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Abstract: This paper analyzes two recent methods for the nonparametric estimation of
the Frequency Response Function (FRF) from input-output data using Prediction Error
identification. Such FRF estimate can be the main goal of the identification exercise, or it
can be a tool for the computation of a nonparametric estimate of the noise spectrum. We show
that the choice of the method depends on the signal to noise ratio and on the objective. The
method that delivers the best FRF estimate may not deliver the best estimate of the noise
spectrum. Our theoretical analysis is illustrated by simulations.
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1. INTRODUCTION

This paper deals with the nonparametric estimation of
the Frequency Response Function (FRF) and of the noise
spectrum of a linear dynamic system from input-output
data in a Prediction Error (PE) identification framework.
The inputs are known but not necessarily periodic, while
the outputs are perturbed by quasistationary noise.

There are good reasons for the estimation of these non-
parametric quantities. The nonparametric FRF estimate
can give a preliminary idea of the complexity of the
system and guide the user for the selection of a model
structure in a subsequent parametric estimation step. The
nonparametric estimate of the noise spectrum can be used
as frequency weighting for a subsequent estimation of a
parametric input-output model, thereby simplifying the
PE criterion and reducing the risk of local minima, as
shown in Schoukens et al. (2011).

The estimation of the FRF of the input-output transfer
function is obtained from Fourier transforms of finite sets
of input and output data, and this introduces leakage
errors which are the frequency domain equivalent of tran-
sient errors in time domain identification. Leakage errors
have for a long time been a major deterrent against the
use of nonparametric estimates of the FRF in the pres-
ence of random input signals. Recently, two new methods
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have been introduced that significantly reduce the leakage
effects in the nonparametric estimation of the FRF. The
first method, called Local Polynomial Method (LPM) was
introduced in Schoukens et al. (2009) and Pintelon et al.
(2010). It is based on an approximation of the FRF and the
leakage term in a local bandwidth around each frequency,
and the estimation of these local parameters as the solu-
tion of N local Least Squares (LS) problems, where N is
the number of data. The second method was developed
in Hägg et al. (2011) and is now called the TRansient
Impulse response Modeling Method (TRIMM). It is based
on an approximation of the FRF and the leakage term as
a function of global parameters which are estimated as the
solution of one global LS problem.

In this paper we analyze these two methods and establish
the relations between the approximation errors that are
made in each one. We show that the two methods are
essentially different, and we compare the bias and variance
errors induced by each method for the estimation of the
FRF. We show that the objective (estimation of the FRF,
or estimation of the noise spectrum) and the signal to noise
ratio should guide the choice of the method and its design
parameters.

The paper is organized as follows. In section 2 we formulate
the input-output description of the system and introduce
the leakage terms. The LPM and TRIMM methods are
presented in section 3, and the error analysis for both
methods is presented in section 4. A detailed comparative
analysis is performed in section 5. Section 6 deals with the



estimation of the noise spectrum. In section 7 we illustrate
the theoretical results with simulations.

2. THE INPUT OUTPUT DESCRIPTION

Consider a linear discrete-time single-input single-output
(SISO) system G(q) that is excited with a known random
input signal u(t), and whose output is the sum of the input
contribution and of a disturbance term v(t). It is assumed
that u(t) and v(t) are quasistationary (Ljung (1999)); thus
v(t) can be modeled as the output of a white-noise driven
filter. The input-output system can be represented as

y(t) = G(q)u(t) + v(t) = G(q)u(t) +H(q)e(t) (1)

where q is the forward shift operator, G(q) and H(q) are
causal rational functions of q, and e(t) is zero mean white
noise with variance σ2

e . It can also be represented in state-
space form as:

x(t+1) = Ax(t)+Bu(t)+Ke(t), y(t) = Cx(t)+e(t). (2)

The input-output model (1) assumes an infinite record of
input and output signals. For a finite record t = 0, . . . , N−
1 this equation has to be modified to take account of the
initial condition (or transient) terms τG and τH due to the
action of the transfer functions G and H, leading to:

y(t) = G(q)u(t) + τG(t) +H(q)e(t) + τH(t). (3)

Using the discrete Fourier transform (DFT)

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2πkt/N ,

an exact frequency domain formulation of (3) is obtained:

Y (k) = G(Ωk)U(k)+TG(Ωk)+H(Ωk)E(k)+TH(Ωk) (4)

where the index k points to the frequency kfs/N with
fs the sampling frequency, and Ωk = e−j2πk/N . We also
introduce the notation ωk , 2πk

N ; hence we can also write

Ωk = e−jωk . The contributions U,E, Y in (4) are anO(N0)
signal, while the transient terms TG and TH are O(N−1/2),
where X = O(Np) means that limN→0 | XNp | <∞.

It is important to understand that (3) and (4) are exact
relations (Pintelon et al. (1997); McKelvey (2002); Agüero
et al. (2008)). The leakage terms TG and TH are rational
forms in z−1, and hence smooth functions of the frequency.
We shall lump the transient terms together, and define

τ(t)
∆
= τG(t) + τH(t) and, similarly, T (Ωk)

∆
= TG(Ωk) +

TH(Ωk). For simplicity of notation we shall from now on
rewrite the frequency domain expression of (4) as

Yk = GkUk + Tk + Vk, k = 1, . . . , N (5)

where Gk = G(Ωk), Tk = T (Ωk) and Vk = H(Ωk)E(k).
Consider the system (2) with initial condition x0 and let
x(N) be its response at time N . It can then be shown
(Pintelon and Schoukens (2001)) that the transient terms
can be expressed as a function of the state-space model as
follows in the time domain and in the frequency domain:

τ(t) =CAt(x0 − xN ) (6)

Tk =
1√
N

N−1∑
t=0

τ(t)e−jωkt

=
1√
N
C(I − e−jωkA)−1(x0 − xN ). (7)

It follows that T and G are both smooth functions of
frequency. This is the basis for the joint nonparametric
estimation of the Frequency Response Functions G(Ω)
and T (Ω) developed in the two methods that we analyze
and compare in this paper: the Local Polynomial Method
(LPM) first developed in (Schoukens et al. (2009)) and
thoroughly analyzed in (Pintelon et al. (2010)), and the
TRIMM method developed in (Hägg et al. (2011)).

3. THE LPM AND THE TRIMM METHOD

The estimation of {Gk, Tk, k = 1, . . . , N} from (5) is
impossible because there are only N equations for 2N
unknown parameters. The main idea of the methods
discussed in this paper is to generate additional equations
by approximating Gk and Tk in a window around each
frequency Ωk - taking account of the smoothness of these
functions - and thereby generating a sufficient number of
equations. With these additional equations, Least Squares
(LS) problems can be set up involving the unknown
parameters Gk as well as additional parameters that
account for the estimation of Tk and the approximation of
Gk in this window. The LPM and TRIMM methods vary
essentially in the way the approximations are performed
and in the way the LS problems are set up. The LPM
sets up N local LS problems involving a vector of local
parameters for each frequency window, while the KTH
method solves one global LS problem involving global
parameters for the approximation of G(Ω) and T (Ω). We
now develop the expressions that lead to the LS problems.

Suppose that we want to estimate Gk and Tk at fre-
quency ωk, and consider the data Yk+r, Uk+r for r =
−L, . . . , 0, . . . , L in a window around the frequency ωk,
with window size 2L+ 1. We can then write:

Yk+r =Gk+rUk+r + Tk+r + Vk+r r = −L, . . . , 0, . . . , L
=GkUk+r + [Gk+r −Gk]Uk+r + Tk+r + Vk+r. (8)

The LPM method
With LPM a Taylor series expansion is used for Gk+r−Gk
and Tk+r − Tk:

Gk+r =Gk +

∞∑
s=1

gs(k)rs, (9)

Tk+r = Tk +
1√
N

∞∑
s=1

ts(k)rs (10)

Substituting in (8) yields the following expressions, which
are then truncated to produce a well-posed LS problem:

Yk+r=

[
Gk+

R∑
s=1

gs(k)rs

]
Uk+r+Tk+

1√
N

R∑
s=1

ts(k)rs+Vk+r

+

[ ∞∑
s=R+1

gs(k)rs

]
Uk+r+

1√
N

∞∑
s=R+1

ts(k)rs (11)

≈

[
Gk+

R∑
s=1

gs(k)rs

]
Uk+r+Tk+

1√
N

R∑
s=1

ts(k)rs+Vk+r,

for r = −L, . . . , 0, . . . , L. (12)

Collecting the 2(R+1) unknown complex parameters into
a local parameter vector



θk , [Gk g1(k) . . . gR(k);Tk t1(k) . . . tR(k)]T (13)

and defining the (2L+ 1)-vectors Ȳk,L and Ūk,L as

Ȳk,L
∆
= [Yk−L Yk−L+1 . . . Yk . . . Yk+L−1 Yk+L]

T

Ūk,L
∆
= [Uk−L Uk−L+1 . . . Uk . . . Uk+L−1 Uk+L]

T

then leads to the following matrix version of (12):

Ȳk,L = Kk,L(R, Ūk,L)θk. (14)

This constitutes an overdetermined set of 2L + 1 equa-
tions in the 2(R + 1) unknowns θk, based on the lo-
cal data {Uk+r, Yk+r; r = −L, . . . , 0, . . . , L}, in which
Kk,L(R, Ūk,L) is entirely known. This can be solved by
Least Squares to estimate θk, of which Gk is the first
component. The LPM thus consists of the solution of N
such local LS problems, one for each frequency.

The Constrained LPM method (CLPM)

The expressions Gk+r ≈ Gk +
∑R
s=1 gs(k)rs and Tk+r ≈

Tk + 1√
N

∑R
s=1 ts(k)rs induce constraints between the pa-

rameter vectors θk and θk+r, r = −R, . . . , R. In Gevers
et al. (2011) a variation of the LPM method (called
CLPM) was proposed that takes account of these con-
straints, typically yielding a better estimate of the FRF
compared to the standard LPM, but a worse estimate of
the noise spectrum, given that the CLPM estimate has a
larger bias error. For reasons of space limitations, we shall
not analyze CLPM in this paper.

The TRIMM method
In the TRIMM method, the term Gk+r − Gk of (8) is
expressed as

Gk+r −Gk =

∞∑
t=1

g(t)[e−jωk+rt − e−jωkt] (15)

=

∞∑
t=1

g(t)[Ωtk+r − Ωtk] =

∞∑
t=1

g(t)φt(ωk+r, ωk)

where g(t)
∆
= CAt−1B and where φt(ωk+r, ωk)

∆
=

e−jωk+rt − e−jωkt are known functions of frequency. The
frequency function Tk+r in (8) can be written as (see (7)):

Tk+r =
1√
N

N−1∑
t=0

τ(t)e−jωk+rt. (16)

We now substitute these two expressions in (8) and we
approximate by Finite Impulse Response models :

Yk+r =GkUk+r + [

n1∑
t=1

g(t)φt(ωk+r, ωk)]Uk+r

+
1√
N

n2−1∑
t=0

τ(t)e−jωk+rt + Vk+r (17)

+

[ ∞∑
t=n1+1

g(t)φt(ωk+r, ωk)

]
Uk+r+

1√
N

N−1∑
t=n2

τ(t)e−jωk+rt

≈GkUk+r +

[
n1∑
t=1

g(t)φt(ωk+r, ωk)

]
Uk+r + Vk+r

+
1√
N

n2−1∑
t=0

τ(t)e−jωk+rt, r = −L, . . . , L (18)

Equating real part and imaginary part, we note that for
each frequency ωk, the equations (18) constitute a set
of 2(2L + 1) equations for the 2 + n1 + n2 unknowns
{Gk; g(1), . . . , g(n1); τ(0), . . . , τ(n2 − 1)}. The TRIMM
method consists in setting up a large LS problem obtained
by assembling the equations (18) for the N DFT frequen-
cies ω1, . . . , ωN and solving these by Least Squares for the
global vector of 2N + n1 + n2 parameters

θ
∆
= [G1, . . . , GN ; g(1), . . . , g(n1); τ(0), . . . , τ(n2 − 1)]T ,

(19)
where Gk is counted for two unknowns (real and imaginary
part). This LS problem consists of 2N(2L + 1) equations
for 2N + n1 + n2 real unknowns. It can be written as:

Y = Φθ + E + V (20)

where the vector E accounts for the approximation errors.
For small values of L the matrix Φ can be poorly condi-
tioned; hence a regularization term can be added leading
to the following LS solution:

θ̂ = [ΦHΦ + βγ(Φ)I]−1ΦHY (21)

where ΦH denotes the complex conjugate transpose of Φ,
while γ(Φ) is the Frobenius norm of Φ and β will be taken
as 10−3 in the simulations of Section 7.

4. ERROR ANALYSIS

In this section we analyze the bias and variance errors of
the LPM and TRIMM methods. We assume that A is a
stability matrix and we denote by λ1 the absolute value
of its largest eigenvalue, so that for any row vector C and
column vector B, we have |CAtB| ≤ αλt1 for some real
positive number α. Thus |g(t)| ≤ α1λ

t
1 and |τ(t)| ≤ α2λ

t
1.

Bias errors
Observe from (15) that Gk+r −Gk can be written as

Gk+r −Gk =

∞∑
t=1

g(t)Ωtk[Ωtr − 1] (22)

Expanding Ωtr = e−jωrt around r = 0, we can write

Ωtr − 1 = −jωtr +
1

2
(−jωt)2r2 +

1

3!
(−jωt)3r3 + . . . (23)

Inserting this expression into (22) leads to (9) where

gs(k) ,
∞∑
t=1

1

s!
g(t)Ωtk(−jωt)s. (24)

Similarly it follows from (10) and (16) that

ts(k) ,
N−1∑
t=1

1

s!
τ(t)Ωtk(−jωt)s. (25)

The approximation error for the LS problem in the LPM is
due to the terms neglected in the second line of (11), which
we call ELPMk . Using (24) and (25) it can be expressed as:

ELPMk =

[ ∞∑
s=R+1

1

s!

( ∞∑
t=1

g(t)Ωtk(−jωt)s
)
rs

]
Uk+r

+
1√
N

∞∑
s=R+1

ts(k)rs (26)

The approximation error in the LS problem of TRIMM is
due to the terms in the last line of (17) which we denote



by ETRIMM
k . Replacing φt(ωk+r, ωk) by Ωtk[Ωtr − 1] and

using (23), it can be expressed as

ETRIMM
k =

[ ∞∑
s=1

1

s!

( ∞∑
t=n1

g(t)Ωtk(−jωt)s
)
rs

]
Uk+r

+
1√
N

N−1∑
t=n2

τ(t)e−jωk+rt (27)

It is interesting to compare the approximation errors for
LPM and TRIMM. The sum in the first term of (26) starts
with the term s = R+ 1 while it starts with s = 1 in (27);
on the other hand the coefficients of rs in (27) start at
t = n2 instead of t = 1 in (26). Taking into account that
the size of the window [0, r] is expressed in the frequency
domain as r

N fs, these errors can be approximated by

ELPMk =G
(R+1)
k O((

r

N
)(R+1))+T

(R+1)
k O((

r

N
)(R+3/2))

ETRIMM
k = λn1

1 O(
r

N
) + λn2

1 (
1− λN−n2

1

1− λ1
)O(N−1/2) (28)

where λ1 is the absolute value of the largest eigenvalue of

A, G
(R+1)
k is the (R + 1)-th order derivative of Gk, and

similarly for T
(R+1)
k . It can be shown using the methods

of (Pintelon et al. (2010)) that these approximation errors
induce the following bias errors:

Bias(θ̂LPMk )=G
(R+1)
k O((

L

N
)(R+1))+T

(R+1)
k O((

L

N
)(R+2))

Bias(θ̂TRIMM
k )= λn1

1 O(
L

N
) + λn2

1 (
1− λN−n2

1

1− λ1
)O(N−1) (29)

Variance errors
In the LPM, the parameter vector θk of size 2(R + 1) is
estimated in the local windows using 2L + 1 data points,
while in the TRIMM method the parameter vector θ of
size N +n1 +n2 is estimated using all N data. As a result
the variances for the two methods due to the noise V can
be approximated as follows:

V ar(θ̂LPMk ) =O(
2(R+ 1)

2L+ 1
)σ2
V (k)

V ar(θ̂TRIMM ) =O(
N + n1 + n2

(2L+ 1)N
)σ2
V (30)

where σ2
V (k) is the noise spectrum at frequency Ωk and

σ2
V is the variance of the noise v(t). Here the interpolation

error due to the variation of the noise variance in the local
window [k − L, k + L] has been neglected.

5. COMPARATIVE ANALYSIS

We make a number of observations concerning the LPM
and TRIMM methods, and we discuss the role of their re-
spective design parameters. These observations are based
on the theoretical analysis of the previous section but also
on extensive Monte Carlo simulations in which the two
methods were applied. We shall present some simulations
in the next section to support these observations.

Observations on the LPM method

• The design parameters are the width 2L of the local
window and the degree R of the polynomials.

• In the LPM, the parameters are locally defined and
they are estimated in each of the local frequency
windows. The bias increases with the width 2L + 1
of the window and it decreases with the degree R of
the local polynomials. However, these two parameters
cannot be chosen independently: in order to have a
full rank set of equations for the LS problem L ≥
R + 1 is required. The smallest interpolation error is
obtained for L = R+ 1.

• The variance error is inversely proportional to the
window width L since 2L + 1 data are available for
each local LS problem. Thus, if the noise dominates,
one should choose a larger window width. However,
the bias in the estimation of the noise spectrum in-
creases with the window width: see Section 6. Hence,
if the estimate of the noise spectrum is the main goal,
one should refrain from taking L too large.

• The speed of computation is essentially determined
by the size of the LS problem; since the LPM solves
LS problems of size 2L+ 1, the method is fast.

Observations on the TRIMM method

• The design parameters are the size 2L+ 1 of the win-
dow used for interpolation, the length n1 of the Finite
Impulse Response (FIR) used for the approximation
of Gk+r −Gk, and the length n2 of the FIR used for
the approximation of Tk.

• The parameters estimated are the desired FRF
Gk as well as a set of parameters g(1), . . . , g(n1);
τ(0), . . . , τ(n2 − 1) that are common to all equations
of the LS problem.

• Without any windowing there would be fewer equa-
tions than unknowns. Assuming that N > 1

4 (n1+n2),
we observe that choosing L = 1 already gives more
equations than unknowns. Increasing L above this
value decreases the variance, as shown in (30), but
it increases the bias as shown in (29). In addition the
computation time is directly proportional to L.

• When n1 and n2 increase, the bias error decreases
but the variance error increases. Thus, n1 and n2

should be chosen larger when the noise variance is
small, but smaller when the noise variance is large
and the variance errors dominate the bias errors.

• The parameters g(1), . . . , g(n1) are only needed to
produce approximations of Gk+r −Gk in the window
around Ωk. If this window is chosen narrow (i.e. L
small) then Gk+r is close to Gk and the approxima-
tion need not be as precise as when L is large, so
that n1 can also be chosen small. Simulations show
that for a system G(q) with a slowly decaying impulse
response g(t) the TRIMM method performs well with
a small L and a choice of n1 that is much smaller than
the length of the impulse response.

• Computing {Gk, k = 1, . . . , N} requires the solution
of one large LS problem with 2N(2L + 1) equations
and 2N + n1 + n2 real unknowns; the computational
time may be quite large. Since the computation time
is proportional to L, this favors the choice of a small
L when that is possible.



• Unlike the LPM which is designed to work with a
small local window, the TRIMM method can also
be used with a window of length L = N/2. This
special case has been analyzed in Hägg and Hjal-
marsson (2012), where it is also shown that the other
extreme choice, L = 0, corresponds to the well-known
Empirical Transfer Function Estimate Ljung (1999).

Comparative observations

• For some applications, the estimated FRF is mainly
used as a tool for the estimation of related quantities,
such as the estimate of the noise variance (see Sec-
tion 6 for details). In such case, it is important that
the estimate of the FRF has the smallest possible
bias, and the LPM estimate may be preferred.
• On the other hand, if the goal is to get an estimate of

the FRF with the smallest Mean Square Error, then
the TRIMM method will typically perform better
as soon as the noise variance becomes significant.
For large N the ratio between the variance of the

estimates is V ar(θ̂LPMk ) ≈ 2(R+ 1)V ar(θ̂TRIMM ).

6. ESTIMATION OF THE NOISE SPECTRUM

The estimation of the FRFG(ejω) is often only an interme-
diate step that allows one to compute other quantities of
interest. One such important application is the estimation
of the noise spectrum σ2

V (k) as a function of frequency
which can serve as a frequency weighting in a subsequent
parametric estimate of the input-output transfer function
G(q). This application has been extensively discussed in
(Schoukens et al. (2011, 2012).

For both the LPM and TRIMM methods, the estimate of
the noise spectrum is obtained by computing the residuals
V̂k+r in a local frequency window of size 2M + 1 around
Ωk. They are computed by inverting the second relation
in (8) in which Gk, Gk+r − Gk and Tk+r are replaced by
their estimates. The power spectrum at frequency Ωk can
then be obtained as

σ̂2
V (k) =

1

q

M∑
r=−M

|V̂k+r|2 (31)

where q depends on the method used. The following
observations can be made about this estimate.

• The noise power estimate at frequency Ωk is con-
tructed for both methods as the mean of the square
of the residuals at the neighbouring frequencies, i.e.
in the local window [k−M,k+M ]. This estimate will
have a bias that is caused by the variation of |H0(Ω)|2
over this interval as well as the bias on the estimated
parameters, which have been studied in Section 4.

• In the LPM the estimate of σ2
V (k) takes the form

(31) with M = L, where 2L is the width of the local
bandwidth in which the parameters of Gk, Gk+r−Gk
and Tk+r have been estimated.

• In the TRIMM these parameters have been estimated
using global parameters and on the basis of the whole
data record of N data. Since the design parameter L
can sometimes be taken small, as argued in Section 5,
the mean value should be computed over a frequency
window that may be larger than the window [k −
L, k+L] used for the LS problem. In the simulations

of the next section we have taken M equal to the size
L of the local window used in the LPM in order to
have a fair comparison of these two estimates.

7. SIMULATIONS

In this section we illustrate the behaviour of the LPM
and TRIMM methods by Monte-Carlo simulations. We
consider the following “true” system:

y(t) =
0.1943 + 0.3885q−1 + 0.1943q−2

1 + 0.7125q−1 + 0.7449q−2
u(t) +

0.0389+0.0837q−1+0.1016q−2+0.0597q−3+0.0187q−4

1+1.5281q−1+2.2864q−2+1.2918q−3+0.7154q−4
e(t)

The input signal is a coloured noise generated by

u(t) =
0.5276q3 + 1.583q2 + 1.583q + 0.5276

q3 + 1.76q2 + 1.183q + 0.2781
w(t),

where w(t) is a white noise excitation signal with unit
variance. This system and noise model have been chosen
because the signal to noise ratio varies greatly around
the resonance peak and beyond, which will illustrate the
dependence of both methods on the signal to noise ratio.

We have performed 100 Monte Carlo simulations with 2500
data each from which the first 500 data have been removed,
leaving 2000 useful I/O data for the estimation, for a range
of choices of the design parameters. Figure 1 shows the
true G(Ωk) as well as the RMS error on the FRF estimate
of G for the LPM and TRIMM estimates obtained with
σ2
e = 0.04 and with the following design parameters:
• for LPM: R = 3 and L = 6
• for TRIMM: n1 = n2 = 10, L = 5, β = 0.01

Figure 2 shows the absolute value of the error between the
true noise spectrum and the estimate obtained by the two
methods under the same conditions and with the same
design parameters. The TRIMM method gives a better

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

RMS Error on GLPM and GKTH

Fig. 1. FRF of G (red), RMS error on ĜLPM (black) and ĜTRIMM

(blue)

estimate of G over much of the frequency range; the LPM
estimate is better only where the signal to noise ratio is
large. On the other hand, the LPM gives a better estimate
of the noise spectrum due to its smaller bias error.

The next table gives the mean value over the whole
frequency range of the MSE of Ĝ and of the error on σ̂2

V (k)
for a range of design values, with σ2

e = 0.0001 and with
β = 0.001. For TRIMM, the design parameters n1 and n2

were taken identical and are denoted n in the tables below.



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

True noise variance and variance Estimates

Fig. 2. True noise spectrum (red) and σ̂2
V (k) for LPM (black) and

TRIMM (blue)

L MSE Ĝ Mean Err σ̂2
V (k)

LPM
R = 1 5 0.00049562 4.2004e-07
R = 1 10 0.00121750 5.6839e-06
R = 2 5 0.00052861 1.1893e-07
R = 2 10 0.00032632 3.6241e-07
R = 3 5 0.00064776 1.2098e-07
R = 3 10 0.00034635 3.4201e-07

TRIMM
n = 4 2 0.00320860 0.00018504
n = 4 10 0.00415630 0.00042724
n = 50 2 0.00085536 3.3143e-06
n = 50 10 0.00051315 8.3850e-06
n = 80 2 0.00097818 1.8631e-05
n = 80 10 0.00067632 2.8348e-06

The next table gives the results for the same design
variables, but now with σ2

e = 0.01.

L MSE Ĝ Mean Err σ̂2
V (k)

LPM
R = 1 5 0.0032674 1.2814e-05
R = 1 10 0.0026382 3.9703e-05
R = 2 5 0.0053735 8.665e-06
R = 2 10 0.0032151 3.3414e-05
R = 3 5 0.0064713 1.4554e-05
R = 3 10 0.0034249 3.1455e-05

TRIMM
n = 4 2 0.0057070 0.00019851
n = 4 10 0.0046941 0.00041201
n = 50 2 0.0050661 8.1015e-05
n = 50 10 0.0029149 8.7244e-05
n = 80 2 0.0058321 9.9308e-05
n = 80 10 0.0037225 6.5780e-05

For LPM, except for the choice R = 1, σ2
e = 0.0001, the

larger window gives better results than the smaller window
for the estimation of G; this probably means that the
variance error for ĜLPM dominates the bias error in all
cases. For TRIMM, with low noise variance the best results
for Ĝ are obtained with n = 50; for n = 80 the reduction
in bias error is offset by an increase in variance error. With
σ2
e = 0.01 the best results for ĜTRIMM are again obtained

with n = 50 but the differences are small between the
different cases; however in call cases the larger window
gives better results because the variance error dominates.
Finally, for the estimation of the noise spectrum, LPM
typically gives better results. We conjecture that this is
because ĜLPM has a smaller bias in the cases studied in
these tables; this is the object of our present investigations.

8. CONCLUSIONS

We have compared two recent methods for the nonpara-
metric estimation of the FRF from stationary input sig-
nals. Even though TRIMM was inspired by LPM, we
have shown that they are based on the solution of two
very different LS problems: LPM estimates parameters in
a local frequency band, while TRIMM estimates global
parameters using all data. As a result, the statistical
properties of these two methods are quite different, and we
have shown their relationships. The performance of both
methods rely heavily on an adequate choice of their design
parameters: with low noise, the bias errors dominate and
the design parameters must be chosen to minimize these
bias errors; with high noise, the design parameters must be
chosen to minimize the dominating variance errors. Future
work should lead to an automated selection of the design
parameters.
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