in the scientific journals.

Some solid cleaning was required,
and it was one of L. Ljung’s major con-
tributions to perform this function. His
contribution was to separate two inde-
pendent concepts, the choice of a para-
metric model structure, which
provided a vehicle for computing pre-
dictions and hence parameter-depen-
dent prediction errors, and the choice
of an identification criterion, which
was a nonnegative function of the pre-
diction errors and hence of the para-
meter vector [29]. All existing
parametric identification methods
could then be seen as particular cases
of this prediction-error framework.

To do this, [29] introduced the
generic input-output model structure

yr = G(z,)us+ H(z,0)er,  (15)
where G(z, 0) and H(z, 0) are parame-
terized rational transfer functions and
et is white noise. All commonly used
model structures were special cases of
the generic structure (15). To estimate
0 from (15), one can derive the para-
meter-dependent one-step-ahead pre-

diction J4—1(0) and hence the one-
step-ahead  prediction  error
e1(0) = y¢ — Ur1—1(0). Next, given a set
ZN of N data and hence of N predic-
tion errors, one can define a criterion

1 N
VN, ZN) = N ; I(e(6)),  (16)

where I(-) is a nonnegative scalar-val-
ued function. Minimizing VN (6, ZN)y
with respect to # over a domain Dy
then yields the parameter estimate

by = arg min Vn (9, ZN). (17)

0€Dy

This work culminated in the publi-
cation in 1987 of [17], which has
become the standard reference book on
system identification. The book has
had an enormous impact on the
engineering community, both as a theo-
retical basis and as a guide for applica-
tions. Its usefulness for applications has
been greatly enhanced by the simulta-
neous production by Ljung in 1987 of
the Matlab identification toolbox.
Ljung’s book was complemented by
that of Stoica and Soderstrom [30], who
adopted the same clear distinction
between choice of model structure and
choice of criterion; their book focused
less on design issues but more on analy-
sis and on alternative criteria, in partic-
ular criteria based on correlation
methods and instrumental variables.

Breakthroughs for MIMO and
Closed-Loop Systems

During 1975-1985, theoretical break-
throughs were made in two direc-
tions. The first was the elucidation of
the manifold structure of multi-input,
multi-output (MIMO) systems. The
second consisted of identifiability
results for linear systems under
closed-loop conditions. On the basis
of earlier observations made in the
context of stochastic realization theory
and of identification from spectral or
covariance data [9], [10], the view pre-
vailed in the identification community
that data collected in closed-loop
operation would lead to a biased esti-
mate of the plant model. Finding con-
ditions under which the model can be

consistently estimated from closed-
loop data was therefore a problem of
great theoretical and practical interest.

Many authors contributed to the
solution of both problems. The mani-
fold structure of MIMO systems, based
on Kronecker (or structure) indices,
was elucidated in [31] and [32]. It was
shown that there is no unique state-
space or ARMA parameterization that
can represent all linear MIMO systems
with m inputs and p outputs. However,
each p x m-dimensional rational sys-
tem can be uniquely represented by a
canonical parameterization whose
structure depends on a finite set of
integers, the Kronecker indices. In
addition, the set of all p x m-dimen-
sional rational systems can be covered
by a finite number of pseudocanonical
or overlapping parameterizations.
Subsequently, many authors worked
on methods for estimating the Kro-
necker indices while others studied
the relationship between the canonical
(or pseudocanonical) forms in state-
space and ARMA form [33]-[37]. The
thinking was that for the parameter
estimation problem to be well condi-
tioned, it was important to choose a
parameterization in which the true
system could be represented by a sin-
gle parameter vector.

As for the identifiability of closed-
loop systems, one of the earliest solu-
tions was provided by the Swedish
trio made up of Gustavsson, Ljung,
and Soderstrom, all Ph.D. students of
K.J. Astrom at the time [38]. Over a
four-year period the trio jointly pub-
lished no less than six important
papers on various aspects of system
identification. They showed that, in
many situations of practical interest,
direct application of prediction-error
identification to input-output data
allows one to identify the open-loop
plant despite the presence of a feed-
back controller. Other closed-loop
identifiability results covered indirect
methods in which the closed-loop
transfer function is identified first and
the plant model is then derived from it
using knowledge of the controller, as
well as the joint input-output method
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in which a model is first estimated for
the joint vector process made up of the
input and output vectors [39]-[42].

System Identification

Viewed as Approximation

For most of the 1960s and 1970s, the
prevailing assumption was that the
system S was in the model set M, that
is, S € M. Thus, the focus of research
was on questions of convergence to the
true system and of statistical efficiency
of the parameter estimates. In the mid-
1970s, the first attempts were made to
view system identification in the con-
text of approximation [11]-[13]. This
step marked the beginning of a new
era, in which the elusive search for a
linear time-invariant “true system”
was progressively abandoned to give
way to the search for a “best approxi-
mate model” within some a priori cho-
sen model set M. With the idea of
model approximation came of course
the idea of model error, and hence the
desire to characterize this model error.

The Birth of 6*

In statistics, the natural way to analyze
estimation errors is through the con-
cepts of bias and variance errors. How-
ever, in the context of model sets that do
not contain the true system, the concept
of parameter error becomes meaning-
less, since there are no true parameters.
The object of interest is the transfer func-
tion, not the parameters that are used to
represent it. By defining 6* as

6* = in lim E{Vn(0
argergg;Ngnoo {Vn©)}

and observing that, under reason-
able conditions, the parameter esti-
mate éN converges to %, that is,
limp o0 Oy = 0% [11], Ljung intro-
duced the following decomposition of
the total transfer function error at the
frequency w:

Go(e/)~G(e®, )
= Go(e/) — G(el, 6%)

bias error
+G(e,6%) — G, y) .

variance error

Within this framework, approximate
asymptotic expressions for the trans-
fer function variance, as well as inte-
gral expressions for the transfer
function bias for the case in which a
least squares prediction-error identifi-
cation criterion is used, were subse-
quently derived [14], [15]. By
assuming that the model order n
increases with the number N of data
in a specific way, an approximation
was obtained in [14] for the asymptot-
ic variance of the estimated transfer
functions at a frequency w. This
approximation is given by

G(e®, ) — Go(el®)
H(e™, Gy) — Ho(e)
Ge ., 6y) — Gole )\
“\ H(e ™, by) — Ho(e™ 1)
Dy(@) Do)
Doy (w) (72 '

Dy(w) |:
(18)

where G and H are the parameterized
transfer function models of order n
defined in the generic model (15), éN
is the parameter estimate, N is the
number of data, ®,(w) is the input
spectrum, ®y(w) is the disturbance
spectrum, and ®,.(w) is the cross-
spectrum between the input and the
white noise e driving the noise model.

As for the asymptotic bias, the
expression [15]

T .
0* = argmin/ [1Go (&™)
0 Jx
— G, 0) 0y ()

D(e/®)

2
e —— dw,
H(e, 0)

+ ®o(w)] 19

valid for open-loop identification, pro-
vides insight into the way the choice
of the model parameterization G(z, 0)
and H(z, 0) influences the bias error of
the identified model. Here D(z) is a
data filter applied to all input and out-
put data. These variance and bias for-
mulas (18), (19), which have since
been improved on, provide insight
into the way the model structure, the
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data filter, the input spectrum, the
number of data, the feedback con-
troller (if any) influence the bias and
variance error of the estimated model.
These expressions were to become the
cornerstone of the next major phase of
the development of system identifica-
tion: the design phase.

IDENTIFICATION
AS A DESIGN PROBLEM
If identification is viewed as approxi-
mation and if the estimated model is
to be used for a specific purpose (as is
most often the case), then it makes
sense to control the model error so
that it does not excessively penalize
the goal for which the model is being
built. This idea is behind the concept
of goal-oriented identification. To for-
mulate the identification problem as a
goal-oriented design problem requires a
good understanding of the connection
between identification design (experi-
ment design, choice of model struc-
ture, choice of criterion) and model
quality on the one hand, and the effect
of model quality on the intended
model application on the other hand.
The first few steps of this paradigm
were laid in [15]-[17]. This engineering
way of looking at the identification
problem opened up a vast new window
of opportunities for research. In particu-
lar, this viewpoint was instrumental in
the development, from around 1990, of
a field that has seen an enormous activi-
ty ever since, both on the theoretical
front and in practical applications,
namely identification for control.

SYSTEM IDENTIFICATION IN THE 1990s
At the triennial IFAC Symposium on
System Identification, held in
Budapest in 1991, there was a feeling
that most of the important problems in
system identification had been solved
and that the golden age of identifica-
tion was over. That prediction proved
to be wrong. The research on system
identification was pulled all through
the 1990s essentially by two catalysts,
whose first feeble signs emerged
around 1990: subspace-based identifi-
cation and identification for control. In



addition, new research activity took
place in frequency-domain identifica-
tion, closed-loop identification, the use
of orthogonal basis functions for iden-
tification, the development of new
methods for quantifying model uncer-
tainty, errors-in-variables identifica-
tion, and the identification of
nonlinear systems. Thus, dire predic-
tions about the disappearance of iden-
tification as an active research topic
proved to be completely wrong.

Subspace-Based Identification

The reasons for the emergence of sub-
space identification are almost cer-
tainly to be found in the state of the
art of identification of multivariable
systems in the 1980s. Even though the
manifold structure of MIMO systems
had been completely characterized in
the late 1970s, the practical problem of
identifying MIMO systems remained
wide open. Indeed, estimating the
structure indices that characterize the
parameterizations of multivariable
systems remained tricky and led to ill-
conditioned numerical procedures.
Thus, there was great incentive to
develop simple but suboptimal proce-
dures based on the numerically robust
singular value decomposition and
least squares techniques, which
bypass the need for estimating struc-
ture indices. The development of sub-
space-based identification methods
filled a much-needed gap, because in
that framework the handling of
MIMO systems causes no additional
difficulty.

A major hurdle was that the pro-
jection methods developed by Akaike
[27], which were based on canonical
correlation analysis, were not easily
extendable to output data that con-
tained, besides the stochastic compo-
nents, a contribution due to a
measured input. In the early 1990s,
several research teams managed to
crack this nut, providing closely relat-
ed solutions [43]-[47]. These first solu-
tions paved the way for research on
the properties of subspace-based
identification, their connection with
stochastic realization theory, their

application to closed-loop systems,
and on improved numerical proce-
dures [28], [48]-[51].

Identification for Control

Identification for control has been the
major application for the new para-
digm of system identification as a
design problem. The reasons for the
heavy research investment in identifi-
cation for control are many: i) in the
systems and control community of
system identification, control is often
the main motivation for model build-
ing; ii) it has been observed that high
performance control can often be
achieved with simple models, provid-
ed some basic dynamical features of
the system are accurately captured;
iii) although robust control theory
based on models and uncertainty sets
had been developed during the 1980s,
the models and uncertainty sets were
not data based for lack of a proper
theory; iv) research on identification
for control provided iterative model
and controller tuning tools that were
intuitive, practical, and easy to imple-
ment by process engineers.

Whereas the building blocks for
goal-oriented identification were laid
around 1986, the first specific contri-
butions in which identification and
control design were looked upon as a
combined design problem appeared
only around 1990. The plenary [52] at
the 1991 IFAC Symposium on System
Identification addressed many of the
key issues concerning the interplay
between identifying a reduced-order
model and designing a controller
from such a model; however, [52] was
more an agenda for research than a
presentation of solutions. Indeed, in
1990 there was limited understanding
of the interplay between system iden-
tification and robust control. The two
theories had been developed by sepa-
rate communities that had had little
contact with one another.

As noted above, the robust control
community had developed a robust
analysis and design theory based on
uncertainty descriptions that were not
based on data, but rather on prior

assumptions. The identification com-
munity had delivered bias and vari-
ance error descriptions that were not
explicit, and thus not transferable to
the toolboxes used in robust control
analysis and design. More important-
ly, neither community had given
much attention to the interaction
between model building and control
design in terms of the qualities that a
model must possess (or, conversely,
the plant-model errors that are accept-
able) if the model is to be used for
designing a controller that must
achieve a given level of performance
on the plant. An important workshop,
held in Santa Barbara in 1992, brought
together members of these two com-
munities and played a key role in pin-
pointing the gaps between the two
theories and in establishing a dia-
logue [53].

An apparent cause for discrepancy
between robust control theory and
system identification was the great
“hard-versus-soft bound debate,” as it
was called in [52]. Robust control the-
ory, as it was available around 1990,
was essentially based on hard-bound
assumptions on the disturbances,
whereas prediction-error identifica-
tion had been built on stochastic
assumptions on the disturbances. The
desire to use existing robust control
theory tools in the context of models
obtained from data led to the devel-
opment of identification techniques
that would deliver hard bounds on
model errors, such as set membership
and worst-case identification tech-
niques [54]. However, it was shown in
[55] that these techniques amounted
to assuming that the input to the sys-
tem is maximally correlated with the
disturbance. With such a hard-bound
paradigm on the noise, convergence
to the true parameter values could
only be obtained under the assump-
tion that this hard bound tends to
zero, leading to conservative results.
As it happens, the existence of a maxi-
mal correlation between the distur-
bance and the input signal contradicts
the definition of a disturbance, which
must have nothing to do with the
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particular input that is applied to the
system. It was shown in [55] that if
the input is chosen such that the sam-
ple cross correlation between input
and disturbance tends to zero, which
is obtained by using a “mixing” input,
then it is immaterial whether the dis-
turbance is stochastic or deterministic;
the conventional identification results,
such as parameter convergence,
remain the same.

The conservatism of the control
designs achieved within the worst-case
framework, as well as their computa-
tional complexity, have led to the
development of a probabilistic robust
design framework based on random-
ized algorithms [56]-[58]. These algo-
rithms guarantee that a certain design
specification is met with a given proba-
bility. One advantage of this approach
is that the robustness margin can often
be increased by a considerable amount
at the expense of a small risk, thereby
circumventing the conservatism of the
worst-case approach.

In July 1992, IEEE Transactions on
Automatic Control devoted a special
issue to system identification for
robust control design. In retrospect,
and in keeping with the observation
just made, this issue was perhaps pre-
mature given the paucity of results
that were available at that time. About
half of the papers in that special issue
did not really deal with identification
for control but rather with estimation
of uncertainty sets without consider-
ing control-oriented design issues. A
few papers in that special issue did
address the joint identification and
control design paradigm [59], [60],
producing one of the first key results
in identification for control, namely,
the necessity of an iterative scheme
for the design of a control-oriented
nominal model; this observation had
in fact been first made in [61].

The first half of the 1990s produced
a series of results on the design of
control-oriented nominal models.
These results were produced by teams
who used their favorite combinations
of identification criteria and control
design criteria [62]-[66]. This work

confirmed the necessity of using an
iterative scheme of model updates
and controller updates, and produced
significant evidence about the advan-
tages of performing the identification
in closed loop, rather than in open
loop, when the model is to be used for
designing a new controller. Of course,
the closed-loop experimental condi-
tions that produce the desired plant
input signal spectrum can always be
mimicked by an open-loop experi-
ment whose input spectrum matches
the required closed-loop input spec-
trum. This input spectrum contains
the sensitivity function, which
depends on the unknown true system.
The advantage of the closed-loop
experiment is that the frequency
weighting by the sensitivity function
is automatically present in the identi-
fication criterion, at least with the pre-
sent controller, which should not be
too different from the new controller.
The requirement to keep successive
experimental conditions close to one
another during the iterations has led
to the concept of cautious model and
controller updates [67].

The iterative schemes of identifica-
tion and control design had a remark-
ably fast transfer into the world of
applications. There were two reasons
for this acceptance:

» whereas the industrial world
was still living with the belief
that one should open the loop to
perform a valid identification
experiment, here was a new
theory that showed the benefits
of closed-loop identification
with successive controllers; this
development was welcomed by
process control engineers who
had never really liked the idea
of opening the loop

» in the process industry, thou-
sands of measurements are
flowing into the computer; here
was a theory that showed how
these data could be used to
design a better controller.

The early work on identification
for control focused on control-orient-
ed identification criteria. This objec-
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tive amounts to constructing a nomi-
nal model whose bias error distribu-
tion is tuned for control design. Hence
the nominal control performance
obtained with the optimal controller
computed from the nominal model is
close to the actual control perfor-
mance obtained with the same con-
troller on the actual plant.

More recently, attention has shifted
to the distribution of the variance error
of the identified models, namely, esti-
mation of control-oriented uncertainty
sets [68]-[71]. The idea is that since one
can manipulate the shape of the model
uncertainty set by the choice of experi-
mental conditions under which the
new model is identified, one should
attempt to obtain a model uncertainty
set that is tuned for control design.
Even though many new insights have
been gained on the interplay between
uncertainty sets estimated from data
and corresponding sets of stabilizing
controllers, there is at this point no
clear view as to the most operational
definition of a control-oriented uncer-
tainty set. One view is that the corre-
sponding set of controllers achieving
stability and the required performance
with all models of that set should be as
large as possible [72]. Another view is
that the worst-case performance
achieved by an optimal robust con-
troller with all models in this uncer-
tainty set should be as close as possible
to the performance achieved with the
central (nominal) model.

The work on identification for con-
trol has had many beneficial side
effects: it has forced the scientific com-
munity to reassess some “truths” that
had been considered to be firmly
established and to reopen research
questions that had been considered to
be settled. Identification for control
has triggered an enormous new
research activity on the estimation of
data-based uncertainty sets for identi-
fied models, as well as on the identifi-
cation of systems operating in closed
loop. A lively debate has been
reopened on the relative merits of
model or controller reduction versus
the direct identification of a control-



oriented restricted-complexity model,
leading to the notion of a near-optimal
restricted-complexity model introduced
in [73], a must-read for any researcher
in identification for control. Finally,
identification for control has led to the
recent rebirth of optimal experiment
design, a subject that had been active
in the 1970s but which had been
almost completely abandoned since
then. The overview paper [74] pre-
sents up-to-date results on the use of
optimal experiment design in the con-
text of identification for control, a
topic that is also present in [73].

In the remainder of this article, we
briefly review some research activities
that were triggered by identification
for control, as well as some other top-
ics that have seen important develop-
ments in the last decade.

Quantification of Model Uncertainty

The demands of robust control theory
for adequate uncertainty sets triggered
interest in the estimation of uncertainty
sets from data. It is fair to say that
most of the robust control theory
developed in the 1980s had been
based on a priori assumed uncertainty
bounds on model errors and on the
noise. In the context of system identifi-
cation, data-based estimation of model
errors and noise properties from data
is of interest in its own right; indeed, a
reputable engineer should never
deliver a model without a statement
about its error margins. The activity
on estimation of uncertainty sets was
often erroneously put under the
umbrella of identification for control,
since in most of this work the control
objective was not taken into account in
the identification design.

A wide range of techniques and
identification criteria were developed
to provide error bounds for identified
models using time-domain, frequency-
domain, Hs, lj, probabilistic, worst-
case, set-membership, and other
methods [53], [54], [70], [75]-[80]. The
rationale was to produce uncertainty
sets from data that would be compati-
ble with the available robust control
analysis and design tools. The price to

be paid for achieving this objective is
that these techniques often led to con-
servative uncertainty sets, often
caused by overbounding. An alterna-
tive route was taken in [72] and [81],
where robust control theory was
developed for uncertainty sets
obtained by the prediction-error iden-
tification method. The relationship
between identified uncertainty sets
and robust control analysis and design
is examined in [82].

Closed-Loop Identification Revisited
The work of the 1970s on closed-loop
identification had focused entirely on
the question of identifiability, which
amounts to finding conditions under
which the parameter estimates con-
verge to the true parameters when the
system is in the model set. Once that
question had been resolved, research
on closed-loop identification essentially
stopped. In particular, there was no
investigation of the influence of the
experimental conditions on bias-error
distribution in the case of restricted-
complexity models as well as on
asymptotic variance.

One of the important lessons that
emerged from the study of the inter-
play between identification and
control design is the benefit of closed-
loop identification when the model is
to be used for designing a new con-
troller with better performance. Until
the late 1980s, the common view was
that it was preferable to avoid closed-
loop identification. In identification for
control with reduced-order models,
the required connection between the
control performance criterion (obvi-
ously a closed-loop criterion) and the
identification criterion established the
need for closed-loop identification. In
the ideal context of optimal experiment
design with full-order models, the
optimality of closed-loop identification
was established based on variance for-
mulas when the model is to be used
for control design with a noise-rejec-
tion objective [16], [83], [84].

This observation triggered activity
in the design of closed-loop identifica-
tion methods, where the main goal is to

obtain a better handle on the bias error
in closed-loop identification [85]-[88].

Optimal Experiment Design

for Identification and Control

In the 1970s, optimal input design for
system identification was an active area
of research, with various quality mea-
sures used to define optimality [89]-[91]
The questions at that time addressed
open-loop identification, and the quali-
ty measures were scalar measures of the
parameter covariance matrix Pg. After a
hiatus of about 15 years, the paradigm
of identification as a design problem
gave optimal input design a new lease
of life. The work on the connection
between model uncertainty sets
obtained by identification and corre-
sponding sets of robust controllers put
this subject in the limelight again [84],
[92]-[96]. The emphasis in this research
activity is to establish a direct link
between the experimental conditions
under which a model is identified
(together with its uncertainty set) and
the performance of the controller that
results from the use of the model and its
estimated uncertainty set.

Frequency-Domain Identification
Another area of activity in the 1990s
was frequency-domain identification.
Frequency-domain identification,
based on spectral analysis, had been
the main tool for transfer function
identification until the advent, in the
1960s, of the prediction-error method
based on parametric models identified
in the time domain. As a consequence,
a gap developed between the two
approaches, and there was no more
than polite attention paid to frequency-
domain identification by the predic-
tion-error identification community. In
1981, Ljung and Glover [97] estab-
lished some bridges over this gap, con-
cluding that “the two approaches are
complementary rather than rivaling.”
Things changed drastically at the
end of the 1980s, with a convergence of
efforts arising from different directions.
During the 1980s, the robust control
community developed extensive analy-
sis and design tools in the frequency
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domain; thus, there was great demand
for tools for obtaining frequency-
domain models and, even more impor-
tantly, frequency-domain uncertainty
descriptions from data. This need led,
at the end of the 1980s, to the develop-
ment of interpolation techniques that
used noisy pointwise frequency-
domain transfer-function measure-
ments as their data [98]-[100].

At about the same time, identifica-
tion methods based on frequency-
domain data were developed for
estimating flexible modes in mechani-
cal structures, with applications main-
ly in the aerospace and automotive
industry [101]. This work sparked the
development of a range of methods,
often based on state-space models
[102]-[104]. In particular, [104] pre-
sents the optimal Kalman identifica-
tion (OKID) method, where a Kalman
filter innovations model is identified
directly from data, which can be
either in the time or frequency
domain, while [102] compares the
performance of four state-space-based
methods for estimating the eigen-
modes of flexible structures.

Independently,
Schoukens developed frequency-
domain identification techniques
using transfer-function models, essen-
tially based on the maximum likeli-
hood principle [105]. With their
instrumentation and measurement
background, they were interested in
methods that would deliver reliable
models for devices under test, through
the application of short sinusoidal or
multisine data sequences [106]. Their
work later converged with that of the
modal analysis community. Aware of
the interest for frequency-domain
identification emanating from the
robust control community, Schoukens
and Pintelon continued their work on
frequency-domain identification
through the 1990s using periodic exci-
tation and maximally informative
input signals. Their book [107] pro-
vides a comprehensive treatment of
frequency-domain identification.

The activity in frequency-domain
identification during the 1990s has

Pintelon and

closed the gap that had existed between
time- and frequency-domain methods.
In [108], Ljung updates the comparative
analysis of [97] between these two
approaches to system identification on
the basis of the new understanding
gained about frequency-domain identifi-
cation over the last 20 years.

Identification of Nonlinear Systems
Identification theory for nonlinear sys-
tems is almost as old as identification
theory for linear systems. In many dif-
ferent fields of application, the struc-
ture of the nonlinear system is
obtained from physical laws describ-
ing the various components as well as
interconnection laws describing the
interconnection structure. Identification
then reduces to estimating unknown
parameters appearing in the model
structure on the basis of measured sig-
nals. The analysis and solution of a
nonlinear identification problem with
known model structure but unknown
parameters parallels the analysis and
solution of linear identification prob-
lems. For both problems, one first
needs to check whether the parameters
that one seeks to estimate are identifi-
able, which essentially amounts to
checking whether the predicted out-
puts are sensitive to these parameters.
For a long time, attempts were
made to go beyond the identification
of nonlinear systems with known
structure by introducing special classes
of nonlinear black-box models such as
Wiener, Hammerstein, and Wiener-
Hammerstein models. Black-box mod-
els refer, as in the linear case, to model
structures that have not been derived
from physics laws and whose parame-
ters therefore have a priori no physical
significance. When some parts of the
model structure are obtained by mod-
eling using physics laws, the term
grey-box modeling is used. A Wiener
model is a linear dynamic model with
a static nonlinearity at the output,
while a Hammerstein model has the
static nonlinearity at the input; the
Wiener-Hammerstein model combines
both nonlinearities. The search for uni-
versal classes of nonlinear black-box
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models gathered steam in the 1980s
with the introduction of broader class-
es of basis functions, such as splines,
neural networks, wavelets, and radial
basis functions. The risk was great to
repeat the chaotic development of
model structures and identification
methods that had characterized linear
system identification during the prior
decade. Before chaos had a chance to
take over, a collective effort set a com-
mon framework for identifying nonlin-
ear black-box models [109], [110]. In
this common framework, the nonlinear
structures are seen as a concatenation
of a mapping from observed data to a
regressor vector, followed by a nonlin-
ear mapping from regressor vector to
output space, where the latter mapping
is typically expressed as an expansion
of parameterized basis functions.

The last few years have seen a
renewed interest in the identification of
nonlinear systems, with special empha-
sis on the detection of nonlinearities, as
well as the estimation and properties of
the best linear approximation [111]. The
area of nonlinear identification is vast
and difficult, and it will undoubtedly
keep the identification community busy
for many years to come. To highlight
the scope and complexity of the topic,
let us just quote from [1]: ““identifica-
tion of nonlinear systems’ is like a state-
ment about ‘non-elephant zoology.””

Other Areas of Recent Activity

Most of the research activity on system
identification over the last 15 years has
focused on subspace methods, on
identification of nonlinear systems, or
on identification for control, as well as
on topics that are motivated by identi-
fication for control, such as estimation
of model uncertainty, closed-loop
identification, optimal experiment
design for control, or frequency-
domain identification.

But progress has also been made on
other fronts. Alternative basis functions
(other than the shift operator) have been
considered for representing input-out-
put models, such as Laguerre, Kautz,
and other generalized orthonormal
basis functions. Such alternative bases



can not only lead to more compact
descriptions when some prior knowl-
edge about the system is available but
also led to improved formulas for esti-
mating the variance of black-box trans-
fer function models [112]-[114]. The
book [115] surveys this field.

Errors-in-variables identification has
been another active topic during the last
decade. In the errors-in-variables frame-
work, it is assumed that not only the
output of the dynamical system is mea-
sured with noise but also the input mea-
surements are noisy. This framework
makes the identification problem much
harder and, in particular, raises nontriv-
ial identifiability questions. Much
progress has been made on this topic
since the early paper [116]. A range of
techniques have been applied to the
problem, including maximum likeli-
hood, total least squares, and instru-
mental variables. A rather recent survey
can be found in [117], while [118] com-
pares the performance of three different
methods for errors-in-variables identifi-
cation on a series of data sets.

CONCLUDING REMARKS

In this article I have attempted to pre-
sent the way I have seen the evolution
of system identification over the last
few decades, both as a student and as
an actor in the field. I have tried to illus-
trate both the role of a few individuals
whose milestone contributions opened
the way for new insights and develop-
ments, as well as the importance of the
socio-technological environment creat-
ed by the evolution of technology or by
developments in neighboring sciences
that create a demand for new scientific
developments.

The evolution of system identifica-
tion in our engineering field beautiful-
ly illustrates how some avenues of
research remain in a dormant stage
for long periods of time, only to re-
emerge years later as a result of new
developments in a neighboring field.
As shown in this article, examples
include the phasing out of Hankel-
based realization theory around 1975
and its reappearance in the late 1980s
under the name subspace identifica-

tion, the halt of any significant
research on closed-loop identification
around 1980 and its resurrection in
the early 1990s in the context of
approximate models for control, the
disappearance of optimal experiment
design research for about 20 years and
its reemergence around 2003 as a tool
for the definition of control-oriented
identification design.

In conclusion, I believe that system
identification is such a fundamental
discipline, with such wide-ranging and
cross-disciplinary applications, that it
will remain an active and exciting
research area for many years to come.
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orce was the obvious means of persuasion and this was better used against women and chil-

dren than against the tapper, who might then be unable to work efficiently. A procedure was
soon established and documented in the official manual given to all agents. The soldiers would
arrive at a settlement, loot it of animals and any other items of value, destroy the building, cap-
ture the women and children, and imprison them in stockades built close to each trading post for
just this purpose. They would then be ransomed against an arbitrarily decided weight of rubber.
On returning with the rubber, the tappers often found that their women had been raped by the
“sentries” and/or had died from starvation or some disease.

—jJohn Loadman, Tears of the Tree, The Story of Rubber—
A Modern Marvel. Oxford University Press, 2005, pp. 127-128.
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