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1. INTRODUCTION

Parameter estimation enjoys a rich set of features which
makes it attractive in the context of system identification
(SYSID). One of the main features is that parameter
estimation, when used in a probabilistic framework, allows
users to quantify their confidence in how closely the
estimated parameter matches the true one. For example
in experiment design one uses classical results, such as the
Cramér-Rao lower bound (CRLB), in order to tune the
experimental conditions in such a way that the achieved
confidence region matches some performance specification.
However, finding the optimal experimental conditions can
be challenging if the performance specification is not
directly given in the parameter space. For example, if
the goal is to estimate a transfer function, then the
performance specification is typically given in terms a
of maximal tolerable distance between the true transfer
function and the estimated transfer function and not
in terms of a maximal tolerable distance between the
corresponding parameter vectors. In order to execute the
experiment design one can often use the fact that they are
related via a bijective function – the parametrization.

Additionally, the notion of distance between the true
transfer function and the estimated transfer function de-
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pends on the application, and is often induced by norms on
the embedding space such as the L∞-norm or L2-norm. In
general, and perhaps regrettably, natural distance func-
tions on the model set lead to complicated, non-linear,
distance functions on the parameter space.

We are therefore interested to circumvent the usage of
parametrizations and replace the main players in the
optimal experiment design problem. To be concrete let
C(θ̂) ∈ Rd×d denote the covariance matrix of an unbiased
estimator θ̂ of a parameter θ∗ ∈ Θ ⊆ Rd, and assume the
Fisher-information matrix, call it J(θ∗) ∈ Rd×d, is a non-
singular matrix. Then the problem is how to replace the
CRLB, i.e., the matrix inequality

C(θ̂) ≥ J(θ∗)−1, (1)
by an inequality between two objects which are defined
purely in terms of the model set and the probabilistic
assumption, i.e., in a manner which does not involve
parametrizations at all. In most cases then, we are seeking
a replacement of (1) by an inequality somehow reflecting
transfer functions.

One part of this problem has been solved in Rao (1945),
where one showed that the information matrix J(θ) at a
fixed parameter θ∗ ∈ Θ satisfies

[J(θ∗)]ij =
(

∂Π(θ∗)
∂θj

,
∂Π(θ∗)

∂θi

)
P∗

, (2)

where (·, ·)P∗ denotes an inner-product at the tangent
space of the model set P at the unique model P∗ ∈ P
such that P∗ = Π(θ∗) holds for the parametrization
Π : Θ → P. The key point is that this inner-product is
actually independent of the chosen parametrization and,
when viewed as a function of P∗, defines a metric, the
so called information metric, on the model set, cf. Amari



and Nagaoka (2001). This observation alone, however, does
not suffice to solve the original problem which requires
parametrization independent definitions for the covariance
matrix of the estimated quantity. The inversion of the
information matrix and also the standard matrix ordering
used in (1) has to be redefined in an appropriate way.

The contribution of this paper is the derivation of a
coordinate-free version of the CRLB (1) for the case where:

• The elements P ∈ P of the model set P are complex-
valued functions P : T → C, defined on the unit circle
T of the complex plane C, i.e., discrete-time transfer
functions.

• The model set P is a d-dimensional differentiable
manifold over the real numbers R, i.e., the set of
transfer functions admits a smooth parametrization
defined on a subset of Rd.

• The information metric (·, ·)P is non-singular, i.e., the
data set is sufficiently rich that unique identification
can be achieved.

We show that for every function estimator P̂ such that

EP∗ [P̂ (z)] = P∗(z) for all z ∈ T, P∗ ∈ P, (3)

(i.e., P̂ is unbiased), the corresponding autocovariance
function admits a canonical lower bound designated KP∗
below.

The autocovariance function is the two variable function
defined for all z, w ∈ T via

CovP∗(P̂ )(z, w) := E[(P̂ (z)− P∗(z)) · (P̂ (w)− P∗(w))]. (4)

By lower bound we mean an inequality of the form∑M

k,l=1
ηkηl ·

(
CovP∗ P̂ (zk, zl)−KP∗(zk, zl)

)
≥ 0, (5)

which holds for every integer M ≥ 0, every set of evalua-
tion points z1, . . . , zM ∈ T, and every vector η ∈ CM . The
inequality (5) simply means

CovP∗(P̂ ) ≥EH KP∗ , (6)

where ≥EH denotes the E.H. Moore ordering Moore
(1916).

We show that the classical CRLB corresponds to the case
where KP∗ is the reproducing kernel (cf. Appendix A) of
the tangent-space of the model set at P∗ with respect to
the information metric (·, ·)P∗ defined in (2). Due to its
fundamental importance in variance quantification we call
KP∗ the Cramér-Rao kernel.

The paper is structured as follows. In Section 2 and 3 we
develop the Cramér-Rao kernel lower bound starting from
a parametric setup. In Section 4 we prove reparametriza-
tion invariance of the previous results which will allow
us to replace them, in Section 5, by purely geometric
definitions which do not involve parametrizations. In Sec-
tion 6 we demonstrate the effectiveness of our approach
by revisiting asymptotic sample size analysis in system
identification for the special model set P = Rat(n) which
consists of all transfer functions with McMillan degree n.
In Section 7 we give a sample application arising from per-
formance specifications used in robust control. In Section 8
we conclude.

Notation: R real numbers, C complex numbers, z̄ complex con-

jugate,  =
√
−1 imaginary unit, AT transpose of a matrix A, AH

conjugate-transpose of a matrix A, T unit-circle, E expectation

2. THE CRAMÉR-RAO KERNEL

In this section we shall derive the Cramér-Rao kernel
which plays the role of the inverse information matrix
in the context of function estimation. To highlight the
connections with the classical parametric approach in
Lemma 2.1 we derive the Cramér-Rao kernel given a fixed
parametrization Π of the function space P.

Before we continue, we first introduce the setup and fix
the notation for the rest of the paper:

• parameter-space Θ ⊆ Rd, parameter-vector θ ∈ Θ,
• sample-space X ⊆ Rq, random sample 1 x ∈ X,
• parametrized set of probability density functions

D = {pθ : X → R≥0 | θ ∈ Θ}. (7)
• expectation Ep[f(x)] of a particular measurement f :

X → C w.r.t. to a random sample x ∼ p with density
p ∈ D,

• parametrized model set of transfer functions
P = {P : T → C |P = Π(θ), θ ∈ Θ}, (8)

• z ∈ T evaluation point, evaluated parametrization
Πz : Θ → C with Πz(θ) := (Π(θ))(z). (9)

• parameter estimator θ̂(x) ∈ Θ, function estimator

P̂x ∈ P with P̂x(z) = Πz(θ̂(x)). (10)
• unbiasedness for function estimators

Epθ
[P̂x(z)] = Πz(θ) for all z ∈ T, θ ∈ Θ. (11)

• autocovariance of an unbiased estimator P̂

Covpθ
(P̂ )(z, w) :=

Epθ
[(P̂x(z)−Πz(θ)) · (P̂x(w)−Πw(θ))],

(12)

for all z, w ∈ T and θ ∈ Θ.

We shall make the following regularity assumptions:

R1) The model set P is a differentiable manifold, the
parameter space Θ is open, and Π is a smooth
parametrization of P.

R2) For every fixed x ∈ X the function Θ → R≥0, θ 7→
pθ(x) is smooth. Similarly for every fixed z ∈ T
the function Θ → C, θ 7→ Πz(θ) is well-defined and
smooth. 2

R3) For every θ∗ ∈ Θ the information matrix Jθ∗ given by

[Jθ∗ ]ij = Epθ∗

[
∂ log pθ∗(x)

∂θj
· ∂ log pθ∗(x)

∂θi

]
, (13)

i, j = 1, . . . d, is non-singular.

R1) states that the parameter vector θ is globally-
identifiable, i.e., that Π(θ) = Π(θ∗) implies that θ = θ∗

Gevers et al. (2009). R3) ensures that the samples are
sufficiently rich to distinguish between parameters.
1 A random sample is like a sequence of measurements on the
system, for example a sequence of input and output values uk,
yk, k = 1, 2, ..., N for a linear plant with outputs contaminated by
additive noise, defined by an equation like y = Pu + v the symbols
having obvious meaning.
2 In particular we require that for all θ ∈ Θ the function P = Π(θ)
is defined for all z ∈ T. If P is a rational function this is equivalent
to saying that P has no pole on the unit circle.



Remark 2.1. Due to assumption R1), we may abuse
notation and write EP and CovP instead of Ep and Covp

whenever there holds p = pθ and P = Π(θ).

Lemma 2.1. Let P̂x ∈ P denote an unbiased estimator
in the sense of (11); then (5) holds with

KP∗(z, w) =
d∑

i,j=1

[
J−1

θ∗

]
ji
· ∂Πz(θ∗)

∂θi

∂Πw(θ∗)
∂θj

, (14)

where P∗ = Π(θ∗). We call KP∗ the Jθ∗-induced Cramér-
Rao kernel at the model P∗.

Proof. We first note that∑M

k,l=1
ηkηl · CovP∗ P̂ (zk, zl) = EP∗ |α̂(x)− α(θ∗)|2, (15)

holds with

α̂(x) =
∑M

k=1
η̄kP̂x(zk),

α(θ) =
∑M

k=1
η̄kΠzk

(θ).

Since P̂x is unbiased we have EP∗ [α̂(x)] = α(θ∗). By the
classical CRLB there holds

EP∗ |α̂(x)− α(θ∗)|2 ≥
∑d

i,j=1
[J−1

θ∗ ]ji
∂α(θ∗)

∂θi

∂α(θ∗)

∂θj

=
∑d

i,j=1
[J−1

θ∗ ]ji
∂

∂θi

∑M

k=1
η̄kΠzk (θ∗) ·

∂

∂θj

∑M

l=1
η̄lΠzl (θ

∗)

=
∑M

k,l=1
ηkη̄l

∑d

i,j=1

[
J−1

θ∗

]
ji ·

∂Πzk (θ∗)

∂θi

∂Πzl (θ
∗)

∂θj∑M

k,l=1
ηkη̄lKP∗(zk, zl),

which, together with equation (15), is equivalent to
(5). 2

3. THE REPRODUCING PROPERTY

In the previous section we saw that the Jθ∗ -induced
Cramér-Rao kernel, i.e., the two variable function KP∗(z, w)
defined in (14) yields a lower bound on the auto-covariance
of any unbiased function estimator P̂ of P∗ = Π(θ∗).

In this section we will introduce the information metric
and study its relation to the Cramér-Rao kernel. The main
result of this section is that the Cramér-Rao kernel has the
reproducing property (cf. Appendix A) with respect to the
information metric.

In order to highlight the geometric aspects which are
inherent in our setup, especially to the fact that the model
set P is a differentiable manifold, we shall now adapt the
standard information geometry terminology to suit our
needs for function spaces.
Definition 3.1. For θ∗ ∈ Θ we define the tangent space
of P at P∗ = Π(θ∗) via

TP∗P := {∆ : T → C | ∃δ ∈ Rd such that

∀z ∈ T : ∆(z) =
∑d

i=1
δi

∂Πz(θ∗)

∂θi
}.

(16)

The Jθ∗-induced information metric on P at P∗ is the
inner-product (·, ·)P∗ : TP∗P × TP∗P → R defined by(

∆(1),∆(2)
)
P∗

:= δ(2),TJθ∗δ
(1), (17)

for all ∆(l)(z) =
∑d

i=1 δ
(l)
i

∂Πz(θ∗)
∂θi

with Jθ∗ as in (13). �

In Theorem 3.1 we shall prove the reproducing property
of the Jθ∗ -induced Cramér-Rao kernel with respect to the
Jθ∗ -induced information metric.
Theorem 3.1. Let w ∈ T be fixed. Then there exist
uniquely defined functions U, V ∈ TP∗P in the tangent
space such that for all ∆ ∈ TP∗P there holds

∆(w) = (∆, U)P∗ −  · (∆, V )P∗ . (18)
The Cramér-Rao kernel is then uniquely determined by

KP∗(z, w) = U(z) + j · V (z) for all z ∈ T. (19)
We call this the reproducing property of KP∗ with respect
to the Jθ∗ -induced information metric.

Proof. The fact that U, V are uniquely defined follows
from the Riesz-representation theorem for Hilbert spaces.
Let ∆i(z) = ∂Πz(θ∗)

∂θi
for all z ∈ T and i = 1, . . . , d.

To check (19) we note that

KP∗(z, w) =
∑d

i,j=1
[J−1

θ∗
]ji ∆i(z) ·∆j(w),

and thus
KP∗(z, w) = R(z) +  · J(z) (20)

with 
R(z) =

∑d

i,j=1
[J−1

θ∗
]ji ∆i(z) · Re(∆j(w)),

J(z) =
∑d

i,j=1
[J−1

θ∗
]ji ∆i(z) · Im(∆j(w)),

for all z ∈ T.

Let ∆ ∈ TP∗P denote a tangent-vector. We expand

∆ =
∑d

i=1
δi ·∆i with δ ∈ Rd,

and compute
∆(w) = [∆1(w), · · · ,∆d(w)]δ

= [Re ∆1(w), · · · ,Re ∆d(w)]J−1
θ∗ Jθ∗δ+

+ [Im ∆1(w), · · · , Im ∆d(w)]J−1
θ∗ Jθ∗δ

= (∆, R)− (∆, J).
By the uniqueness of U, V it follows that R = U and
J = V . Together with equation (20) this implies that
indeed (19) holds. 2

4. REPARAMETRIZATION INVARIANCE

In this section we shall show that the lower bound KP∗
defined in (14), which we obtained in Lemma 2.1, is
independent of the chosen parametrization Π : Θ → P.

For this let Ξ ⊆ Rd denote an open subset such that
D = {p̃ξ | ξ ∈ Ξ} and P = {Π̃(ξ) | ξ ∈ Ξ}, (21)

denote alternative parametrizations of the set of densities
and model set defined by (7) and (8), respectively, which
obey the regularity assumptions R1) to R3). By assump-
tion R1) there exists a unique smooth map ϕ : Ξ → Θ, the
chart-transition, such that

Π̃(ξ) = Π(ϕ(ξ)) for all ξ ∈ Ξ. (22)

In order to proceed we have to make a probabilistic
compatibility assumption

p̃ξ = pϕ(ξ) for all ξ ∈ Ξ. (R̃1)
such that the abuse of notation in Remark 2.1 remains
admissible.



Lemma 4.1. For ξ∗ ∈ Ξ and P∗ = Π̃(ξ∗) define

[J̃ξ∗ ]ij = Ep̃ξ∗

[
∂ log p̃ξ∗(x)

∂ξj
· ∂ log p̃ξ∗(x)

∂ξi

]
. (23)

Let θ∗ ∈ Θ such Π(θ∗) = P∗ then

• There holds that

KP∗(z, w) =
d∑

i,j=1

[
J̃−1

ξ∗

]
ji
· ∂Π̃z(ξ∗)

∂ξi

∂Π̃w(ξ∗)
∂ξj

, (24)

i.e., the Jξ∗ -induced Cramér-Rao kernel (the right
hand side of (24)) and Jθ∗ -induced Cramér-Rao ker-
nel defined in (14) are equal.

• The tangent-space (16) can be spanned using Π̃
instead of Π, i.e.,

TP∗P = {∆ : T → C | ∃δ ∈ Rd such that

∀z ∈ T : ∆(z) =
∑d

i=1
δi

∂Π̃z(θ∗)

∂ξi
}.

• For ∆(l)(z) =
∑d

i=1 δ
(l)
i

∂Π̃z(ξ∗)
∂ξi

with l = 1, 2, there
holds

(∆(1),∆(2))P∗ = δ2,TJ̃ξ∗δ
(1), (25)

i.e., the Jθ∗ -induced information metric (17) and the
Jξ∗ -induced information metric (23) are equal.

Proof. Let ϕ = (ϕ1, . . . , ϕd) and L ∈ Rd×d denote the
Jacobian defined by

[L]ij =
∂ϕi(ξ∗)

∂ξj
for all i, j = 1, . . . , d.

By the chain rule of differentiation from (R̃1) and (22) it
follows that

∂p̃ξ∗(x)
∂ξi

=
∑d

j=1
[L]ij ·

∂pθ∗(x)
∂θj

∀x ∈ X.

∂Π̃z(ξ∗)
∂ξi

=
∑d

j=1
[L]ij ·

∂Πz(θ∗)
∂θj

∀z ∈ T.

This implies J̃ξ∗ = LTJθ∗L and thus J−1
θ∗ = LJ̃−1

ξ∗ LT. In
particular we have

KP∗(z, w) =
d∑

i′,j′=1

[
J−1

θ∗

]
j′i′

∂Πz(θ∗)

∂θi′

∂Πw(θ∗)

∂θj′

=
d∑

i,i′,j,j′=1

Lj,j′Li,i′

[
J̃−1

ξ∗

]
j,i
· ∂Πz(θ∗)

∂θi′

∂Πw(θ∗)

∂θj′

=
d∑

i,j

[
J̃−1

ξ∗

]
j,i
· ∂Πz(ξ∗)

∂θi

∂Πw(ξ∗)

∂ξj

The remaining claims are simple consequences of the
chain-rule of differentiation. This concludes the proof. 2

5. COORDINATE-FREE DEFINITIONS

We recall that in Section 2 and 3 we defined the Cramér-
Rao kernel KP∗ in (14), the tangent-space TP∗P in (16),
and the information metric (·, ·)P∗ in (17) w.r.t. a fixed
parametrization. In Section 4 we proved that the resulting
definitions are invariant if one uses another parametriza-
tion Π̃ : Ξ → P instead of Π. Our goal in this section will
be to define the Cramér-Rao kernel and the information
metric without invoking a parametrization.

It is a well known fact from differential geometry that
there are various ways to define the tangent space to
a differentiable manifold in a coordinate free way Lang
(2002). One possibility is the following: For P∗ ∈ P one
defines the tangent space of P at P∗ via
TP∗P :=

{
∆γ : T → C | γ : (−1, 1) → P, γ(0) = P∗,

∀z ∈ T : ∆γ(z) = d

dτ
evz(γ(τ))|τ=0

}
,

(26)

where evz : P → C, P → P (z) is smooth by R2), and
the curve γ is always assumed smooth. This definition is
equivalent to the one given by (16).
Definition 5.1. Let µ : P → D, P 7→ µP denote a fixed
smooth map. With respect to µ one defines the information
metric via

(∆γ1 ,∆γ2)P∗ :=

EµP∗

[(
d

dτ
log µγ2(x)

∣∣
τ=0

) (
d

dτ
log µγ1(x)

∣∣
τ=0

)]
,

(27)

for all ∆γi ∈ TP∗P. We assume that the information metric
is non-singular. 3

For each fixed w ∈ T there exist uniquely defined functions
Uw, Vw ∈ TP∗P such that{

Re ∆(w) = (∆, Uw)P∗

Im ∆(w) = −(∆, Vw)P∗ ,
for all ∆ ∈ TP∗P. (28)

The function defined by
KP∗(z, w) := Uw(z) + Vw(z) for all z, w ∈ T, (29)

is called the Cramér-Rao kernel. �

In Theorem 5.1 we establish that the nomenclature in
Definition 5.1 is consistent with the earlier definitions
made in Section 2 and Section 3.
Theorem 5.1. Assume that µ : P → D is such that the
probabilistic compatibility assumption

µΠ(θ) = pθ for all θ ∈ Θ, ( ˜̃R1)

is satisfied. For Π∗ = Π(θ∗) the definitions of the informa-
tion metric (·, ·)P∗ in (17) and (27) and the Cramér-Rao
kernel KP∗ in (14) and (29) are equivalent.

Proof. Let ei = (0, . . . , 0, 1︸︷︷︸
i-th pos.

, 0, . . . , 0) ∈ Rd and

γi : (−1, 1) → P, with γi(τ) = Π(θ∗ + τ · ei).
Then one computes

[Jθ∗ ]ij = EµP∗

[(
d

dτ
log µγj (x)

∣∣
τ=0

) (
d

dτ
log µγi(x)

∣∣
τ=0

)]
using the compatibility assumption ( ˜̃R1). The equivalence
of (14) and (29) then follows from the reproducing prop-
erty proved in Theorem 3.1. 2

6. APPLICATION TO SYSTEM IDENTIFICATION

In an important contribution in Ninness and Hjalmarsson
(2004) it was shown that the asymptotic average variabil-
ity of a transfer-function estimator at a fixed frequency
z ∈ T is given by KP∗(z, z), i.e., the Cramér-Rao kernel
evaluated on its diagonal.

3 The metric (·, ·)P∗ is called non-singular if (∆, ∆)P∗ = 0 implies
that ∆ = 0 for all ∆ ∈ TP∗P.



The goal of this section is twofold. In Section 6.1 we
demonstrate how the asymptotic average Cramér-Rao ker-
nel can be computed without invoking a parametrization.
In Section 6.2 we stress that the off-diagonal elements of
the Cramér-Rao kernel, i.e., KP∗(z, w) with z 6= w, are
equally important as the diagonal elements.

6.1 Computation of the Cramér-Rao Kernel

In the preceding sections the information metric quantified
the “information” contained in one sample x1 ∈ X where
X ⊆ Rq denotes the sample space. In applications like
System Identification an observation consists of a sample
vector

xN = (x1, . . . , xN ) ∈ XN , (30)

where N is called the sample-size. The goal of this section
will be to quantify the asymptotic average Cramér-Rao
kernel, i.e., to quantify the autocovariance of an efficient
transfer function estimator.

If one replaces x in (27) by the sample vector xN given
by (30) one obtains a sample size dependent information
metric. To distinguish between different sample sizes we
use the notation (·, ·)N,P∗ to denote the information-metric
given N samples.

As an example assume P denotes a model set consisting
of asymptotically stable transfer-functions, and

xt = (ut, yt) ∈ X = R2 s.t. y = P∗u + v, (31)

where the noise-process v and the input-process u are
assumed independent, with spectra given by Φv,Φu : T →
R respectively. 4

A fundamental contribution in Caines and Ljung (1979)
was to show that, with sample size N →∞, the expression
N−1(∆1,∆2)N,P∗ tends, for all ∆i ∈ TP∗P, to a signal-to-
noise ratio weighted L2-inner-product

〈∆1,∆2〉P∗ :=
1
2π

∫ π

−π

∆1(eω)∆2(eω)
Φu(eω)
Φv(eω)

dω, (32)

which is therefore called the metric which measures the
average information per sample.

The next theorem shows that there exist cases where it
is possible to compute the tangent-space and the Cramér-
Rao kernel without using a parametrization. The key ad-
vantage of our geometric point of view is that: it allows the
usage of existing knowledge on tangent spaces of transfer-
function manifolds Helmke and Fuhrmann (1998) and
structured reproducing kernel Hilbert spaces Grenander
and Szego (1958). In other words, the coordinate free
approach renders it unnecessary to rederive such results
in a parametric setup.
Theorem 6.1. Let Rat(n) denote the 2n-dimensional
manifold of all i) real rational ii) strictly proper, iii) Schur
stable transfer functions of McMillan-degree n, i.e.,

4 One assumes that Φv(z) = σ2|H(z)|2 for a stable, minimum-phase
transfer function H. Moreover, due to the stability assumption on P ,
for large sample size N , equation (31) can be assumed to have zero
initial conditions.

Rat(n) :=
{

b

p

∣∣∣∣ i) b, p ∈ R[z] are coprime s.t.

ii) deg(b) < deg(p) = n, and

iii) p(z) = 0 implies |z| < 1
}

.

(33)

The tangent-space at b/p ∈ Rat(n) is given by

Tb/p Rat(n) := Xp2
, (34)

where for any non-zero polynomial q in R[z] we define

Xq :=
{

f

q

∣∣∣∣ f ∈ R[z] with deg(f) < deg(q)
}

. (35)

For Φu/Φv = 1 the Cramér-Rao kernel w.r.t. to the
asymptotic average information, is given by

κb/p(z, w) =

(
znp(1/z)

p(z) · p(w)
wnp(1/w)

)2

− 1

1− z/w
, (36)

for all z, w ∈ T. For Φu/Φv ≡ ρ for some constant ρ the
asymptotic Cramér-Rao kernel is Kb/p = κb/p/ρ which,
when evaluated on the diagonal, (i.e., for z = w), yields

Kb/p(z, z) =
2Φv

Φu

n∑
i=1

1− |ai|2

|z − ai|2
, (37)

where p(z) =
∏n

i=1(z − ai).

Proof. The fact that (34) holds has been shown in Helmke
and Fuhrmann (1998). The fact that (36) is the reproduc-
ing kernel of the complexification of Xp2

, i.e., of the space

Xp2
= { q

p2
| q ∈ C[s],deg(q) < 2n}, (38)

is a well known fact, see e.g. Ninness and Gustafsson
(1994). By Remark A.1 in Appendix A this implies the
reproducing property, i.e., that κb/p defined in (36) is
indeed the asymptotic average Cramér-Rao kernel. The
remaining equation (37) follows from (36) by straightfor-
ward calculation. 2

Remark 6.1. Our assumption that the signal to noise
ratio ρ is constant leads to insight as to how the poles
of the true system influence the Cramér-Rao kernel. In
the general case this dependence is more complicated.
Nevertheless one can obtain the Cramér-Rao kernel for the
case Φu/Φv = ρ 6≡ const using Szego’s formula (Grenander
and Szego, 1958, §2.3):

Kb/p(z, w) = 1/α

p(z)p(w̄)
·

ϕ(−z)ϕ(−w̄)− zw̄ϕ(z)ϕ(w)

1− zw̄
, (39)

for all z, w ∈ T, where

α =
1
2π

∫ π

−π

|ϕ(eω)|2 ρ(eω)
|p(eω)|2

dω, (40)

and

ϕ(z) =

∣∣∣∣∣∣∣∣∣
c0 · · c−2n+1 c−2n

· · · · ·
· · · · ·

c2n−1 · · c0 c−1

1 · · z2n−1 z2n

∣∣∣∣∣∣∣∣∣ , (41)

and c−2n, . . . , c2n denote the generalized moments of the
signal to noise ratio, i.e.,

ck =
1
2π

∫ π

−π

e·k ω · ρ(eω)
|p(eω)|2

dω for k = ±1, . . . ,±2n.



6.2 Autocovariance versus classical variance function

It is a natural question to ask whether the correlation
between the mismatch at different frequencies can be
neglected. In other words, does the diagonal of the Cramér-
Rao kernel given in (37) capture the behavior of the
estimator. Unfortunately this is not the case, i.e., the
properties of an estimator can change dramatically if the
autocovariance changes, even if the variance does not
change. For the rest of this section we shall assume that
we are given two transfer function estimators which collect
samples under the same experimental conditions (31);
however, they differ in the number of samples they collect
and the model structure they use, though the true plant
P∗ lies in both model sets. . To be concrete we assume that

• P̂ is given the sample vector xN = (x1, . . . , xN ) and
yields a model in P,

• P̃ is given the sample vector xÑ = (x1, . . . , xÑ ) and
yields a model in P̃,

where both sample sizes N, Ñ are assumed to be large for
asymptotic formulas to be applicable.

Let KP∗ and K̃P∗ denote the asymptotic average Cramér-
Rao kernels corresponding to the model sets P and P̃,
respectively. It is clear that

KP∗

N
≤EH

K̃P∗

Ñ
⇒ ∀z ∈ T :

KP∗(z, z)
N

≤ K̃P∗(z, z)
Ñ

.

(42)
However, the converse need not to be true. That is to say
it may very well be that the right hand side of (42) holds
while the left-hand-side is false. From a statistical point of
view this means that given a scalar g(P∗) ∈ C function of
the plant P∗ ∈ P ∩ P̃ the right-hand-side of (42), i.e., the
variance function of P̂xN being smaller than the variance
function of P̃xÑ , does not imply that

EP∗ [|g(P̂xN )− g(P∗)|2] ≤ EP∗ [|g(P̃xÑ )− g(P∗)|2]. (43)
The next example shows that this fact is not as counter-
intuitive as it might seem at first.
Example 6.1. Let FIR(n) denote the model set consist-
ing of finite impulse response filters of order n. Let

P = FIR(4), P̃ = FIR(40), and P∗ ∈ P ∩ P̃.

The goal is to estimate g(P∗) where g(·) = ‖ · ‖2
2 denotes

the squared standard L2-norm. For simplicity assume the
samples are collected from (31) with Φu = Φv ≡ 1.

By straightforward calculation one obtains
KP∗(z, z) ≡ 4 and K̃P∗(z, z) ≡ 40,

for all z ∈ T. For the sample-size configuration Ñ = 2 ·N
this means that

5 · EP∗ [|P̂xN (z)− P∗(z)|2] = EP∗ [|PxÑ (z)− P∗(z)|2],
for all z ∈ T, i.e., the variance function of P̂xN is 5-times
smaller than the variance function of P̃xÑ .

However, by analysis or by means of Monte-Carlo simula-
tions, one verifies that

EP∗ [|g(P̂xN )− g(P∗)|2] = 2 · EP∗ [|g(P̃xÑ )− g(P∗)|2],
i.e., the variance of the estimator g(P̂xN ) is two times
larger than the variance of g(P̃xÑ ).
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Fig. 1. The Cramér-Rao kernels KP∗ and K̃P∗ are equal to
the autocovariance functions of P̂ and P̃ respectively
when normalized by sample size N . Note that both
processes are stationary in the sense that

CovP∗(P̂ )(z, w) = CovP∗(P̂ )(1, z−1w),

for all z, w ∈ T and similarly for P̃ . The graph shows
that the correlation of the mismatch of the high order
estimator P̃ at different frequencies decays a lot faster
than for low order estimator P̂ .

Intuition tells us that the mismatch of the low order
estimator P̂xN − P∗ at one frequency is correlated to
the mismatch at another frequency. This is due to the
constraints imposed by the model set P. These correlations
are far less pronounced for the mismatch of the high order
estimator P̃xN − P∗. This is due to the flexibility offered
by the high dimensional model set P̃. Both phenomena
are reflected by the off-diagonal elements of the Cramér-
Rao kernel; see Fig. 1. Since g takes an average over all
frequencies, correlations of the mismatch are harmful, i.e.,
the less correlation the better. It is therefore intuitively not
too surprising that g(P̃xÑ ) with Ñ = 2N samples is the
better estimator for the squared L2-norm of the system.
It has twice more samples than g(P̂xN ). 5 �

7. ROBUST PERFORMANCE SPECIFICATIONS

In this section we want to demonstrate how the autoco-
variance can be used for input design aiming at robust
performance specifications. Such performance specifica-
tions naturally arise if one performs application oriented
identification Hjalmarsson (2009); Gevers (2005). In the
following we shall derive a sufficient condition for an ef-
ficient estimator P̂ of P∗ ∈ P to satisfy the following
performance specification:

α ≤ Prob{x ∈ XN : sup
z∈B

|P̂x(z)− P∗(z))| ≤ ε

N
}. (44)

In other words the experimental conditions satisfy the
performance specification if, with a probability not less
than α, we have x is a good sample, i.e., that the supremum
norm of the mismatch P̂x−P on the frequency band B ⊆ T
is bounded from above by ε/N .
Theorem 7.1. An asymptotically (in N) sufficient con-
dition for (44) is given by

5 We note that if Ñ = N , i.e., if the sample sizes would have been
equal, both estimators would have been equally good.



∀z ∈ B : KP∗(z, z) + |KP∗(z, z−1)| ≤ 2 · ε
χ2

α(d)
, (45)

where:

• d is the dimension of the differentiable manifold P,
• χ2

α(d) is the α-quantile of the Chi-square distribution
with d degrees of freedom,

• KP∗ is the asymptotic average Cramér-Rao kernel.

Proof. As N → ∞ the mismatch P̂x − P can be approx-
imated with a random, i.e., sample dependent, tangent
vector ∆x ∈ TPP which, by asymptotic normality, can
be assumed Gaussian with zero mean and Chi-square
distributed squared norm, i.e.,

‖∆x‖2
P∗

:= 〈∆x,∆x〉 ∼ χ2(d).

The α-quantile, denoted by r := χ2
α(d), is defined as the

inverse of the cumulative distribution of ‖∆x‖2
P∗

evaluated
at α. This is equivalent to

Prob(Br) = α with Br = {x ∈ X | ‖∆x‖2
P∗
≤ r}.

A result established in Ivanov et al. (2009) guarantees that
2 ·∆x(z) ≤ ‖∆x‖2

P∗
· (KP∗(z, z) + |KP∗(z, z−1)|),

holds for all x ∈ X and all z ∈ T. So condition (45) implies
that the event

B̃ε = {x ∈ X | ∀z ∈ B : ∆x(z) ≤ ε},
is implied by the event x ∈ Br. From this it follows that
B̃ε has a probability greater than or equal to α. 2

Before we conclude we give an example of the structural
insight which can be obtained from Theorem 7.1.
Example 7.1. Let P ∈ P with P = Rat(2) denote a
plant with a complex conjugate pole at a ∈ C such that

P = b/p where p(z) = (z − a)(z − a∗),
where |a| < 1 and b, p ∈ R[z] coprime. Moreover let

α = 0.9, B = {eω | |ω| < β} and
ε

100
= 0.1.

Assume we want to meet the performance specification
(44), under the assumption Φv ≡ const and Φu ≡ const.
The dependence of the minimum amount of input power
required, Φu ≥ Φu,min depends on the bandwidth β ∈
(0, π) and the pole location a ∈ C. This is illustrated in
Fig. 2 for constant absolute value and varying phase of
a and in Fig. 3 for constant phase and varying absolute
value. Let

CP (z) =
1
2
κP (z, z) +

1
2
|κP (z, z−1)|,

and κP is given by (36). By Theorem 6.1
Φv · χ2

0.9(4) · CP (eω) ≤ ε · Φu for all ω ∈ [0, β].
is equivalent to the inequality (45). �

8. CONCLUSIONS

In this paper we have established that the autocovariance
of an unbiased function estimator is a positive kernel which
can be bounded from below by the reproducing kernel of
the tangent space of the model structure. Therefore, in
the context of prediction error identification of linear time
invariant systems, the quantification of the autocovariance
of a transfer function estimator can be split into two

1

1.5

2

2.5

Fig. 2. Minimum input power Φu,min(β) as a function
of bandwidth β for six different plants Pl with
l = 0, . . . , 5 with a complex conjugate pole al =
1
2e(π/2+l/5) respectively. At the top: Reproducing
kernel functions κPl

(z, w) with respect to standard
L2-inner-product, evaluated on the diagonal elements
z = w = eω, with ω varying in [0, π], as well as
the function CPl

(z) = 1
2κPl

(z, z) + 1
2 |κPl

(z, z−1)| for
z = eω At the bottom: Minimal amount of input
power Φu,min,l(β) needed to achieve the desired accu-
racy for P = Pl on the frequency band [−β, β], i.e, to
turn the inequality (7.1) into an equality.

0
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1.5

2

2.5

3

3.5

Fig. 3. Same setup as in Figure 2. However this time each
plant Pl has a complex conjugate pole at al = (4/5−
4(5− l)/75) with l = 0, . . . , 5, respectively.

subproblems: determining the tangent space of the model
manifold at the system which generated the data, and
computing its reproducing kernel with respect to a signal
to noise ratio weighted L2-inner-product. We have given an
example of how to handle such performance specifications
for the case where the specification required the supremum
norm of the mismatch between estimator and explanatory
model to be less than some constant with prescribed
probability.
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Appendix A. REPRODUCING KERNELS

Let H denote a linear space over the complex numbers
with dim H = n < ∞ endowed with an inner-product

〈·, ·〉 : H ×H → C.

If the elements of H are functions defined on a common
set Ω, then there exists a unique two variable function
K : Ω× Ω → C such that

〈f,Kw〉 = f(w) with Kw(z) = K(z, w), (A.1)
holding for all z, w ∈ Ω and all f ∈ H.

One calls K the reproducing kernel of (H, 〈·, ·〉) and
(A.1) the reproducing property. There are various ways to
compute K given H and 〈·, ·〉. A general method, known
as the Aitken-Berg-Collar Lemma, is given by

K(z, w) =
∑n

i,j=1
[G−1]ji bi(z)bj(w), (A.2)

where b1, . . . , bn is an arbitrary basis of H and Gij =
〈bj , bi〉 the associated Gramian.
Remark A.1. Let b1, . . . , bn denote a basis of H with
〈bj , bi〉 ∈ R and let

X =
{∑n

i=1
αi bi |α ∈ Rn

}
. (A.3)

Moreover define the bilinear inner-product via
(·, ·) : X ×X → R with (f, g) = 〈f, g〉, (A.4)

for all f, g ∈ X. Then (A.1) is equivalent to
K(z, w) = Uw(z) + Vw(z), (A.5)

with Uw, Vw ∈ X uniquely determined by{
Re f(w) = (f, Uw),

Im f(w) = −(f, Vw),
for all f ∈ X. (A.6)


