
any control objectives can be expressed in terms of a criterion 
function. Generally, explicit solutions to such optimization 

problems require full knowledge of the plant and disturbances, 
and complete freedom in the complexity of the controller. In 
practice, the plant and the disturbances are seldom known, and it 
is often desirable to achieve the best possible performance with a 
controller of prescribed complexity. For example, one may want 
to tune the parameters of a PID controller in order to extract the 
best possible performance from such simple controller. 

The optimization of such control performance criterion typ- 
ically requires iterative gradient-based minimization proce- 
dures. The major stumbling block for the solution of this 

optimal control problem is the computation of the gradient of 
the criterion function with respect to the controller parameters: 
it is a fairly complicated function of the plant and disturbance 
dynamics. When these are unknown, it is not clear how this gra- 
dient can be computed. 

Within the framework of restricted complexity controllers, 
previous attempts at achieving the minimum of a control per- 
formance criterion have relied on the availability of the plant and 
disturbance model, or on the estimation of a full order model of 
these quantities. see [22] and [32]. Alternatively, reduced order 
controllers can be obtained from a full-order controller followed 
by a controller reduction step [I]. 
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In the context of controllers of simple structure for un- 
known systems, such as PID controllers, some schemes have 
been proposed for the direct tuning of the controller parame- 
ters. These schemes are based on achieving certain properties 
for the closed loop system that are found to be desirable in 
general. These properties can then be translated into con- 
straints on the Nyquist plot (or the Ziegler-Nichols plot) of the 
controlled system. We refer the reader to [2] for a representa- 
tive of this family of methods. 

Recently, so called iterative identification and control design 
schemes have been proposed in order to address the problem of 
the model-based design of controller parameters for restricted 
complexity controllers, see, e.g., [8], 1241, [351, [391, and 1401. 
These schemes iteratively perform plant model identification 
and model-based controller update, with the successive control- 
lers being applied to the actual plant. Behind these schemes is the 
notion that closed loop experiments with the presently available 
controller should generate data that are “informative” for the 
identification of a model suited for a new and improved control 
design, and that controllers based on models that are better and 
better tuned towards the control objective should achieve in- 
creasingly higher performance on the actual system. See [9]- 
[ 111 for a presentation of these ideas. 

So far, there are very few hard results to support these expec- 
tations, except for the ideal (but unrealistic) situation where 
full-order models (and hence full-order controllers) are used. 
Following up on the early results of [12], it has been shown in 
[ 181 that, for that situation, closed loop identification with a 
specific controller in the loop yields an estimated controller that 
achieves the best possible performance on the actual system. In 
addition, an iterative identification and control design scheme 
has been proposed that approaches these ideal experimental 
conditions. 

In the case of low-order controllers, there are reported 
successes, including experimental and industrial ones, of the 
above-mentioned iterative identification-based controller de- 
sign schemes [31], but there are also examples where these 
schemes are known to diverge. Most importantly, with the ex- 
ception of some examples analyzed in 131, there is no analysis 
of the performance properties of the closed loop systems to 
which such schemes converge in the cases where they do so. In 
[21] it was shown that such iterative identification-based con- 
trol design schemes do not converge to a controller that mini- 
mizes the control performance criterion, except possibly for 
full order models and controllers. This has also been pointed 
out in [27]. 

It is the analysis of [21], and our attempt to understand the 
convergence/divergence properties of the iterative identification 
and control design scheme of [3] based on a simple model refer- 
ence control design, that led us to the idea of reformulating the it- 
erative identification and control design scheme as a parameter 
optimization problem, in which the optimization is carried di- 
rectly on the controller parameters, thereby abandoning the iden- 
tification step altogether. This approach is of course analogous to 
direct adaptive control, the main difference being that here the 
complexity of the controller need in no way be related with that 
of the system; in fact, the major application field of our method 
here is for the optimal tuning of low order controllers. 

In the combined identification/control design schemes, the 
model is only used as a vehicle towards the achievement of the 

minimization of a control performance objective. An obvious al- 
ternative is to directly optimize the control performance criterion 
over the controller parameters. However, as stated above, earlier 
attempts at minimizing the control performance criterion by di- 
rect controller parameter tuning had stumbled against the diffi- 
culty of computing the gradient of this cost criterion with respect 
to the controller parameters. 

The contribution of [ 191 was to show that an unbiased esti- 
mate of this gradient can be computed from signals obtained 
from closed loop experiments with the present controller operat- 
ing on the actual system. For a controller of given (typically 
low-order) structure, the minimization of the criterion is then 
performed iteratively by a Gauss-Newton based scheme. For a 
two-degree-of-freedom controller, three batch experiments are 
to be performed at each step of the iterative design. The first and 
third simply consist of collecting data under normal operating 
conditions; the only real experiment is the second batch which 
requires feeding back, at the reference input, the output meas- 
ured during normal operation. Hence the acronym Iterative 
Feedback Tuning (IFT) given to this scheme. For a one-degree- 
of-freedom controller, only the first and third experiments are re- 
quired. No identification procedure is involved. A closely related 
idea of using covariance estimates of signals obtained on the 
closed loop system to adjust the controller parameters in the gra- 
dient direction was used in an adaptive control context by Naren- 
dra and coworkers some 30 years ago, see [29] and [30]. Another 
related method, in which state-feedback is considered, is pre- 
sented in [23]. In other optimization-based approaches that have 
appeared in an adaptive control context, the gradient of the crite- 
rion was obtained through the estimation of a full-order model of 
the plant, see, e.g., 1381. 

As in any numerical optimization routine, a variable step size 
can be used. This allows one to control the rate of change be- 
tween the new controller and the previous one. This is an impor- 
tant aspect from an engineering perspective. Furthermore, a 
variable step size is the key to establishing convergence of the al- 
gorithm under noisy conditions. With a step size tending to zero 
appropriately fast, ideas from stochastic averaging can be used to 
show that, under the condition that the signals remain bounded, 
the achieved performance will converge to a (local) minimum of 
the criterion function as the number of data tends toward infinity. 
This appears to be the first time that convergence to a local mini- 
mum of the design criterion has been established for an iterative 
restricted complexity controller scheme. 

An altogether different approach to controller design without 
a model is the concept of ‘unfalsified control’ proposed in [34]. 
The scheme proposed in that paper, which applies to noise-free 
systems, consists in successively eliminating controllers from a 
prior set of candidate controllers, on the ground that these con- 
trollers could not meet the required performance specifications 
when fed with data collected on the system. 

The optimal IFT scheme of [ 191 was initially derived in 1994 
and presented at the IEEE CDC 1994. Given the simplicity of the 
scheme, it became clear (and not just to the authors) that this new 
scheme had wide-ranging potential, from the optimal tuning of 
simple PID controllers to the systematic design of controllers of 
increasing complexity that have to meet some prespecified 
specifications. In particular, the IFT method is appealing to pro- 
cess control engineers because, under this scheme, the controller 
parameters can be successively improved without ever opening 
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the loop. In addition, the idea of improving the performance of an 
already operating controller, on the basis of closed loop data, 
corresponds to a natural way of thinking. Finally, in many pro- 
cess control applications the main objective of the controller de- 

tuning of the controller parameters for disturbance rejection is 
driven by the disturbances themselves. 

Since 1994, much experience has been gained with the 
IFT scheme. 

The Control Design Criterion 
We consider an unknown true system described by the dis- 

crete time model 

sign is to achieve disturbance rejection. With the IFT scheme the ~t =Gnul +vr (1) 

whereG, is a linear time-invariant operator, {v,) is an unmeasur- 
able (process) disturbance and t represents the discrete time in- 
stants. We shall consider here, for future analysis purposes, that 

It has been shown to compare favourably with identifica- 
tion-based schemes in simulation examples: see [19]. 
Its accuracy has been analyzed in [ 171. 
It has been successfully applied to the flexible transmission 
benchmark problem posed by I.D. Landau for ECC95, 
where it achieved the performance specifications with the 
simplest controller structure [20]. 
It has been tested on the flexible a m  of the Laboratoire 
d’ Automatique de Grenoble [7], on a ball-on-beam system 
[6],  for the temperature control of a water tube, and for the 
control of a suspended plate [28]. 
It has been adapted to linear time-invariant MIMO systems 

It has been shown to handle time varying, and in particular 
periodically time-varying, systems [ 131. 
It has been applied by the chemical multinational Solvay 
S.A. to the tuning of PID controllers for anumber of critical 
control loops for which opening the loop or creating limit 
cycles for PID tuning was not allowed: temperature control 
in fumaces, in distillation columns, flow control in evapo- 
rators, etc. The performance improvements achieved by ap- 
plying the IFT scheme to the existing PID loops have been 
rather striking (this is discussed below). 

Common to many of the processes in these applications is that 
they exhibit some kind of nonlinear behaviour and, even if IFT 
was developed for linear time-invariant systems, it seems to also 
perfom well on many nonlinear systems. The reasons for this 
and the conditions required from nonlinear systems for IFT to 
perform well have been analyzed in [ 141. 

Our objective in this article is to first present the IFT scheme, 
and to then review performances achieved by the scheme at the 
S.A. Solvay, where it was used for the optimal tuning of PID con- 
trollers on a number of control loops, and on a DC-servo with 
backlash. We shall leave aside the connections with identifica- 
tion-based schemes and all other technicalities that might be of 
interest to theoretically inclined researchers but that would oth- 
erwise distract the reader from the essential ideas of the scheme 
and its potential applications. 

The article is organized as follows. In the next section we 
present the design criterion and following that we show how this 
criterion can be minimized using experimental data. The section 
after that (“Convergence”) presents the main convergence result. 
The next three sections deal with implementation issues, the ma- 
jor design choices, and some practical engineering aspects. Two 
“Applications” sections follow. The first discusses bow the 
method was used in the tuning of PID controllers on several 
chemical processes at S.A. Solvay, while the second shows how 
IFT performs when applied to the tuning of a linear controller for 
a nonlinear DC-servo system with backlash. Finally, some con- 
clusions are offered. 

{ v t )  is a zero mean weakly stationary (see, e.g., [26]) random 
process, but this assumption will be relaxed in the convergence 
discussion. 

We consider that this system is to be controlled by a 
two-degrees-of-freedom controller: 

ut = c, @)r, -C,(P)Yt (2)  

where C,(p) and C,(p) are linear time-invariant transfer func- 
tions parametrized by some parameter vector p E R”” and (U, )  is 
an external deterministic reference signal, independent of {v,). It 
is possible for C ,  (p) and Cy@) to have common parameters. A 
block-diagram of the closed loop system is represented in Fig. 1. 

Whenever signals are obtained from the closed loop system 
with the controllerC(p)A{C,(p),Cy(p)}operating, we will indi- 
cate this by using the p-argument; on the other hand, to ease the 
notation we will from now on omit the time argument of the sig- 
nals. Thus, y(p), u(p) will denote, respectively, the output and the 
control input of the system (1) in feedback with the controller (2). 

Let y be a desired output response to a reference signal r for 
the closed loop system. This response may possibly be defined as 
the output of a reference model T,, i.e., 

yd  = Tdr , (3) 

but for the control design method that will be developed later the 
knowledge of the signal y d  is sufficient. The error between the 
achieved and the desired response i s  

When a reference model (3) has been defined this error can also 
be written as 

This error consists of a contribution due to incorrect tracking 
of the reference signal r and an error due to the disturbance. 

I ”  

~ ~ 

Fig. I .  Block diagram of the closed loop system 
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For a controller of some fixed structure parametrized by p, it is 
natural to formulate the control design objective as a minimiza- 
tion of some norm of y”(p) over the controller parameter vector p. 
We will consider the following quadratic criterion: 

but any other differentiable signal-based criterion can be used. 
in (6) E[.] denotes expectation with respect to the weakly sta- 
tionary disturbance v. A time-weighting can also be introduced 
in the criterion; this has been found to be a very efficient way to 
minimize the settling time at setpoint changes (see the section 
“Design Choices”). 

The optimal controller parameter p is defined by 

p* = argminJ(p). (7 )  
P 

The objective of the criterion (6) is to tune the process re- 
sponse to a desired deterministic response of finite length N in a 
mean square sense. The first term in (6) is the frequency 
weighted (by a filter L y )  error between the desired response and 
the achieved response. The second term is the penalty on the con- 
trol effort which is frequency weighted by a filter L, . The filters 
L,  and L, can of course be set to 1, but they give added flexibility 
to the design. As formulated, this is a model reference problem 
with an additional penalty on the control effort. With Td = 1 this 
becomes an LQG problem with tracking. 

With To@) and S&) denoting the achieved closed loop re- 
sponse and sensitivity function with the controller 
{C”P)}, i.e., 

and given the independence of r and v ,  J(p) can be written as 

The first term is the tracking error, the second term is the dis- 
turbance contribution, and the last term is the penalty on the con- 
trol effort. 

In the case where a reference model y d  = Tdr is used, the 
problem setting has close connections with model reference 
adaptive control (MRAC): see, e.g., [4]. MRAC is based on the 
minimization of a criterion of the same type as (6) with respect to 
the controller parameters. To carry out the minimization it is nec- 
essary to have an expression for the gradient of this criterion with 
respect to the controller parameters. As will be seen below, this 
gradient depends on the transfer function of the unknown closed 
loop plant. The MRAC solution to this minimization problem is 
then, essentially, to replace the true closed loop plant by the ref- 

erence model in the gradient computation. The novel contribu- 
tion of the IFT approach [19] was to show that, in contrast to the 
MRAC approach, the gradient can be obtained entirely from in- 
put-output data collected on the actual closed loop system, by 
performing one special experiment on that system. Thus, no ap- 
proximations are required here to generate the gradient. 

Criterion Minimization 
We now address the minimization of J(p) given by (6) with re- 

spect to the controller parameter vector p for a controller of pre- 
specified structure. We shall see later how the method can be 
adapted to handle controllers of increasing complexity. To facili- 
tate the notation we shall in this section assume thatl ,  = Lu = 1. 
In the section “implementation Issues” we show how the fre- 
quency filters can be incorporated. It is evident from (4) that J(p) 
depends in a fairly complicated way on p, on the unknown system 
Go and on the unknown spectrum of v. 

To obtain the minimum of J(p) we would like to find a solu- 
tion for p to the equation 

If the gradient aJ/ap could be computed, then the solution of 
(1 1) would be obtained by the following iterative algorithm: 

Here R, is some appropriate positive definite matrix, typically 
a Gauss-Newton approximation of the Hessian of J ,  while y, is a 
positive real scalar that determines the step size. The sequence y, 
must obey some constraints for the algorithm to converge to a lo- 
cal minimum of the cost function J(p): see [ 191. 

As stated, this problem is intractable since it involves expec- 
tations that are unknown. However, such problem can be solved 
by using a stochastic approximation algorithm of the form (12) 
such as suggested by Robbins and Monro [33], provided the gra- 
dient 3J / 3p(p,) evaluated at the current controller can be re- 
placed by an unbiased estimate. In order to solve this problem, 
one thus needs to generate the following quantities: 

1. the signals y”(p,) and U@,); 
2.  the gradients d? / dp(p,) and du / ap(p,); 
3. unbiased estimates of the products y(p,)dy” / dp(p,) and 

The computation of the last two quantities has always been 
the key stumbling block in solving this direct optimal controller 
parameter tuning problem. The main contribution of [ 191 was to 
show that these quantities can indeed be obtained by performing 
experiments on the closed loop system formed by the actual sys- 
tem in feedback with the controller C,(pt),Cy(pz). We now ex- 
plain how this can be done. 

U ( P l ) d U  / 4%P,). 

Output related signals 
From (4) it is clear that y”(p,) is obtained by taking the differ- 

ence between the achieved response from the system operating 
with the controller C(p,) and the desired response. As for 
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36 1 dp(p), we first note 86 / dp(p) = dy 1 dp(p). We then have the 
following expression 

pared to the correlation time of the disturbances. These 
experiments yield an exact realization of G(p,): 

In this expression the quantities C, (p), dC,. / dp(p) and 
dC 1 dp(p) are known functions of p which depend on the para- 
metrization of the (restricted complexity) controller, while the 
quantities T&) and S,(p) depend on the unknown system and are 
thus not computable. Therefore, unless an accurate model of the 
system is assumed to be available (assumption which we shall 
not make), the signal dy 1 dp(p) can only be obtained by running 
experiments on the actual closed loop system. 

Now observe that the last two terms in (1 3) involve a double 
filtering of the signals Y and v through the closed loop system. 
More precisely, notice that 

[T0]2r + TJ,V = Toy. 

Therefore, (13) can be rewritten as 

(14) 
The last term in (14) can be obtained by substracting the out- 

put signal from one experiment on the closed loop system from 
the reference, and by using this error signal as reference signal in 
a new experiment. This observation leads us to suggest the fol- 
lowing procedure. 

In each iteration i of the controller tuning algorithm, we will 
use three experiments, each of duration N ,  with the fixed control- 
lerC(p,)e{C, (p,),C,(pJ} operating on the actual plant. Two of 
these experiments (the first and third) just consist in collecting 
data under normal operating conditions; the second is a real (i.e. 
special) experiment. We denote N -length reference signals by ‘ ; I ,  

j = 1,2,3, and the corresponding output signals by y l (p t ) ,  
j = 1,2,3. Thus we have 

while 

(19) 

i s  a perturbed version (by the disturbances v& and v:) of $(PE). 
(Here and in the sequel, “est [dy 1 dp]” denotes the estimate of 
$.) Indeed by comparing (19) with (14), using (15)-(17), it is 
seen that 

est -(p ) = [: 1 1  

(20) 
Two things are worth observing. First, the disturbance gener- 

ated in the first experiment is not a nuisance. The output o f  the 
first experiment is used in (1 8) to create an exact version of the 
signaly(p,) which is used in the criterionJ: see (4). Secondly, the 
output of the first experiment (with the disturbance) is exactly 
what is needed as reference signal in the second experiment to 
generate an estimate of $: compare (16) with the second term of 
(13). The only nuisances that are introduced are the disturbance 
contributions from the second and third experiments. 

Input Related Signals 
It is possible to use the measurements of the process input 

generated from the three experiments using the reference signals 
(15)-( 17) to generate an estimate of the sensitivity function 
$(p,). From 

and 

experiment j at iteration i. These disturbances can be assumed to 
be mutually independent since they come from different experi- 
ments, provided the length N o f  one experiment is large com- 

The experiments with reference signals defined as in 
(15)-( 17) give the following input signals 
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u 3 w  = s,(P,)[c,(P,)~ -c,(P,)v,~I. 

Thus, U '(p,) is a perfect realization of u(p,), 

4P, 1 = U'(P, 1, 

while 

est [;; -(p '1. ) = 

(26) 
is aperturbed version of $(pi). Indeed a comparison of (26) with 
(21) shows that 

An estimate of the gradient 
With the signals defined in the preceding subsections, an ex- 

perimentally based estimate of the gradient of J can be formed by 
taking 

est -(p ) = [: 1 1  

For a stochastic approximation algorithm to work, it is re- 
quired that this estimate be unbiased, that is we need: 

The key feature of our construction of est[dJ 1 dp(p,)], and 
also the motivation for the third experiment, is that this unbiased- 
ness property holds. It would indeed be tempting to use the data 
from the first experiment instead of the third one in (19) and (26), 
but then (29) would not hold because the error between 
est[dy / dp(p,)]and$(pJ would be correlatedwith$(pt), and the 
error between est[du 1 dp(p,)] and $(p,) would be correlated 
withu(p,). 

Initial Conditions 
The above derivations of the gradient assume that the initial 

conditions of the plant and the controllers are the same in all ex- 
periments. However, if the experiment interval N is sufficiently 
large these transient effects can be neglected. 

The Algorithm 
We now summarize the algorithm. 

Algorithm With a controller C(p,) = [C, (p,),C,(p,)] operat- 
ing on the plant, generate the signals y ' (p , ) ,y* (p, ) ,y ' (p , )  of 
(15)-(17), the signals u'(p,),u'(p,),u'(p,> of (221424) and com- 
pute y"(p,), estldy I dp(pJ1, u(pJ and estldu / ap(p,)I using (1% 
(19), (25) and (26). Let the next controller parameters be com- 
puted by: 

where est[dJ 1 dp(p,)] is given by (28), where y, is a sequence of 
positive real numbers that determines the step size and where R, 
is a sequence of positive definite matrices that are, for example, 
given by (33). Repeat this step, replacing i by i + 1. 

Nonlinear systems 
It has been shown [16], [5] ,  [36] that for nonlinear feedback 

systems, the true gradient should be generated by the linear 
time-varying system that is obtained by linearizing the nonlinear 
system around the system trajectory under normal operating con- 
ditions. In [ 161 it is argued that this time-varying linearized system 
can be approximated by the nonlinear system itself, hence that ex- 
actly the same procedure as derived above can be applied to non- 
linear systems as well. For further details, see [ 161. An application 
of IFT to controller optimization for a nonlinear system, a 
DC-servo with backlash, is presented in the penultimate section. 

Convergence 
In this section we state exact conditions for which the control- 

ler parameters updated with the Algorithm converge to the set of 
stationary points of the criterion (6). Following the formal result 
is a discussion of its interpretation. 

Let D be a convex compact subset of R"' . We introduce the 
following assumptions on the noise, the controller, the closed 
loop system and the step sizes of the algorithm, respectively. 

V1) In any experiment, the signal sequence vi, t = 1, ..., N 
consists of zero mean random variables which are bounded: 
Iv,I I: C for allt. The constantC and the second order statistics of 
v,  are the same for all experiments, while sequences from differ- 
ent experiments are mutually independent. 

C1) There exists a neighbourhood 0 to D such that the con- 
trollerC (p) is two times continuously differentiable w.r.t pino. 

C2) ~$1 elements 9fcthe transfer functions C,(p), C,(p), 
%(p), +p), +(p), +(p) have their poles and zeros uni- 
formly boundetaway $om the unit circle on D. 

S1) The linear time-invariant closed loop systems repre- 
sented by (1) and (2) are stable and have all their poles uniformly 
bounded away from the unit circle on D. 

A l )  The elements of the sequence y, satisfy y, 2 0 and 

a2c 

x:= ' Y, = -. 
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A2) The elements of the sequence y, satisfy c,, y; < W. 
Theorem Consider the Algorithm. Assume that V1, C1, C2, 

S 1, A1 and A2 hold. Suppose that R, is a symmetric matrix which 
is generated by the experiments at iterationi and satisfies +I 2 R, 
I 2 61 for some 6 > 0. Then 

on the set A = {pi E D  Vi}. 
The proof of the theorem can be found in [ 151. The basic re- 

quirement for convergence is that the signals remain bounded 
throughout the iterations, since the result only applies to the set A 
introduced in the Theorem. 

The power of the theorem is that there are no assumptions on 
the properties of the system other than linearity and time-invar- 
iance. The same holds for the controller: the complexity of the 
controller is arbitrary and the result thus applies to simple PID 
controllers as well as to more complex ones. 

It is also important to notice that even though the disturbances 
have to have the same second order statistics from experiment to 
experiment, it is not necessary that the disturbances are station- 
ary during one experiment. 

Implementation Issues 
In this section we briefly comment on some aspects of the im- 

plementation of the scheme. 

Non-minimum phase or unstable controllers 
Notice that the computation of e s t [ d y / d p ( p , ) ]  in (19) and 

est[& / dp(p,)] in (26) requires the filtering with the inverse of 
C,.. IfC,. is non-minimum phase, as may happen, this i s  not feasi- 
ble with a causal stable filter. A similar situation occurs if the gra- 
dients of C y and/or C ,  are unstable. However, since the data are 
collected batch-wise the gradient can be computed by a 
non-causal stable filter which, modulo transients, gives the gra- 
dient. An altemative way is to extend L,  and Lu with an all-pass 
frequency weighting filter L,, which leaves the objective func- 
tion J(p) of (6) unchanged. This procedure is equivalent to 
non-causal filtering for large experiment intervals N .  We illus- 
trate the procedure for the case of a non-minimum phase C,. 

Let Cr(p,) be factorized as 

where the factor nu 

nu = r~:= 1(1 - z,qP ) 

contains all the unstable zeros and nothing else. At iteration i let 
L, be the following all-pass filter 

where 

Then 

La est -(pr) = { 11 
(32) 

which is stable. Thus, ifL, and L,, both contain L, it is possible to 
compute the gradients. If necessary, this filtering operation 
should be performed at each iteration. 

Modification of the Search Direction 
There are many possible choices for the matrix R, in the itera- 

tion (12). The identity matrix gives the negative gradient direc- 
tion. Another interesting choice is 

for which the signals are available from the experiments de- 
scribed above. This will give a biased (due to the disturbance in 
the second experiment) approximation of the Gauss-Newton di- 
rection. It is the authors’experience that this choice is superior to 
the pure gradient direction. 

One Degree of Freedom Controllers 
In the case where the simplified controller structure C, = 

C ,  fc is used, i.e., 

U = C(P)(Y - Y), 

the algorithm simplifies because the third experiment becomes 
unnecessary. Indeed, it follows immediately from expressions 
(14), (19), (21), and (26) that the first term in all these expres- 
sions is zero. Therefore, in the case of a one degree of freedom 
controller, the first two experiments are run with the same refer- 
ence signals as indicated in (15) and (16), and the gradient esti- 
mates are obtained as special cases of (19) and (26): 

These are perturbed estimates of the actual gradients: 
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Disturbance Rejection Problem 
The disturbance rejection problem is a special case of the one 

degree of freedom controller. The controller can be optimally 
tuned using iterations consisting of the same two experiments as 
just described in which the reference signal is put to zero. Thus, 
do two experiments with reference signals 

(37) r,‘ = 0, 

Then take (34) and (35) as gradient estimates. Observe 
that, in the disturbance rejection case, the tuning of the con- 
troller parameter vector is entirely driven by the disturbance 
signal. This is in contrast with all identification-based itera- 
tive controller tuning schemes, where identifiability requires 
the injection of a sufficiently rich reference signal even in a 
disturbance rejection framework. 

Disturbance Attenuation 
As noted earlier, (20) contains an undesirable perturbation 

from the disturbances in the second and third experiments. Even 
though the influence of these disturbances is partly averaged out 
when est[dJ / ap(p,)] is formed, it is, of course, of interest to 
make this perturbation as small as possible. One way to decrease 
the influence is to increase the signal-to-noise ratio in these ex- 
periments. Let W?’, j = 2,3 be two stable and inversely stable fil- 
ters and replace (1 6) and (17) by 

r,’ = w,*(r - y’(p, 11, ra3 = W,’r (399 

respectively, and replace yJ(p,) in (19) by [W,’l-’y’(p,). Then 

(40) 
Thus, for frequencies where W,’ has a gain larger than one, the 

influence of the nuisance disturbances is decreased. For further 
details, see [17]. 

Design Choices 
As should be apparent from the Algorithm, the IFT scheme is 

quite simple. Apart from the choice of step-size, the only thing 
that the user has to be concerned with is the choice of a criterion. 
This choice is usually not critical either and can be done in a sim - 
ple way based on the observed signals of the system during nor - 
mal operation. However, there are some fallacies to be avoided 
when the criterion is specified and these will be discussed in thi:; 
section. In addition to this, we discuss various design choices 
which allow the user to inject prior information or to translate time 
or frequency domain performance specifications in the framework 
of the minimization of a LQG-like performance index. 

The criterion in the frequency domain 
It is important to realize that the properties of the resulting 

feedback system depend entirely on the criterion function. It is 

thus only indirectly through the user controlled quantities, such 
as reference signal, reference model, controller structure and the 
different weightings, that quantities like the sensitivity function, 
closed loop response, stability margins etc. can be influenced. 
The exact relation between these quantities is of course very 
complicated but some insight can be gained by studying express- 
sions of the criterion in the frequency domain. 

Assuming that a reference model y = T d r  is used, via Parseval’s 
formula (10) can be transformed into 

where @,” and @.,,(p) are the spectra of r, v and U ,  respec- 
tively. (The approximation is due to the finite number of samples. 
@,, and one term of@UU are linespectra originating from the finite 

From (41), it is obvious that at frequencies where the spec- 
trum of r dominates that of v, and provided hl Lu l2 is small com- 
pared to IL,I2, the controller parameters will converge to a value 
that makes the closed loop response T,, close to the reference 
model T,. Hence, the user can control the closed loop response 
by proper choices of the design parameters f i  L,, L,, @,? and 

It is important that the external signals be sufficiently rich 
since otherwise the criterion may have a long valley where it is 
close to a minimum, which implies that the problem is ill condi- 
tioned. In such cases one may even have destabilizing controllers 
which are (close to) optimal which clearly is undesirable. Note 
from (41) that, in contrast with what happens with all schemes 
based on identification, this excitation condition need not neces- 
sarily be a requirement on the extemal reference signal r. In the 
case of a disturbance rejection objective, the first term in (41) is 
zero, and the tuning of the controller parameters will be driven by 
the noise; thus, @,,, need to be sufficiently rich. This confirms our 
observation following (38). 

sequence { r,>;=, .) 

T d .  

The Sensitivity Function 
It is also clear from (41) that the sensitivity Sn will be small at 

frequencies where the disturbance spectrum@),,, is large or where 
hlL,I2 is largecompared tolL,I2. Sinceingeneral theuser cannot 
influence the disturbances, we consider various ways in which 
the user may influence the sensitivity function. 

One-degree-of-freedom controllers. When C ,  = C y  = C , 
the closed loop response T, and the sensitivity So are comple- 
mentary, i.e., To + So =l. Hence, any manipulation of the closed 
loop response also influences the sensitivity function. In fact, by 
setting T,  = 1, the expression (41) for the criterion becomes 

This expression shows clearly how the sensitivity function 
can be manipulated by proper choice of the design parameters 
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JhLu ,  Ly  and@,,: observe that the reference spectrum may be 
used to control the sensitivity function in exactly the same way as 
a disturbance does 

Two-degree-of-freedom controllers. In the case of a two de- 
gree of freedom controller, there is no direct connection between 
the closed loop response To and the sensitivity function So. Still, 
Equation (41) shows how the sensitivity can be manipulated to a 
certain extent through the design parameters K L , ,  L y  and @)>.  
Altematively, one can add synthetic disturbances at the input or 
output of the process during the first experiment to manipulate 
the sensitivity, as has been done in [7] and [20]. 

Ensuring Integral Action 
To suppress low frequency disturbances and to ensure cor- 

rect static gain, it is standard to include a fixed integrator in a 
controller. Under certain conditions it may happen that the 
free part of the controller tries to cancel the fixed integrator. 
The reason for this is that an integrator improves the perfor- 
mance at low frequencies but deteriorates the performance at 
high frequencies since it adds a phase lag which decreases the 
stability margin. Hence, whether or not an integrator improves 
the overall performance depends on whether or not the benefit 
at low frequencies outweighs the disadvantages at high fre- 
quencies. For a given set-up it may happen that the optimal 
choice is to select the free controller parameters such that the 
integrator is cancelled. 

In practice this phenomenon becomes a much more severe 
problem than just the problem that the integrator is cancelled 
The reason is that the zero in the controller that tries to cancel the 
integral action is close to one. However, due to finite data and dis- 
turbances, it will be either slightly less or slightly larger than one 
and, depending on this, the static gain of the controller will be ei- 
ther positive or negative. Thus, in such a situation one risks end- 
ing up with a controller which destabilizes the system due to 
incorrect sign of the static gain. 

The key to avoiding the cancellation problem is to set-up the 
criterion in such a way that integral action is necessary in the con- 
troller. The basic rule i s  to ensure that the low frequency band 
plays a significant role in the criterion. However, how much em- 
phasis is needed in the low frequency band depends on the low 
frequency behavior of the system Go that is going to be con- 
trolled. For one degree of freedom controllers, simple actions 
like the inclusion of frequency weighting filters (see below) 
and/or the use of a reference signal with sufficient power at low 
frequencies are usually sufficient when the static gain of the sys- 
temG, is low. Another possibility is to use time dependent weight- 
ing factors in the criterion; see the subsection on minimization of 
the settling time below. However, as will be shown below, this is 
not enough if tbe system Go has high gain at low frequencies, for 
example, when Go itself contains an integrator. Controllers with 
two degrees of freedom also require special attention. 

Consider the case where the open loop system Go contains an 
integrator, i.e., the static gain is infinite. Assume also, for sim- 
plicity, a one degree of freedom controllerC, = C y  = C(p) = 
C,.,,(p)C, consisting of a free part C,,,(p) and a fixed part C ,  
which is an integrator. Furthermore, assume that a reference 
model y d  = Tdr with static gain 1 is used. To focus the attention 
on the low frequency behavior, finally assume that a step refer- 
ence signal is used and that the length of the experiment is much 
longer than the time constant of the system. 

Suppose now that the disturbance is so small that it can be ne- 
glected and that the input U is not penalized in the criterion (10). 
Then it is clear that by choosing C such that 

m , I , ,> \  

at low frequencies, the criterion (10) becomes almost zero and 
C,.,, is thus close to the overall optimal controller. Notice that 
since, by assumption, the reference model T,  has static gain 1, 
the factor 5 contains an integrator. Hence, since both C ,  and 
Go contain integrators, (43) implies that the gain of Cfiee should 
be small at low frequencies. But this is equivalent to saying that 
C,.,, should (at least approximately) cancel the integrator inCfix. 
Hence, cancellation of the integral action will occur even if the 
low frequency band is emphasized in this case. Intuitively, the 
reason is of course that integral action in the controller i s  super- 
fluous since the only static property that enters in the criterion is 
the static gain of the closed loop and the integrator in the system 
ensures that this gain is correct. This is a situation where the con- 
trol engineer has erroneously put an integrator in the regulator 
where it is not needed. IFT is not designed to check the validity of 
the chosen regulator structure or to automatically correct the 
control engineer's errors; however, a monitoring of the parame- 
ters (or better of the regulator zeros) during the iterations will 
warn the operator that he or she has made a poor design. Similar 
arguments can be applied to systems which do not contain an in- 
tegrator but which have high static gain. 

If it is desired that the controller should contain an integrator 
when the system has high low frequency gain, additional meas- 
ures must be taken to further emphasize the low frequency band. 
A very efficient way is to add a synthetic low frequency input 
load disturbance such as, e.g., a step. Then the criterion contains 
a term which will be small only if 

is small at low frequencies; this is possible only if the controller 
C has large static gain. 

Another possibility is to add aramp-like synthetic output load 
disturbance. Using the initial value theorem, the steady state er- 
ror becomes 

1 lim Z 

2-1 1 + C( z)G,(z) z - 1 

and for this to become small the static gain of C has to be large. 
From the discussion on the sensitivity function above it follows 
that an equivalent way of doing this is to set the reference model 
to Td = 1 and use a ramp-like reference. 

When the controller has two degrees of freedom, the correct 
closed loop static gain can be obtained by proper choice of the 
precompensator which implies that from a tracking point of 
view, the integrator does not play any role. Hence, unless low fre- 
quency disturbances are present, there is a risk of ending up with 
the free controller trying to cancel the integral action regardless 
of the low frequency properties of G,. Adding synthetic low fre- 
quency input disturbances will counteract this when the static 
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gain ofG, is high, c.f. the discussion above. When the static gain 
ofG, is low, it suffices to add low frequency output disturbances. 

In this situation another possibility is to use a controller struc- 
ture for which cancellation is impossible. One can, for example, 
use the non-interacting form 

wherea is a preset fixed constant andC(p) is the part of the con- 
troller which contains the tunable parameters and which does not 
contain any integrator. 

Adjusting the Reference Model 
or Reference Trajectory 

The choice of reference model or of reference trajectory is 
perhaps the key design decision. This is where the user can in- 
crease the speed of convergence of the algorithm significantly by 
injecting prior information (if any) about quantities like the delay 
ofthe system or the achievable closed loop bandwidth. If the ini- 
tial controller gives bad performance, it can be quite tricky to find 
the optimal controller, that is, the surface of the criterion can be 
very rough, thus allowing only small steps in each iteration. 
However, it is the authors’ experience that the problem is simpli- 
fied by starting with an objective that is easier to achieve (lower 
bandwidth) and then successively increasing the bandwidth as 
the achieved performance is increased. The easiest method of 
implementation of this principle is not to use a reference model, 
but rather to draw the new desired reference trajectory y d  as a 
small modification (i.e., a small improvement) over the last 
achieved output response y. This has close ties with the so called 
windsurfing approach [24] to iterative control design. 

Minimizing the Settling Time 
The criterion (6) is well suited when the objective is to follow 

a specific reference trajectory, but is not so appropriate if the ob- 
jective is to change the output from one setpoint to another one. 
Indeed, in such case the goal is typically to reach the new setpoint 
with a minimum settling time, and one does not care about the 
transient trajectory, provided it does not produce too much over- 
shoot. By constraining the output to follow some particular refer- 
ence trajectory y d  during the transient, one puts too much 
emphasis on the transient phase of the response at the expense of 
the settling time at the new setpoint value. 

One easy way to cope with this situation is to add nonnegative 
weighting factorsw,’ andwru to each element of r, andu, in the 
criterion (6): 

ISTE or ITSE criteria [2] can be obtained by using 
time-dependent weighting factors. The simplest way to obtain a 
satisfactory closed loop response to a desired setpoint change is 
to set the weighting factors w, to zero during the transient period 
and to one afterwards. Often it is not known a priori how much 
time is required to achieve a setpoint change without overshoot. 
In such case, one can perform the IFT iterations by initially ap- 
plying zero weights w r y  over a long transient period, and then 

gradually reducing the length of this “zero weight window” until 
oscillations start occuring. This is an application to the change 
of a required setpoint change of the recommendation in the pre- 
vious subsection that the closed loop bandwidth be gradually 
increased. The idea of using zero weight windows for the 
minimization of the settling time problem was initially pro- 
posed by Lequin [25]. This procedure has been extensively ex- 
perimented with in [37] for the case of Iterative Feedback 
Tuning of PID controllers designed for setpoint changes. It has 
led to an automatic and efficient procedure for the selection of 
the time-weighted cost function in the case of IFT applied to 
setpoint changes. 

Frequency Weighting 
In Section 3 the algorithm has been derived under the assump- 

tionLY = L, = 1, for simplicity. In the general case we obtain the 
following. 

is a realization of y”(p,), and the gradient signal is obtained by the 
filtering operation 

est -(p ) = [: ; I A  
(46) 

Thus, a frequency weighting ofthe output is obtained by sim- 
ply filtering all output signals through L,. By the same argu- 
ments, a frequency weighting on u is obtained by filtering the 
input signals from the three experiments (22)-(24) through Lu. 

The frequency weighting filters can be used to focus the atten- 
tion of the controller on specific frequency bands in the input 
and/or output response ofthe closed loop system, for example, to 
suppress undesirable oscillations in these signals. Conversely, 
they can be used as notch filters in the frequency bands where the 
measurement noise dominates. They can also be used to meet 
specific frequency domain performance specifications, such as 
constraints on the sensitivities. The use of these filters has been 
illustrated in the benchmark application described in [20]. 

Controller Complexity Modification 
The method has been described as one in which successive 

adjustments are being made to the controller parameter vector of 
a controller of fixed complexity. However, it is straightforward to 
extend the complexity of the controller at any given iteration if 
the parametrization of the new one is an extension of the old one. 
This is useful if one realizes that the current controller is incapa- 
ble of achieving the desired objective even after convergence to 
its optimal value. This idea has also been illustrated in [20]. 

Interactive Controller Update 
The step size can be used to control how much a controller 

changes from one iteration to another. Before actually imple- 
menting a controller it is possible to compare the Bode plots of 
the new controller with the previous ones to see whether they are 
reasonably consistent. If one doubts whether it will work or not 
one has the possibility of decreasing the step size and/or of ex- 
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tending the experiment so as to reduce the effects of the distur- 
bances in the gradient calculation. The situation is quite 
comforting: one is backed up by the knowledge that for a small 
enough step size andlarge enough data set one will always go in a 
descent direction of the criterion. The step size can also be opti- 
mized along the gradient direction by line search optimization. 

Prediction of the New Control Performance 
In addition to plotting the Bode plot of a new controller, 

one can also predict its effect on the closed loop response and 
on the achieved cost using a Taylor series expansion. To see 
this, we denote 

*PI =Pz+1 -P* (47) 

Using Taylor series expansions, we have the following pre- 
dictions: 

experiment caused excessive vibrations. This problem essen- 
tially arises during the initial iterations of the controller tuning, 
that is, before the improvements in achieved controller perform- 
ance outweigh the deterioration due to the noisy reference signal. 

One way to address this problem is to use the filtering idea 
(39) presented earlier. For example, by setting W,' to a constant 
less than 1, the excitation will be decreased. The penalty for this 
is that the influence of the disturbance will be amplified. An al- 
temative way is to replace, in the initial iterations, the data-driven 
computations of the gradient of the cost criterion by an estimate 
of this gradient based on an identified model of the closed loop 
system. As soon as the improvement in closed loop performance 
achieved by the successive controllers outweighs the degrada- 
tion due to the second experiment, one can then switch to the 
data-driven (i.e., IFTbased) computation of the gradient. This 
idea of using identified models during the initial iterations has 
been proposed and studied in [6].  

with R, defined by (33). The last expression follows from (30) 
and is valid as long as R, is a good approximation of the 
Hessian of J(p,). A comparison of y",(p,+,) with y",(p,), of 
ur (p I+J  with u,(p,), and of J(p,+,)  with J(p,) can help the user 
decide whether the step size that has led to the new controller 
was appropriate or not. In the section after the next one, we 
shall illustrate on an industrial application how the predicted 
performance compares with the performance that was actually 
achieved with the new controller. 

On-Line Considerations 
The second experiment is the only special purpose experi- 

ment, in that it uses a different reference signal than the desired 
one, namely r - y '. This experiment reinjects into the closed 
loop system a signal, y ', that contains noise, thereby producing 
an output, denoted y ', that contains the sum of two noise contri- 
butions. However, note that the contribution from the distur- 
bance v,* is exactly as under normal operating conditions. As for 
the contribution from the disturbance in the first experiment, 
T,,(p,) So(pi)vt, it is essentially a bandpass filtered version of the 
normal disturbance contribution So(p,)v31 and should normally 
be small since (at least for a one degree of freedom controller) 

There are cases, however, where the additional noise injected 
in the reference input during the second experiment causes unac- 
ceptable behaviour in some of the states or even in the output of 
the system during that experiment. This has been observed, for 
example, in mechanical applications with flexible structures, 
where the noise present in the reference input during the second 

So + To = 1. 

Applications In The Chemical Industry 
The IFT scheme has been applied by the chemical multina- 

tional Solvay S.A. for the optimal tuning of PID controllers oper- 
ating on a range of different control loops. In each of these loops, 
PID controllers were already operating. Important performance 
improvements were achieved using the IFT method, both in 
tracking and in regulation applications. The reductions in vari- 
ance achieved after a few (typically 2 to 6) iterations of the algo- 
rithm range from 25% in a flow regulation problem in an 
evaporator, to 87% in a temperature control problem for the tray 
of a distillation column, with other applications involving tem- 
perature control in furnaces. Here we present the results obtained 
on two such control loops. The first one is a temperature regula- 
tion problem for a tray of a distillation column, while the second 
illustrates the application of the algorithm to a setpoint modifica- 
tion problem in the flow of an evaporator. 

The PID Controller 
The same controller has been used in both loops. It differs 

The derivative action is calculated on y and not on the con- 
trol error. 
In order to limit the gain of the controller at high frequen- 
cies when the derivative action is used, a first order filter 
is applied toy before any calculation. The time constant 
of this filter is chosen as T%, Td being the derivative time 
constant. 

The PID controller must therefore be considered as a 2- 

slightly from standard PID in the following aspects: 

degree-of-freedom controller with common parameters. 

Temperature Regulation in a Distillation Column 
This first industrial application is a temperature regulation 

problem in a tray of a distillation column. The PID regulator pa- 
rameters were iteratively tuned using the IFT scheme, with the 
following design choices: Gauss-Newton direction, step-size 
y, = lVi, control weighting h = 0, sampling period of 15 sec- 
onds, rd = y d  = 0 during 5 hours. The deadtime and the time con- 
stants of the process were unknown. 

Fig. 2 presents temperature deviations with respect to set- 
point in a tray of a distillation column, over a 24-hour period, first 
with the original tuning, then with the PID controller obtained af- 
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ter 6 iterations of the new scheme. Fig. 3 shows the correspond- 
ing histograms of these deviations over two-week periods. The 
control error has been reduced by 70%. 

In Fig. 4 we show the Bode plots of the two-degree- 
of-freedom controller (C,,C,) before optimal tuning (full 
line), after three iterations of the IFT algorithm (dashed 

ture C = p1 + p2q-l + p3q-' + p4q-3 followed by an integrator. 
Hence, the controller is a one parameter extension of a PID con- 
troller. Since the actuator is limited to k10 V, an anti-windup 
compensation is included. However, the experimental condi- 
tions were chosen such that saturation was rare. The output y is 
the angular position of the load. 

It er at i o n 

1 
2 
3 
4 

line) and after six iterations 
(dotted line). The gain was too 
low and the derivative action 
underused. 

As mentioned in the section 
on design choices, an estimation 
of the new cost J can be made at 
the end of each iteration using a 
Taylor series expansion. Table 1 
shows, for the six iterations, the 
costJ calculated with the first ex- 
periment as well as the predicted 
value with the new controller pa- 
rameters. The prediction is good 
except for the second iteration 
which was perturbed by an ab- 
normal disturbance. 

Next cost cost 
(measured) (predicted) 

0.80 0.36 
1 .oo 0.59 
0.57 0.35 
0.37 0.18 

Flow control of an evaporator 
In this case, the objective was 

to increase the tracking perform- 
ance of the control loop during 
changes of production rate. We 
chose a two-phase reference sig- 
nal rd: a ramp of three minutes 
followed by a constant value of 
12 minutes. The other design 
choices were: Gauss-Newton di- 
rection, step-size y, = lb'i, con- 
trol weighting h = 0, sampling 
period of two seconds,  
y d  = &Yd. The process had an 
apparent deadtime of 30 seconds, 
but the time constants were un- 
known. 

The top part of Fig. 5 shows 
the closed loop response during 
the transient (first five minutes of 
the experiments) with the initial 
tuning and after three iterations. 
The bottom part represents a his- 
togram of the corresponding 
tracking error y d  - y .  

5 
6 

Control Error Over 1 Day - Initial Tuning Control Error Over 1 Day - After 6 Iterations 
6 
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Fig. 2. Control error over a 24hourperiod before optimal tuning and after six iterations of the IF 
algorithm. 
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Fig. 3. Histogram of control error over two-week period before optimal tuning and after six iterations 
of the IFT algorithm. 

Fig. 6 represents the control error over a five-day period. The 
dispersion has been reduced by more than 25%. 

Application to a DC-servo with Backlash 
In this section we will report on the experience with IFT when 

applied to a DC-servo motor which exhibits backlash. The ex- 
perimental system consists of an Industrial Emulator, Model 
220, manufactured by Educational Control Products Inc and is 
shown in Fig. 7. 

A block diagram of the feedback system is shown in Fig. 8. 
The sampling frequency is 25 Hz. The controller has the struc- 
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The purpose is to obtain a controller which rejects the input 
load disturbance II given in Fig. 9. In accordance with this, the 
control criterion is taken to be 

and the reference signal r in Fig. 8 was set to zero. The main non- 
linearity comes from a backlash in the idler pulleys. The initial 
controller 

l N  
N i = l  

J =-C(y’(t,+ u’ ( t ) )  
4.89 - 7.28q-’ + 2.66q-’ + 1.96q-3 

CO = 
I-q-I 

PID : Cr PID : Cy 

. ~ . j , .  . . . . . . . . . . .  

10-6 I 0-4 10-2 
Frequency [lis] Frequency [lis] 

10-6 10-4 10-2 

100 1 

Frequency [lis] Frequency [lis] 

Fig. 4.  Bode diagram of the two-degree-offreedom controller before tuning full) ,  after three iterations (dashed) and after six iterations of 
the algorithm (dotted). 
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Fig. 5. Evaporator: reference signal r (dotted), desired response yd  (dashed) and closed loop response ($11) duringfirst experiment offirst 
and third iteration, with corresponding histograms. 

38 IEEE Control Systems 



whose Bode diagram can be 
found in Fig. 12, provides good 
closed loop performance for the 
system without backlash. How- 
ever, with backlash the system is 
in a limit cycle, see Fig. 9, with 
this controller. 

Each experiment lasted 30 s 
and six iterations were per- 
formed using the Gauss-Newton 
direction with step-size y = 1. In 
Fig. 10 the evolution of the crite- 
rion function is shown and Fig. 

Control Error Over 5 Days - Initial Tuning Control Error Over 5 Days - After 3 Iterations 

-0.5 '3 0.5 -0.5 0 0.5 
Flow Flow 

11 shows the output with the fi- 
nal controller 

' 
Fig. 6. Evaporator: histogram qF the control error over a ,five-day period, with initial tuning and after three 
iterations. 

C ,  = 5.46 - 9.25-' + 4.23q-' + 0.28q-3 . 

The improvement is quite striking. Hence, even for this sys- 
tem which has a non-smooth nonlinearity, IFT performs well, a 
quite remarkable result. The Bode diagrams of the initial control- 
ler and the final controller can be compared in Fig. 12. 

Final Discussion 
In this article we have examined an optimization approach to 

iterative control design. The important ingredient is that the gra- 
dient of the design criterion is computed from measured closed 
loop data. The approach is thus not model-based. The scheme 
converges to a stationary point of the design criterion under the 
assumption of boundedness of the signals in the loop. 

From a practical viewpoint, the scheme offers several advan- 
tages. It is straightforward to apply. It is possible to control the 
rate of change of the controller in each iteration. The objective 
can be manipulated between iterations in order to tighten or 
loosen performance requirements. Certain frequency regions. 
can be emphasized if desired. 

This direct optimal tuning algorithm is particularly well 
suited for the tuning of the basic control loops in the process in-- 
dustry, which are typically PID loops. These primary loops are: 
often very badly tuned, making the application of more advancedl 
(for example, multivariable) techniques rather useless. A first re- 
quirement in the successful application of advanced control tech-. 
niques is that the primary loops be tuned properly. This new 
technique appears to be a very practical way of doing this, with 
an almost automatic procedure. The application of the method ait 
Solvay, of which we have presented a few typical results here, 
certainly appears promising. 

In comparison with available methods for the tuning of PID 
controllers, IFT requires typically more data and experiments. 
However, it offers several advantages: the achieved responses 
are typically faster than those obtained with other model-free 
methods based on Nyquist (or Ziegler-Nichols) plot consider- 
ations; the control objective is clearly expressed, thereby giv-- 
ing the control engineer a confidence for the tuning of critical 
loops that he cannot have with some commercially available 
loop tuners that behave more like "dark grey box" systems (in 
the words of one control engineer). Perhaps in the long run 
IFT will prove to have its major potential for the tuning of non- 
linear controllers or controllers applied to nonlinear systems, 
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for which preliminary analyses and applications seem to indi- 
cate great potential. 

As a final remark, we should like to emphasize that, even 
though the industrial applications that we have presented in this ar- 
ticle pertain to the tuning of industrial PID controllers, the method 
is by no means limited to the optimization of PID controllers. 
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