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Abstract— The Local Polynomial Method (LPM) is a re-
cently developed procedure for nonparametric estimation of
the Frequency Response Function (FRF) of a linear system.
Compared with other nonparametric FRF estimates based on
windowing techniques, it has proved to be remarkably efficient
in reducing the leakage errors caused by the application of
Fourier transform techniques to non periodic data. In this
paper we propose a modification of the LPM that takes
account explicitly of constraints between the coefficientsof
the polynomials at neighbouring frequencies. This new variant
contributes a new and significant reduction in the Mean Square
Error of the FRF estimates. We also discuss the effects of the
various design parameters on the accuracy of the estimates.

I. INTRODUCTION

This paper addresses the nonparametric estimation of the
Frequency Response Function (FRF) of a linear dynamic
system from input-output measurements and it proposes a
new method for the reduction ofleakage errorsthat are inher-
ent in the computation of frequency response estimates. The
inputs are assumed known but not necessarily periodic, while
the outputs are perturbed by additive quasistationary noise.
There are many good reasons for the estimation of these
nonparametric quantities. The obtention of a high quality
estimate of the FRF can be of independent interest, yielding
a completely nonparametric approach to the identification
problem. The availability of this FRF estimate can give a
preliminary idea of the complexity of the system, and can be
used as a benchmark to test and validate parametric model
estimates. The advantage of such nonparametric approach
is that it avoids the difficult problem of structure selection,
which is really the hardest part of the identification problem.
The disadvantage is that for many applications (e.g. control
design, prediction, etc) a finite dimensional parametric model
is much more practical, if not essential.

Even if the identification of a parametric model is the final
goal, it has been shown that the estimation of a nonparamet-
ric model can be a very useful first step in a parametric es-
timation procedure because it allows one to compute a prior
nonparametric estimate of the noise spectrum, which can
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significantly improve the quality of the ensuing parametric
input-output model estimate, as well as avoid the possibility
of getting trapped in local minima during the minimization
procedure of the parametric identification criterion [1].

The estimation of the FRF of the input-output transfer
function is obtained from Fourier transforms of finite sets
of input and output data, and this introducesleakage errors
which are the frequency domain equivalent of transient errors
in time domain identification. These leakage errors can be
significantly reduced by the application of periodic input
signals; however, this is not always practically possible.As
a result, leakage errors have for a long time been a major
deterrent against the use of nonparametric estimates of the
FRF in the presence of random input signals. The main
contribution of this paper is a novel technique that leads
to a signficant reduction of these leakage errors.

Until the 80’s, leakage errors on FRF-measurements were
studied at the input and output signal level, without consider-
ing the linear system relation between the input and output
[2], [4]. In FRF-measurements, the leakage errors are due
to unknown past inputs and missing future outputs. Both
effects are highly structured, and as a result the leakage
errors can be represented in the frequency domain as rational
functions added to the output [5], [6], [7], [8], [9], [10].
This key observation that led to the adoption of windowing
techniques that are based on a differentiation of the input and
output signals around a central frequency, thereby reducing
the effect of the smooth leakage term [11]. One of the
drawbacks of these windowing techniques is that by reducing
the leakage errors the window introduces an interpolation
error.

Recently a new method, calledthe Local Polynomial
Method (LPM), has been introduced to estimate the FRF
and the power spectrum of the disturbing noise. Using a
Taylor series expansion, the transfer function and the leakage
term are expressed in a narrow window around some central
frequency as two local polynomial models. The coefficients
of this local polynomial are estimated by Least Squares using
the input and output data over the narrow window around
the frequency of interest [12], [13], [14]. The least squares
estimate of the local polynomial coefficients delivers an
estimate of the FRF at the central frequency from which the
leakage errors and the transient errors have been substantially
reduced. The LPM outperforms the classical methods: the
leakage errors are reduced with several orders of magnitude,
depending upon the system and the record length, at the
expense of an increase in the computation time.

In the LPM, the LS estimation of the polynomial coef-



ficients is applied locally at every frequency using data in
narrow windows around each frequency. Since neighbouring
intervals overlap, some of the estimated polynomial coef-
ficients appear in common in the LS problems formulated
over neighbouring intervals. This is not taken into account
in the solution of the standard Local Polynomial Method,
since the LS estimation problem solved over one window of
input-output data is solved independently of the LS problem
solved over neighbouring windows.

The contribution of this paper is to propose a modifica-
tion of the LPM that takes account of the appearance of
identical polynomial coefficients in neighbouring windows.
We call this new method theLocal Polynomial Method with
Constraints (LPMC). Introducing these constraints reduces
the variance error of the estimated coefficients since more
information is used for the estimation of each coefficient.
However, the bias error is increased since the coefficients
estimated over one frequency interval influence those esti-
mated on neighbouring intervals. Thus, a proper trade-off is
required, which can be achieved by adding the error on the
constraints to the LS criterion of LPM, with a proper scaling
between the two terms of the modified LS criterion. We shall
present the new LPMC, illustrate the benefits in terms of
accuracy of the estimated FRF, and discuss the influence of
its design parameters through some simulated examples.

In Section II we present the “classical LPM”. In Sec-
tion III we show how the constraints between neighbouring
parameter vectors can be introduced, while in Section IV we
compare the classical LPM with the new constrained version
on some simulated examples, which will illustrate the trade-
offs mentioned above. In Section V we explain how these
first results on the LPMC pave the way for further possible
improvements of the Local Polynomial Method.

II. THE LOCAL POLYNOMIAL METHOD

We start by presenting the ‘classical’ Local Polynomial
Method, first published in [14]. A complete analysis of the
LPM for the multiple-input multiple-output (MIMO) case
can be found in [12], [13]. Here we focus on the SISO case
for pedagogical reasons; the extension to MIMO systems is
straightforward but tedious.

Thus, consider a linear discrete time single-input single-
output (SISO) systemG0(q) that is excited with a known
random input signalu(t), and whose output is the sum of
the input contribution and of a disturbance termv(t). It is
assumed thatu(t) and v(t) are quasistationary [3] so that
asymptotic analysis can be used for the computation of the
Mean Square Error. In particular,v(t) can be modeled as the
output of a white-noise driven filter. Thus the input-output
system can be represented as

y(t) = G0(q)u(t) + v(t) = G0(q)u(t) +H0(q)e(t) (1)

whereq−1 is the backward shift operator,G0(q) andH0(q)
are causal rational functions ofq, ande(t) is zero mean white
noise with varianceσ2

e . This input-output representation
assumes an infinite data record of input and output signals,
for t = −∞, . . . , N−1. For a finite recordt = 0, . . . , N−1

- as it is in practical applications - this equation has to be
modified to take account of the initial condition (or transient)
terms tG and tH due to the action of the transfer function
G0 and the noise modelH0, leading to:

y(t) = G0(q)u(t) + tG(t) +H0(q)e(t) + tH(t). (2)

Using the discrete Fourier transform (DFT)

X(k) =
1√
N

N−1∑

t=0

x(t)e−j2πkt/N ,

an exact frequency domain formulation of (2) is obtained:

Y (k) = G0(Ωk)U(k) + TG(Ωk) +H0(Ωk)E(k) + TH(Ωk)
(3)

where the indexk points to the frequencykfs/N with fs the
sampling frequency, andΩk = ej2πk/N . The contributions
U,E, Y in (3) are anO(N0), while the transient termsTG

andTH are anO(N−1/2), whereX = O(Np) means that
limNp

→0 | X
Np | < ∞.

It is important to understand that (3) is an exact relation
[8], [9], [15], [16]. The transient termstG(t) and tH(t) are
rational forms inq−1 applied to a delta-input, while the
leakage termsTG and TH are rational forms inz−1, and
hence smooth functions of the frequency. For simplicity of
notation we shall from now on rewrite (3) as

Yk = GkUk + Tk + Vk, (4)

whereTk denotes the sum of the plant and noise leakage
errors andVk = H0(q)Ek. The basic idea of the LPM,
based on the smoothness of the transfer functionG0 and
of the transient termT as functions of frequency, is to
approximate these functions in a narrow frequency band
around a central frequencyΩk by a complex polynomial.
The complex polynomial parameters are estimated from the
experimental data collected in this frequency band. Next
Gk, at the central frequencyΩk, is retrieved from this
local polynomial model as the estimate of the FRF at that
frequencyΩk.

By the smoothness ofG0 andT , the following polynomial
representation holds for the frequency linesk+ r, with r =
0,±1, . . . ,±n:

Gk+r = Gk +

R∑

s=1

gs(k)r
s +O(

( r

N

)(R+1)

) (5)

Tk+r = Tk +

R∑

s=1

ts(k)r
s +N−

1

2O(
( r

N

)(R+1)

) (6)

We can now collectGk, Tk and all polynomial coefficients
into a 2(R + 1)-vector of unknown complex coefficients
defined as

θk
∆
= [Gk g1(k) . . . gR(k);Tk t1(k) . . . tR(k)]

T
, (7)

where AT denotes the transpose ofA. Rewriting (4) at
frequencyΩk+r and substitutingGk+r and Tk+r by their
expressions (5)-(6) while neglecting the remainder terms
allows one to re-expressYk+r as follows

Yk+r = K(R, k+r)θk+Vk+r, for r = 0,±1, . . . ,±n (8)



where K(R, k + r) is a 2(R + 1) row-vector that con-
tains both structural information (the powers ofr in the
polynomial expansions (5)-(6)) and input signal information.
We now collect the2n + 1 equations (8) obtained for
r = 0,±1, . . . ,±n into one matrix equation by defining the
(2n+ 1)-vectorsȲk,n and V̄k,n as follows:

Ȳk,n
∆
= [Yk−n Yk−n+1 . . . Yk . . . Yk+n−1 Yk+n]

T

V̄k,n
∆
= [Vk−n Vk−n+1 . . . Vk . . . Vk+n−1 Vk+n]

T

This then leads to the following matrix version of (8):

Ȳk,n = Kk,n(R, Ūk,n)θk + V̄k,n (9)

where the2(n+ 1)-vector Ūk,n is defined in the same way
asȲk,n andV̄k,n. The matrixKk,n(R, Ūk,n) is a2(n+1)×
2(R + 1) matrix whose structure is entirely determined by
the indicesn and R and which contains the input signals
Uk+r that appear in the input vector̄Uk,n. In the standard
LPM, the parameter estimatêθk is obtained by solving the
following LS problem:

min
θk

[
Ȳk,n −Kk,n(R, Ūk,n)θk

]H [
Ȳk,n −Kk,n(R, Ūk,n)θk

]

(10)
where for any complex vector or matrixA, AH denotes its
Hermitian conjugate transpose. It follows from (7) that an
estimate of the FRF at the frequencyΩk is then obtained
as the first component of the estimateθ̂k: Ĝ(Ωk) = θ̂k(1).
In order to get a full column rank matrixKk,n(R, Ūk,n)
the following condition is required between the number of
spectral lines in the frequency window aroundΩk and the
order of the polynomial approximation:n ≥ R + 1. Taking
a larger number of frequencies in the frequency window
reduces the variance of the parameter estimate because the
noise is averaged over a larger number of data, and the
leakage error decreases with increasingR. On the other
hand, the larger the window, the larger the bias error (or
interpolation error) caused by the fact that the transfer
function varies over the interval. The smallest interpolation
error is obtained forn = R+1. A detailed error analysis of
the LPM is presented in [12] where this bias-variance trade-
off is discussed. In practice, the LPM is mostly used with
polynomials of degree two only, i.e.R = 1 or 2, which offers
a good compromise between leakage error and interpolation
error.

III. LPM WITH CONSTRAINTS

In the LPM described above each parameter vectorθk
is estimated using local dataUk+r, Yk+r in a frequency
window defined byr = 0,±1, . . . ,±n. As a result, for
r ≤ n, the estimates,θk andθk+r are computed by solving
two separate Least Squares problems that use data which
partly overlap. This means that these estimates are correlated
because the data that are used in the two LS problems are
correlated. But in addition, for|r| ≤ n, the parameters inθk
andθk+r are not independent, since they are related by the

polynomial constraints (5)-(6). Indeed, it follows from (5)-
(6) that up to the remainder terms appearing in these expres-
sions, the following relationships exist betweenθk+r andθk,
for r = 0,±1, . . . ,±n:

Gk+r = θk+r(1) = θk(1) +

R∑

s=1

θk(s+ 1)rs (11)

Tk+r = θk+r(R + 2) = θk(R + 2) +

R∑

s=1

θk(s+R+ 2)rs

In the standard LPM these relationships have not been
exploited. The contribution of this paper is to explore ways
in which these constraints can be exploited to decrease the
Mean Square Error (MSE) in the estimates of the parameters
θk, k = 1, . . . , N , and in particular the MSE of the FRF
estimatesĜ(Ωk), which are the first component of these
vectorsθk. Observe that (11) represents4n constraints on
the 2(R + 1)-parameter vectorθk, with n ≥ R + 1. If the
θk+r, r = ±1, . . . ,±n, were considered as known data in
the estimation problem ofθk, thenθk would be entirely de-
termined by this set of equations. Thus adding the constraints
(11) to the LS problem (10) would lead to an overdetermined
set of constraints on the solutionθk. However, theθk+r are
themselves the solution of a LS problem (10) that depends on
the dataŪk+r, Ȳk+r. Thus, in the formulation of a modified
LPM that takes these constraints into account one needs to
find a compromise between “letting the data speak”, and
“letting the constraints speak”.

A first idea would be to formulate one global optimization
problem for {θ0, . . . , θN−1} using all data{Uk, Yk, k =
0, . . . , N − 1} and taking the constraints into account. This
would significantly increase the computational load and the
attractivity of thelocal polynomial approach would be lost.

The alternative proposed in this paper is to keep the
advantage of the local computation ofθk based on data
Ūk,n and Ȳk,n in a narrow frequency band aroundΩk, but
to turn the local LS criterion (10) into a multiobjective LS
criterion by adding a penalty on the mismatch between left
and right hand side of the constraints (11). In order to arrive
at a feasible implementation of this idea, we first analyze
the constraints.

A. Analysis of the constraints
We first rewrite the constraints (11) in matrix form. In order
to do so, we introduce the following matrices, for positive
integersR andn.

M(R,−n)
∆
=




1 −n (−n)2 . . . (−n)R

...
...

...
...

...
1 −2 (−2)2 . . . (−2)R

1 −1 (−1)2 . . . (−1)R




M(R, n)
∆
=




1 1 1 . . . 1
1 2 22 . . . 2R

...
...

...
...

...
1 n n2 . . . nR


 (12)



Notice that the matricesM(R,−n) andM(R, n) are Van-
dermonde matrices; therefore, forn ≥ R+1, these matrices
have rankR+1. The constraints (11) can be written in matrix
form as follows.




M(R, n) 0
0 M(R, n)

M(R,−n) 0
0 M(R,−n)


 θk =




Ψk

. . .
Φk


 , (13)

or, equivalently, as

M̄θk = Ξk (14)

where
Ψk

∆
= [θk+1(1) . . . θk+n(1); θk+1(R+ 2) . . . θk+n(R+ 2)]T ,

Φk , [θk−n(1) . . . θk−1(1); θk−n(R + 2) . . . θk−1(R + 2)]T ,
Ξk = [ΨT

k ΦT
k ]

T andM̄ is the block matrix on the left hand
side of (13).

The constraints (13) split up into two subsets of con-
straints. The top half relates the parameter vectorθk to
parameter vectors at higher frequencies in the frequency
window, while the bottom half relatesθk to parameters at
lower frequencies. In addition, forn ≥ R+ 1 each of these
two sets of equations is an overdetermined set in that it
contains2n equations forR+ 1 unknowns.M(R,−n) and
M(R, n) have full column rank and hence the top or the
bottom half of (14) is sufficient to fully determine the vector
θk. The difficulty is that the parameters on the right hand
side of (13) are unknown. One can think of two ways to
overcome this difficulty.

The first is arecursive (in k) solution to the local LS
problem, starting fromk = 0 and going up in frequencies,
say, and applying one-sided constraints only, i.e. the
solution for θk is obtained using only the bottom half
of the constraints, namely those containingθk−r(1) and
θk−r(R + 2) for r = 1, . . . , n. In order to initialize the
recursions, the firstn vectors,θ0, . . . , θn−1, can be set at the
estimates obtained by the standard LPM. We have applied
this recursive procedure to a range of systems and found
that, in each case, it performed worse than the two-step
procedure that we now describe.

B. Two-step implementation of the LPM with constraints
In the first step,θk is estimated for allk = 0, . . . , N − 1
using the standard LPM, yielding estimates that we denote
θ̂
(LPM)
k , k = 0, . . . , N − 1. These estimates are then used in

the right hand side of the constraints (13), alternatively (14),
yielding the constraints

M̄θk = Ξ̂k, (15)

which are now entirely feasible. As explained above, solving
the LS problem (10) subject to (15) would yield an estimate
θk that is entirely determined by the constraints, leaving no
degrees of freedom for the minimization of the LS criterion.
Instead, a penalty is added to the LS criterion (10) which
represents the2-norm of the error on the constraints (15).
The modified LPM is thus obtained by solving, fork =

0, . . . , N − 1, the following multiobjective LS problem

min
θk

{[
Ȳk,n −Kk,n(R, Ūk,n)θk

]H [
Ȳk,n −Kk,n(R, Ūk,n)θk

]

+λΦu(Ωk)
(
M̄θk − Ξ̂k

)H (
M̄θk − Ξ̂k

)}
. (16)

The weighting factorλ allows one to tune the relative im-
portance of the constraint mismatch versus the error fit to the
measured data. Increasingλ will impose more smoothness
in the estimated FRF, thus decreasing the variance error
at the expense of an increased bias error. The scaling by
the spectrum of the input,Φu(Ωk), ensures that the relative
importance of the two terms of (16) are independent of the
power of the input signal since the first term is proportional
to Φu(Ωk). The automatic tuning ofλ is an important issue
that is out of the scope of this paper.

IV. LPM WITH CONSTRAINTS AT WORK

In this section we illustrate the behaviour of the LPM
with constraints, denoted LPMC, by presenting the results
of Monte-Carlo simulations obtained on two different input-
output systems and noise models. In particular we examine
the role of the three design parameters: the degreeR of the
polynomial approximation, the width2n of the frequency
window over which the local estimates are computed, and
the weightingλ that accounts for the tradeoff between data
information and structural information, i.e. the knowledge
that the coefficients of neighbouring parameter vectors are
related by the polynomial constraints.
Example 1
We first consider a system with the following Box-Jenkins
(BJ) structure:

y(t) = 0.1943
(q + 1)2

q2 + 0.7125q+ 0.7449
u(t)

+ 0.1084
(q + 1)2

q2 − 0.8773q+ 0.3111
e(t)

wheree(t) is zero mean white noise with standard deviation
σe and where the input signalu(t) is a colored noise
generated by

u(t) = 0.5276
(q + 1)3

q3 + 1.7600q2 + 1.1829q+ 0.2781
w(t)

(17)
with w(t) white noise of standard deviationσw = 1.

200 Monte-Carlo runs are used to produce 200 sets of
input-output data, each of length 8192, from which the first
1024 are eliminated in order to remove transient effects
of the simulation; thus, each data set contains 7168 input-
output data. The LPMC is applied on each of these 200
runs to estimate the FRFG0(Ωk) for k = 0, . . . , 7168,
obtained with the standard LPM, denotedĜ(LPM)(Ωk), and
with the constrained estimate, denotedĜ(LPMC)(Ωk). The
Mean Square Errors between these two estimates and the
exact G0(Ωk) are computed and plotted as a function of
frequency, in a log-scale. Finally, the average of these mean
square errors over all frequencies are computed, because
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Fig. 1. BJ model. Top line (red dotted) = true FRF, middle line(black) =
MSE onĜ(LPM)(Ωk), bottom line (cyan) = MSE on̂G(LPMC)(Ωk) as
a function of frequency; all plots in dB.R = 2, 2n = 6, λ = 0.05, σe =
0.05

these numbers give a global indication of the quality of each
of the two estimates.

Figure 1 shows the Mean Square Error obtained using the
LPM and LPMC estimates on the BJ system described above,
with a noisee with standard deviationσe = 0.05, for the
following design choices: polynomial degreeR = 2, local
bandwidth2n = 6 and weightingλ = 0.05. The average
MSE, over all frequencies, of the FRF estimates are as
follows: for Ĝ(LPM) : 0.00123, for Ĝ(LPMC) : 0.00035. The
signal to noise ratio for this first experiment, expressed as10
times the logarithm of the input contribution to the output
power spectrumΦ(u)

y (Ωk) divided by the noise contribution
Φv(Ωk), is presented as the top line in Figure 2; the other
two lines represent, respectively,Φ(u)

y (Ωk) andΦv(Ωk).
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Fig. 2. BJ model. Top line (black dotted) = signal to noise ratio, middle
line (red dash-dot) = output power due to input signal, bottom line (cyan
full) = noise power on output as a function of frequency; all plots in dB.
R = 2, 2n = 6, λ = 0.05, σe = 0.05

Figure 3 provides the same information as Figure 1 for
the same system and with the same design parameters, but
with an increased value of the white noise levele, i.e. σe =
0.15. The average MSE over all frequencies are, respectively,
0.0111 for Ĝ(LPM) and0.0024 for Ĝ(LPMC). We observe
that the superiority of the constrained LPM estimate over the
classical one is even higher when the noise level is higher.
The addition of constraints has a smoothing effect on the
estimate, whose contribution is all the more important when
the data are more noisy.

We now examine the effect of the polynomial degree and
of the bandwidth. The third simulation is performed with the
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Fig. 3. BJ model. Top line (red dotted) = true FRF, middle line(black) =
MSE onĜ(LPM)(Ωk), bottom line (cyan) = MSE on̂G(LPMC)(Ωk) as
a function of frequency; all plots in dB.R = 2, 2n = 6, λ = 0.05, σe =
0.15

same system and design variables as the first, except thatR =
1 and2n = 4. The MSE of the two estimates are presented in
Figure 4. The figure shows that the superiority of the LPMC
estimate over the LPM estimate is significantly reduced. The
reason is that with lowerR andn, the number of constraints
and hence their impact is significantly reduced. To confirm
this interpretation, we have multiplied the weighting factor
λ by 10, i.e. λ = 0.5 in order to give more weight to the
constraints. The results are shown in Figure 5, which shows
that this increased penalty on the constraint mismatch leads
to a much smaller MSE for̂G(LPMC)(Ωk).
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Fig. 4. BJ model. Top line (red dotted) = true FRF, middle line(black
with crosses) = MSE on̂G(LPM)(Ωk), bottom line (cyan) = MSE on
Ĝ(LPMC)(Ωk) as a function of frequency; all plots in dB.R = 1, 2n =
4, λ = 0.05, σe = 0.05
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Fig. 5. BJ model. Top line (red dotted) = true FRF, middle line(black)=
MSE onĜ(LPM)(Ωk), bottom line (cyan) = MSE on̂G(LPMC)(Ωk) as a
function of frequency; all plots in dB.R = 1, 2n = 4, λ = 0.5, σe = 0.05



Example 2
We now consider an ARX system with the same input-output
model as in example 1:

y(t) = 0.1943
(q + 1)2

q2 + 0.7125q+ 0.7449
u(t)

+
1

q2 + 0.7125q+ 0.7449
e(t)

where e(t) is white noise with standard deviationσe and
where the input signalu(t) is now a white noise se-
quence with standard deviationσu = 1. We perform 200
Monte Carlo simulations as before, computing again the
Mean Square Error between the true FRF and the estimates
Ĝ(LPM)(Ωk) andĜ(LPMC)(Ωk), with the following design
variables:R = 2, n = 3, λ = 1 and σe = 0.05. The
average over all frequencies of the mean square errors
on Ĝ(LPM)(Ωk) and on Ĝ(LPMC)(Ωk) are, respectively,
0.0111 and0.0026, a ratio of improvement of more than 4 in
favour of the new constrained LPM. The results are shown
in Figure 6, and the signal to noise ratio is represented in
Figure 7.
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Fig. 6. ARX model. Top line (red dotted) = true FRF, middle line (black)=
MSE onĜ(LPM)(Ωk), bottom line (cyan) = MSE on̂G(LPMC)(Ωk) as a
function of frequency; all plots in dB.R = 1, 2n = 4, λ = 0.5, σe = 0.05
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Fig. 7. ARX model. Top line (black dotted) = signal to noise ratio, middle
line (red dash-dot) = output power due to input signal, bottom line (cyan
full) = noise power on output as a function of frequency; all plots in dB.
R = 2, 2n = 6, λ = 0.05, σe = 0.05

V. CONCLUSIONS AND FUTURE WORK

We have proposed a modification to the Local Polynomial
Method for the computation of a non parametric estimate of
the FRF of a linear time-invariant system. The modification
consists of applying to the estimated parameter vectors

the constraints that exist between estimates at neighbouring
frequencies; the classical LPM was treating these parameter
vectors as independent. The constrained estimates have been
shown to yield estimates with significantly smaller mean
square errors. The gain in accuracy that can be made depends
on the choice of a small number of design parameters, whose
impact we have exhibited. Our next goal is to provide an
almost automatic procedure for the selection of these design
parameters, based on the collected data. In addition, we plan
to compare the performance of this new Constrained LPM
with a one-step procedure, in which the full set of parameters
θk over the whole frequency range would be computed as
the solution of one large LS problem subject to a2-norm
penalty on the constraint errors.
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