The Local Polynomial Method for nonparametric system identification:
improvements and experimentation

Michel Gevers, Rik Pintelon and Johan Schoukens

Abstract— The Local Polynomial Method (LPM) is a re- significantly improve the quality of the ensuing parametric
cently developed procedure for nonparametric estimation jnput-output model estimate, as well as avoid the possibili
the Frequency Response Function (FRF) of a linear system. f gatting trapped in local minima during the minimization
Compared with other nonparametric FRF estimates based on L A oo
windowing techniques, it has proved to be remarkably efficiat procedure_of the parametric |dent|f|cat|_on criterion [1].
in reducing the leakage errors caused by the application of ~ The estimation of the FRF of the input-output transfer
Fourier transform techniques to non periodic data. In this function is obtained from Fourier transforms of finite sets
paper we propose a modification of the LPM that takes of input and output data, and this introdudeakage errors
account explicitly of constraints between the coefficientf which are the frequency domain equivalent of transientrerro

the polynomials at neighbouring frequencies. This new vaent . fi d in identificati Th leak b
contributes a new and significant reduction in the Mean Squag "' IMe domain identification. These leakage errors can be

Error of the FRF estimates. We also discuss the effects of the Significantly reduced by the application of periodic input
various design parameters on the accuracy of the estimates.  signals; however, this is not always practically possidle.
a result, leakage errors have for a long time been a major
. INTRODUCTION deterrent against the use of nonparametric estimates of the
This paper addresses the nonparametric estimation of th&F in the presence of random input signals. The main
Frequency Response Function (FRF) of a linear dynamimontribution of this paper is a novel technique that leads
system from input-output measurements and it proposest@a signficant reduction of these leakage errors.
new method for the reduction tdakage errorghat are inher- Until the 80's, leakage errors on FRF-measurements were
ent in the computation of frequency response estimates. Thtudied at the input and output signal level, without coesid
inputs are assumed known but not necessarily periodicewhiing the linear system relation between the input and output
the outputs are perturbed by additive quasistationaryenoid2], [4]. In FRF-measurements, the leakage errors are due
There are many good reasons for the estimation of thet® unknown past inputs and missing future outputs. Both
nonparametric quantities. The obtention of a high qualitgffects are highly structured, and as a result the leakage
estimate of the FRF can be of independent interest, yieldirggrors can be represented in the frequency domain as rhtiona
a completely nonparametric approach to the identificatiofunctions added to the output [5], [6], [7], [8], [9], [10].
problem. The availability of this FRF estimate can give d&his key observation that led to the adoption of windowing
preliminary idea of the complexity of the system, and can btechniques that are based on a differentiation of the inpdt a
used as a benchmark to test and validate parametric moaeitput signals around a central frequency, thereby reducin
estimates. The advantage of such nonparametric approdbk effect of the smooth leakage term [11]. One of the
is that it avoids the difficult problem of structure selentio drawbacks of these windowing techniques is that by reducing
which is really the hardest part of the identification proble the leakage errors the window introduces an interpolation
The disadvantage is that for many applications (e.g. contrerror.
design, prediction, etc) a finite dimensional parametridelo  Recently a new method, callethe Local Polynomial
is much more practical, if not essential. Method (LPM) has been introduced to estimate the FRF
Even if the identification of a parametric model is the finaknd the power spectrum of the disturbing noise. Using a
goal, it has been shown that the estimation of a nonparamdaylor series expansion, the transfer function and thedgek
ric model can be a very useful first step in a parametric eserm are expressed in a narrow window around some central
timation procedure because it allows one to compute a prifrequency as two local polynomial models. The coefficients
nonparametric estimate of the noise spectrum, which caf this local polynomial are estimated by Least Squaresgusin
A ) the input and output data over the narrow window around
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ficients is applied locally at every frequency using data in as it is in practical applications - this equation has to be
narrow windows around each frequency. Since neighbourimgodified to take account of the initial condition (or tramgje
intervals overlap, some of the estimated polynomial coetermsts andty due to the action of the transfer function
ficients appear in common in the LS problems formulated:, and the noise moddll,, leading to:
over neighbouring intervals. This is not taken into account _
in the solution of the standard Local Polynomial Method, y(t) = Gola)u(t) +1a(t) + Holge(®) +tu(t)- (2)
since the LS estimation problem solved over one window dfising the discrete Fourier transform (DFT)
input-output data is solved independently of the LS problem | N-1
solved over neighbouring windows. X(k) = — Z w(t)e—j2wkt/N7

The contribution of this paper is to propose a modifica- VN t=0
tion of the LPM that takes account of the appearance @fn exact frequency domain formulation of (2) is obtained:

identical polynomial coefficients in neighbouring windows
We call this new method thieocal Polynomial Method with Y (k) = Go(Q)U (k) + Ta () + Ho () E(k) + T ()
Constraints (LPMC) Introducing these constraints reduces i i , (3)
the variance error of the estimated coefficients since moy&here_the index: points to the frequie]CC&fs/N W'th_ Js f[he
information is used for the estimation of each coefficienSaMPling frequency, anﬂg = €27t/ The contributions
However, the bias error is increased since the coefficients £+ in (3) are a”?gN ), while the transient term8¢
estimated over one frequency interval influence those esfnd 7 are. anO(N~!/%), where X = O(N”) means that
mated on neighbouring intervals. Thus, a proper tradesoff N7 —0 77| < oo , .
required, which can be achieved by adding the error on the It is important to understa_md that (3) is an exact relation
constraints to the LS criterion of LPM, with a proper scaling[8]’_ (81, [15], [1(_5]' T?e tran_S|ent termsg(t)_ and tH(t)_ are
between the two terms of the modified LS criterion. We shaf@ional forms ing~" applied to a delta-input, while the
present the new LPMC, illustrate the benefits in terms dgpakage termdg and Ty are rational forms ire”", and
accuracy of the estimated FRF, and discuss the influence I?)‘?nc,e smooth functions of the freq.uency. For simplicity of
its design parameters through some simulated examples. hotation we shall from now on rewrite (3) as

In Section Il we present the “classical LPM”. In Sec- Y. = GiUp + T + Vi, 4)
tion Il we show how the constraints between neighbourin

: o : here T}, denotes the sum of the plant and noise leakage
rameter v r n intr while in ion IV w -
parameter vectors can be introduced, e in Sectio errors andV, = Hy(q)Ex. The basic idea of the LPM,

compare the classical LPM with the new constrained versiqb d h ih f the t fer functonand
on some simulated examples, which will illustrate the trade ased on the smoothness ot the transter funcunan
f the transient ternil’ as functions of frequency, is to

offs mentioned above. In Section V we explain how thes@ imate th funci . f band

first results on the LPMC pave the way for further possiblgpprog'ma € 0 elsm: unctions Ln a narr0\|/v reqluency_ Ian

improvements of the Local Polynomial Method. around a centra reqL_Jendyk y a complex polynomial.
The complex polynomial parameters are estimated from the

Il. THE LOCAL POLYNOMIAL METHOD experimental data collected in this frequency band. Next

We start by presenting the ‘classical’ Local Polynomiafs at the central frequencyl,, is retrieved from this
Method, first published in [14]. A complete analysis of thdocal polynomial model as the estimate of the FRF at that
LPM for the multiple-input multiple-output (MIMO) case frequencytl. _ _
can be found in [12], [13]. Here we focus on the SISO case BY the smoothness @, andT', the following polynomial
for pedagogical reasons; the extension to MIMO systems f§Presentation holds for the frequency lies- r, with r =

straightforward but tedious. 0,x1,...,+n

Thus, consider a linear discrete time single-input single- R P (B+1)
output (SISO) systenti(q) that is excited with a known  Giir = Gi+ Y ga(k)r® + O((N) ) (5
random input signak(t), and whose output is the sum of s=1
the input contribution and of a disturbance tentt). It is i . 1 7y (R+1)
assumed that(t) and v(t) are quasistationary [3] so that Tepr = Tt ths(k)r +N 20((ﬁ) ) (6)

asymptotic analysis can be used for the computation of the _ o
Mean Square Error. In particular(t) can be modeled as the We can now collecGy, T); and all polynomial coefficients
output of a white-noise driven filter. Thus the input-outputNt0 @ 2(R + 1)-vector of unknown complex coefficients
system can be represented as defined as

(1) = Golau(®) + v(t) = Golayutt) + Holaye(t) (1) 0= [Gx ) o gnR: T (k) ta(B", (@)
where AT denotes the transpose of. Rewriting (4) at

are causal rational functions gfande(t) is zero mean white frequency(;.y, and substitutingCiy.» and Ty by their
; . . 9 o . _expressions (5)-(6) while neglecting the remainder terms
noise with variances?. This input-output representation
° llows one to re-express;., as follows

assumes an infinite data record of input and output signafi,
fort = —oc0,..., N —1. For afinite record = 0,..., N —1 Yitr = K(R, k+7)0k+ Vi, for r=0,£1,...,£n (8)

whereq ! is the backward shift operato(q) and Hy(q)



where K(R,k + r) is a 2(R 4+ 1) row-vector that con- polynomial constraints (5)-(6). Indeed, it follows from){5
tains both structural information (the powers ofin the (6) that up to the remainder terms appearing in these expres-
polynomial expansions (5)-(6)) and input signal inforroati ~ sions, the following relationships exist betwegn . andfy,

We now collect the2n + 1 equations (8) obtained for for r =0,£1,...,+n:
r=0,+1,...,4n into one matrix equation by defining the R
(2n + 1)-vectorsYy, , andVj, ,, as follows: Grir = Opin(1) = 0(1) + Zﬁk(s + 1) (11)
Ven 2 [Yien Yienst - Yi oo Yino1 Yien]” = R
Vk,n 2 [Vk—n Vicn+1 - Ve oo . Vigna Vk+n]T Thyr = 9k+r(R + 2) = Gk(R + 2) + Z 9}9(5 + R+ 2)7"8
s=1

This then leads to the following matrix version of (8): In the standard LPM these relationships have not been

> - o exploited. The contribution of this paper is to explore ways

Yien = Kiin (B, Uin)Or & Vi © in which these constraints can be exploited to decrease the
where the2(n + 1)-vector Uy, ,, is defined in the same way Mean Square Error (MSE) in the estimates of the parameters
asYy,, andVi .. The matrixKy. , (R, Uy.,) is a2(n+1) x Ok, k = 1,...,N, and in particular the MSE of the FRF
2(R + 1) matrix whose structure is entirely determined byestimatesG(€2), which are the first component of these
the indicesn and R and which contains the input signalsVvectorsfy. Observe that (11) represents constraints on
Ux+. that appear in the input vectdfy, .. In the standard the 2(E + 1)-parameter vectof, with n > R + L. If the

LPM, the parameter estimath is obtained by solving the Ok+r, 7 = £1,...,4n, were considered as known data in
following LS problem: the estimation problem df,, thend;, would be entirely de-

termined by this set of equations. Thus adding the consgrain
min [V — Kpn (R, Ur,n) 0] H (Vi — Kion(R, Ug,n) 0] (11) to the LS problem (10) would lead to an overdetermined
O (10) set of constraints on the solutigh. However, thed,.,. are
. I - themselves the solution of a LS problem (10) that depends on
where for any complex vector or matrig, A denotes its he datally,., Vs, Thus, in the formulation of a modified

Hermitian conj ran . It follows from (7) th o
er tian conjugate transpose. It follo /S 110 (7) t. ata PM that takes these constraints into account one needs to
estimate of the FRF at the frequenfy, is then obtained _ : e N

A find a compromise between “letting the data speak”, and

as the first component of the estimatg G(€2) = 6 (1). “letting the constraints speak”

In order to get a full column rank matri¥ ,,(R, U ) o Lo
the following condition is required between the number of A first idea would be to formulate one global optimization
problem for {fy,...,0x_1} using all data{Uy, Y, k =

spectral lines in the frequency window aroufig and the ; L .
P d y ful 0,...,N — 1} and taking the constraints into account. This

order of the polynomial approximatiom: > R + 1. Taking o . )
a larger number of frequencies in the frequency windO\)olou'd significantly increase the computational load and the

reduces the variance of the parameter estimate because qﬁéactlwty of thelocal polynom|al a.pproach WOUld be lost.
noise is averaged over a larger number of data, and the 'he alternative proposed in th,'s paper is to keep the
leakage error decreases with increasiig On the other 2advantage of the local computation 6f based on data
hand, the larger the window, the larger the bias error (d¢k» @ndYkn in @ narrow frequency band arousi}, but
interpolation error) caused by the fact that the transfdP, tUrn the local LS criterion (10) into a multiobjective LS
function varies over the interval. The smallest intergotat CTitérion by adding a penalty on the mismatch between left
error is obtained fon = R+ 1. A detailed error analysis of and right _ha”‘%' side of the F;onstramts _(11)' In Ofdef to arriv
the LPM is presented in [12] where this bias-variance tradét @ feaS|bI_e implementation of this idea, we first analyze
off is discussed. In practice, the LPM is mostly used with€ constraints.

polynomials of degree two only, i.& = 1 or 2, which offers ) ]

a good compromise between leakage error and interpolatiofy- Analysis of the constraints

error. We first rewrite the constraints (11) in matrix form. In order
to do so, we introduce the following matrices, for positive
[1l. LPM WITH CONSTRAINTS integersk andn.
. _ 2 R
In the LPM described above each parameter veéfor I —n (-n)* ... (-n)

is estimated using local dat8l., Yr+,» in a frequency M(R, —n) A

window defined byr = 0,+1,...,4+n. As a result, for 1 -2 (-2)2 (—2)%
r < n, the estimates};, and#f., are computed by solving 1 -1 (=1)2 (—1)R
two separate Least Squares problems that use data which 111 1
partly overlap. This means that these estimates are ctadela 1 9 92 oR

because the data that are used in the two LS problems are M(R,n)
correlated. But in addition, for| < n, the parameters it oo : :
and @, are not independent, since they are related by the 1 n n? ... nft

(12)




Notice that the matriced/ (R, —n) and M (R,n) are Van- 0,..., N — 1, the following multiobjective LS problem
dermonde matrices; therefore, for> R+ 1, these matrices B _ o B

have rankR+1. The constraints (11) can be written in matrixin { Wi = K (R, Ukn)0k]) ™ [Yien — Kion (R, Ug,n )0k
form as follows.

~NH ~
M(R, n) 0 \I]k +)\(I)U(Qk) (M@k - .:k) (M@k - :k) } . (16)
M(RO ) M(é%,n) O = | ... |, (13) The weighting factorA gllow_s one to tune the relative_ im-
0’ M(R, —n) Dy, portance of the constraln_t mismatch versus the error fitéo th
’ measured data. Increasingwill impose more smoothness
or, equivalently, as in the estimated FRF, thus decreasing the variance error
M6, = =y, (14) at the expense of an increased bias error. The scaling by
the spectrum of the inpu®, (Q), ensures that the relative
where importance of the two terms of (16) are independent of the

¥, 2 [Or1(1) .. Opgn(1); O (R+2) ... 0pin(R+2)]T, Power of the input signal since the first term is proportional
Bp 2 [Opn(1).. . Op_1(1);0p—n(R+2)...0k_1(R+2)]T, 10 P,(Q). The automatic tuning of is an important issue
=p = [97 ®]]T and M is the block matrix on the left hand that is out of the scope of this paper.

side of (13).
The constraints (13) split up into two subsets of con- IV. LPMWITH CONSTRAINTS AT WORK
straints. The top half relates the parameter vedprto In this section we illustrate the behaviour of the LPM

parameter vectors at higher frequencies in the frequenwyith constraints, denoted LPMC, by presenting the results
window, while the bottom half relate$, to parameters at of Monte-Carlo simulations obtained on two different input
lower frequencies. In addition, for > R + 1 each of these output systems and noise models. In particular we examine
two sets of equations is an overdetermined set in that tite role of the three design parameters: the degted the
contains2n equations forR + 1 unknowns.M (R, —n) and  polynomial approximation, the widtln of the frequency
M (R,n) have full column rank and hence the top or thevindow over which the local estimates are computed, and
bottom half of (14) is sufficient to fully determine the vecto the weightingX that accounts for the tradeoff between data
0. The difficulty is that the parameters on the right handhformation and structural information, i.e. the knowledg
side of (13) are unknown. One can think of two ways tdhat the coefficients of neighbouring parameter vectors are
overcome this difficulty. related by the polynomial constraints.

The first is arecursive (in k) solution to the local LS Example 1
problem, starting fronk = 0 and going up in frequencies, We first consider a system with the following Box-Jenkins
say, and applying one-sided constraints only, i.e. th@J) structure:

solution for 6, is obtained using only the bottom half (q+1)2

of the constraints, namely those containifig_,.(1) and y(t) = 0.1943— u(t)
Op—r(R 4+ 2) for r = 1,...,n. In order to initialize the q +0.7125q450.7449
recursions, the first vectorsdy,...,0,_1, can be set at the + 0.1084 (@+1) e(t)
estimates obtained by the standard LPM. We have applied q* —0.8773¢ + 0.3111

this recursive procedure to a range of systems and fouRgherec(t) is zero mean white noise with standard deviation
that, in each case, it performed worse than the two-step and where the input signak(t) is a colored noise

procedure that we now describe. generated by

B. Two-step implementation of the LPM with constraints u(t) = 0.5276 (¢ +1)° wl(t)
In the first step,;, is estimated for allk = 0,...,N — 1 q® +1.7600¢> + 1.1829¢ + 0.2781 17
using the standard LPM, yielding estimates that we denote_th ) whit . f standard deviati _1 (
§EPM) 0. N —1. These estimates are then used il 1 %(f) White noise of standard deviatian, = 1.

k )
the right hand side of the constraints (13), alternativéi)(

yielding the constraints

200 Monte-Carlo runs are used to produce 200 sets of
input-output data, each of length 8192, from which the first
1024 are eliminated in order to remove transient effects

MOy = =5, (15) of the simulation; thus, each data set contains 7168 input-
output data. The LPMC is applied on each of these 200
which are now entirely feasible. As explained above, sgvinruns to estimate the FRE () for £k = 0,...,7168,

the LS problem (10) subject to (15) would yield an estimatebtained with the standard LPM, denotef ") ((;), and

0 that is entirely determined by the constraints, leaving nwith the constrained estimate, denot@t“"")(Q;). The
degrees of freedom for the minimization of the LS criterionMean Square Errors between these two estimates and the
Instead, a penalty is added to the LS criterion (10) whickxact G(£2x) are computed and plotted as a function of
represents th@-norm of the error on the constraints (15).frequency, in a log-scale. Finally, the average of thesenmea
The modified LPM is thus obtained by solving, féar=  square errors over all frequencies are computed, because
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Fig. 1. BJ model. Top line (red dotted) = true FRF, middle lipkack) =  Fig. 3. BJ model. Top line (red dotted) = true FRF, middle libtack) =
MSE onG(LPM) (), bottom line (cyan) = MSE o6 (EPMC) () as  MSE onG(EPM)(Q,), bottom line (cyan) = MSE oG (EPMC) () as
a function of frequency; all plots in dBR = 2,2n = 6, A\ = 0.05,0e = a function of frequency; all plots in dBR = 2,2n = 6, A = 0.05,0e =
0.05 0.15

these numbers give a global indication of the quality of eacame system and design variables as the first, exceplthat

of the two estimates. 1 and2n = 4. The MSE of the two estimates are presented in
Figure 1 shows the Mean Square Error obtained using tidgure 4. The figure shows that the superiority of the LPMC

LPM and LPMC estimates on the BJ system described abogstimate over the LPM estimate is significantly reduced. The

with a noisee with standard deviatiom. = 0.05, for the reason is that with loweR andn, the number of constraints

following design choices: polynomial degrée = 2, local and hence their impact is significantly reduced. To confirm

bandwidth2n = 6 and weighting\ = 0.05. The average this interpretation, we have multiplied the weighting fact

MSE, over all frequencies, of the FRF estimates are asby 10, i.e. A = 0.5 in order to give more weight to the

follows: for G(LPM) . 0.00123, for G(EPMC) . 0.00035. The constraints. The results are shown in Figure 5, which shows

signal to noise ratio for this first experiment, expressetitas that this increased penalty on the constraint mismatchslead

times the logarithm of the input contribution to the output® & much smaller MSE fo&(“72 ) (Qy,).

power spectrun@l(,“)(ﬂk) divided by the noise contribution

®, (), is presented as the top line in Figure 2; the oth

two lines represent, respective@é“)(ﬂk) and @, (). T

Mean Square Eors in 68

. Fig. 4. BJ model. Top line (red dotted) = true FRF, middle liintack
s ‘ ‘ ‘ ‘ ‘ with crosses) = MSE orG(:PM)(Q,), bottom line (cyan) = MSE on
) GLPMC) () as a function of frequency; all plots in dBR = 1,2n =
4\ = 0.05,00 = 0.05

Fig. 2. BJ model. Top line (black dotted) = signal to noiséoramiddle
line (red dash-dot) = output power due to input signal, botime (cyan
full) = noise power on output as a function of frequency; aditg in dB.
R =2,2n =6, =0.05,0. = 0.05

Figure 3 provides the same information as Figure 1 1
the same system and with the same design parameters
with an increased value of the white noise lewgl.e. o, =
0.15. The average MSE over all frequencies are, respectivi
0.0111 for GPM) and0.0024 for GUPME)  We observe
that the superiority of the constrained LPM estimate over 1
classical one is even higher when the noise level is higt
The addition of constraints has a smoothing effect on the

estimate, whose contribution is all the more important whefj9: 5- BJ model. Top line (red dotted) = true FRF, middle I{beack)=
P MSE onG(LPM) (), bottom line (cyan) = MSE oG (EPMC) () as a

the data are mor_e nOiSy- ) function of frequency; all plots in dBR = 1,2n = 4, A = 0.5, 0. = 0.05
We now examine the effect of the polynomial degree and

of the bandwidth. The third simulation is performed with the

Mean Square Eors in 68




Example 2

the constraints that exist between estimates at neightopuri

We now consider an ARX system with the same input-outpdtequencies; the classical LPM was treating these paramete

model as in example 1:
(¢ +1)?
q? +0.7125q + 0.7449

1
¢
1071259 + 07419

where e(t) is white noise with standard deviation. and

y(t) = 0.1943 u(t)

+

vectors as independent. The constrained estimates hame bee
shown to yield estimates with significantly smaller mean
square errors. The gain in accuracy that can be made depends
on the choice of a small number of design parameters, whose
impact we have exhibited. Our next goal is to provide an
almost automatic procedure for the selection of these desig
parameters, based on the collected data. In addition, we pla

where the input signak(t) is now a white noise se- to compare the performance of this new Constrained LPM
quence with standard deviatian, = 1. We perform 200 with a one-step procedure, in which the full set of paranseter
Monte Carlo simulations as before, computing again thé, over the whole frequency range would be computed as
Mean Square Error between the true FRF and the estimatée solution of one large LS problem subject t@-@orm
GEPM) () and G(EPMO) (), with the following design penalty on the constraint errors.

variables:R = 2,n = 3,A = 1 ando. = 0.05. The

average over all frequencies of the mean square errors
on GEPM)(Q) and on GEPMO) () are, respectively,
0.0111 and0.0026, a ratio of improvement of more than 4 in
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