
stability and robustness analysis problems to nondifferentiable 
convex programs. They have also provided efficient numerical 
methods to solve the resulting convex programs. In particular, 
the results in [2] can unambiguously determine whether an 
uncertain system with scalar uncertain diagonal blocks is 
QS(A,). Some of these ideas can also be extended to synthesis 
problems. See, for example, Bemussou et al. [ l]  and Packard and 
Becker [9] for the solution of a state-feedback quadratic stabiliz- 
ability problem, in the presence of real uncertain parameters, via 
convex programming. 
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Comparative Study of Finite Wordlength Effects in 
Shift and Delta Operator Parameterizations 

Gang Li and Michel Gevers 

Abstrmt-This note analyzes the sensitivity of transfer functions w.r.t. 
finite wordlength effect errors in the implementation of the coefficients 
of both shift operator and delta operator parameterizations. The rela- 
tionships between optimal realization sets in shift and delta operator are 
established. It is shown that the optimal realizations in delta operator 
have better performance than those in shift operator when the poles of 
the systems are clustered around z = + 1. A numerical example is given. 

I. INTRODUCTION 
In the last few years, both Peterka [l]  and Middleton and 

Goodwin ([2], [3]) have promoted the use of the delta operator 
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as opposed to the shift operator in estimation and control 
applications. Two major advantages are claimed for the use of 
delta operator parameterizations: a theoretically interesting uni- 
fied formulation of continuous-time and discrete-time control 
theory which entails a better understanding of discrete-time 
control under fast sampling, and a range of practically interest- 
ing numerical advantages connected with finite wordlength 
(FWL) effects. One problem not studied in [3] is that of compar- 
ing the sensitivity of the transfer function of a state-variable 
model w.r.t. coefficient errors in the ( A ,  B, C) state-space matri- 
ces when the state-variable model is implemented in  either a 
shift-operator parameterization or a delta-operator parameteri- 
zation. This problem, which of course is of interest in FWL 
implementations, is the object of the present note. 

The effect of FWL errors in the state space matrices ( A ,  B,  C) 
on the transfer function has been studied by various authors 
([3]-[6]), and has been extended to the effect of FWL errors in 
the regulator coefficients on the closed-loop transfer function 
[7], [lo]. This has led to a commonly accepted measure for the 
sensitivity of a transfer function w.r.t. to the coefficients of 
( A ,  B, C) (see [4]-[6]), and to the search for optimal realizations 
(AoPt, BOpt, Copt), among the equivalence class ( T - h T ,  T - ’ B ,  
C T )  of similarity transforms, that minimize this sensitivity. This 
problem has been solved by Thiele ([6], [12]). In [13], a frequency 
weighted sensitivity minimization problem has been investigated. 
A range of other sensitivity minimization problems have been 
solved in [8]. All of these results relate solely to shift operator 
state space representations. 

Here we first define in Section I1 the delta operator represen- 
tations of a system. The relationships between shift and delta 
operator parameterizations, both in transfer function and in 
state-space form, are established. In Section I11 we show that 
the set of optimal delta realizations can be connected in a 
simple way and therefore derived from the set of optimal shift 
realizations. It is then shown that, by a proper choice of the 
degree of freedom available in the definition of the delta opera- 
tor, the sensitivity with the delta operator state space models can 
be made smaller than that with shift operator state space mod- 
els. In Section IV, the comparison between shift and delta 
operators is illustrated by a numerical example. Some conclud- 
ing remarks are given in Section V. 

11. DELTA OPERATOR PARAMETERIZATIONS 

Throughout this note we consider scalar strictly proper time 
invariant discrete-time transfer functions. In the old days (i.e., 
before Middleton and Goodwin [3]) it was customary to repre- 
sent such transfer functions as follows: 

n n 
C b i , F i  C b i z - ’  

1 1 
n n . (2.1) - H ( z )  = - 

z n  + Cuiz”-i 1 + cui.-’ 
1 1 

Such discrete-time transfer functions are often obtained from a 
continuous-time transfer function H,(s)  as the result of a dis- 
cretization procedure with a sampling period T,. It has been 
shown [3] that when fast sampling is used better numerical 
properties can be achieved by reparameterizing (2.1) with z 
replaced by (z - l)/c. Here, we will consider that the starting 
point is a discrete-time (rather than continuous-time) transfer 
function. Motivated by [3], we shall introduce the following 
definition for the &operator: 

z - 1  
8 4  - 

A ’  
(2.2) 
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where A is any positive number, not necessarily a sampling 
period. Thus (2.2) should be seen purely as a linear operator. 
Discussions about the implementation of the &operator can be 
found in [3], [8]. 

With the definition (2.2) for 6, the transfer function H ( z )  of 
(2.1) can be reexpressed in &form as follows: 

n n 

c b i z n - i  p i a n +  
1 1 

H ( z )  = n - n A H,(6).  (2.3) - 

z n  + C a i z n - j  6" + Cai6n- i  
1 1 

Our aim in this note will then be to compare the sensitivity of 
the transfer functions H ( z )  and &(a), respectively, w.r.t. nu- 
merical errors in the coefficients of their respective state-space 
implementations. The choice of a value for A and its role in 
improving these sensitivities will be a central feature of our note. 

We note that the coefficients {ai,  pi} are obtained from the 
{a i ,  bi} by substituting z = 1 + A6 in H ( z ) .  This yields the 
following relationships: 

where 

T =  

with 

0 
0 

... 1 0 
I21 t22 0 ... 

t31 f 3 2  t33 

0 

f n + l , l  f n + 1 , 2  tn + 1 ,  n + 1 

(2.5a) 

Going back to (2.3), we observe that H ( z )  and H , ( S )  are two 
different but equivalent parameterizations representing the same 
object. These two input-output relationships can be represented 
by a shift-operator (respectively goperator) state-space model as 
follows: 

a;') = A  , I  x ( l )  + B 2 ,  U (2.6a) 

y t c r t  x(1) (2.6b) 

and 

The following relationships relate the internal and external 
representations: 

H ( ~ )  = C J Z Z  - A,)- 'B, ,  H,W = C,GZ - A J ' B , .  
(2.8) 

For future use, we shall introduce the notion of a realization set 
S,. We define: 

S, 2 ( ( A , ,  B,,C,): H , ( p )  = Cp(pZ -A, ) - 'B, ]  (2.9) 

where p = z or 6, and H,(z)  = H ( t ) .  Hence, if (A , ,  B,, C,) E 
S,, (T-'A,T, T-'Bp, C,T) E S, if and only if T is nonsingular. 

Substituting (2.2) in (2.7), it is straightforward to establish that 
the following relationship exists between the state-space realiza- 
tions (A , ,  B,, C,) E S ,  and ( A , ,  B,, C,) E S,: 

A ,  = AA,  + I ,  B, = AB,, C, = C,. (2.10) 

This means that if (A,, B,, C,) E S , ,  one can find a correspond- 
ing realization ( A , ,  B,, C,) E s, and vice-versa by the one-to- 
one mapping (2.10). 

111. SENSITIVITY OF DELTA OPERATOR PARAMETERIZATIOM 

Consider the generalized state-space realization 

px,  = A,x, + B,u, (3.la) 

Yt = cpxt  (3.lb) 

where p is z or 6 [see (2.6) and (2.7)], and where (A, ,  B,, C,,) is 
an infinite precision implementation of a transfer function 
H,( p), p = z or 6 .  Assume that Bo bits are available and denote 
by A f  , B,*, C,* the implemented version of A,, B,, C, where the 
coefficients have been truncated to Bo bits. The actually imple- 
mented state-space model is then given by (3.1) with (A, ,  B,, C,) 
replaced by (A; ,  B,*, C:). It follows that the actual transfer 
function H,*( p )  = C,*( pZ - A;)-'B,* and the ideal H,( p )  = 
C,( pZ - A,)-'B, will differ, and hence the output of the actu- 
ally implemented filter to any input sequence will deviate from 
the output of the ideal filter. One way to evaluate this error is to 
compute a measure of the sensitivity of the transfer function 
H( p )  to errors on the matrices A,, B,, C,. Here we first intro- 
duce a commonly used definition for the sensitivity measure of 
the state-space implementation of a transfer function in the 
generalized operator p. We then specialize these expressions to 
the case of shift and &operator representations. 

A.  Sensitiuity Measure 
Definition 3.1: Let M E C n X m  be a matrix and let f ( M )  E C 

be a scalar complex function of M, differentiable w.r.t. all the 
elements of M .  We then denote 

d f  J f  
- = S, where the ( i ,  j)th element of S is sij 
dM dmii 

- . 

(3.2) 

Definition 3.2: Let f ( z )  E Cnx" be any complex matrix val- 
ued function of the complex variable z. We then define the 
l,-norm of f ( z )  as 

= (tr (f'(e-j")f(ej")))l". (3.4) 

The absolute sensitivity measure of the transfer function H ( z )  
w.r.t. the parameters in the realization A,, B,,C, is then de- 
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fined as follows in [4]: 

where 

It then easily follows from (2.2), (2.10), and (3.6) that: 

Therefore, (3.5) specializes, for p = z and p = 6 ,  to: 

and 

We have therefore proved the following result. 
Theorem 3.1: Consider two realizations ( A , ,  B,, C,) in S ,  and 

( A 6 ,  B,,C,) in S ,  of the same transfer function, related by 
(2.10). Then Ma, < Mu,,  if and only if A < 1. 

END 
Comment 3.1: Theorem 3.1 shows that M a , ,  can be made 

smaller than Ma, ,  provided A can be chosen smaller than 1. We 
should note, however, that the value of A influences the range 
of the coefficients appearing in ( A , ,  B,, C,) as is clear from 
(2.10). Therefore, the games we can play with A are limited by 
dynamic range considerations. To show this, let us consider the 
two following examples. In a fixed-point arithmetic implementa- 
tion, the absolute values of all implemented coefficients are 
constrained to be within some interval, say [0.001,1]. If a realiza- 
tion in shift operator is given by 

Boot The proof follows from (3.8) and (3.9). 

the maximal absolute value of the elements in (A, - 1)  is 0.01. 
So, the maximal absolute value of the elements in ( A ,  - 1) and 
B, is 0.1. Therefore, according to (2.10), the choices of A that 
will keep the coefficients of A , ,  B, within the required range 
are any value between 0.1 and 1. Hence, by choosing a &oper- 
ator implementation with A = 0.1 we can significantly reduce 
the sensitivity w.r.t. a shift-operator implementation while satis- 
fying the dynamic range constraint. 

Assume now that B, and C, are as before, but 

The dynamic range constraint will then force A = 1 and hence 
the &operator realization will have the same sensitivity perfor- 
mance as the shift-operator realization. From these two exam- 
ples, one can see that for a well scaled realization (for example, 
its largest absolute value is smaller than one) the choice of !I is 
related to the poles of the system. See also Comment 3.4 below 
and the numerical example in Section IV for an illustration of 
this issue. 

B. Optimal Realizations 
One of the problems that has attracted attention of finite 

wordlength experts has been to minimize Ma,,  over all equiva- 
lent state-space realizations {A, ,  B,, C,} in S,,  i.e., over all 
possible shift-operator state-space realizations. As it turns out, 
the direct minimization of (3.8) is mathematically intractable. 
The problem was solved by Thiele [6], who first replaced Ma, of 
(3.8) by an upper bound Ma*, obtained by the Cauchy-Schwartz 
inequality: 

We note that 

1 (A;)'c,TC,A; = tr W,  
i = O  

and, similarly, 

(3.11) 

(3.12) 

Here WO and W, are, respectively, the observability and con- 
trollability Gramians of ( A , ,  B,, C,). The upper bound ma,, can 
be expressed as 

Ma,, = tr WO tr W,  + tr WO + tr w,. (3.13) 

Thiele first characterized the set of realizations (A , ,  B,, C,) that 
minimize ma,, [6], and then showed that that set also minimizes 
Mu,,, and that ma,, = Ma, ,  for those optimal realizations [121. 
His results can be summarized as follows. 

Theorem 3.2 [61, [12l: 

where ui, i = l;..,n are the Hankel singular values of the 
transfer function H ( z )  defined by 

uj A [ Aj(W,Wo)] 1 / 2  . (3.15) 

ii) The set of optimizing realizations is characterized by 

syt = { ( A , ,  B,,C,): w, = WO}. (3.16) 

Boot See [6] and [12]. 
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These singular values are invariants of the transfer function, 
i.e., they are state-space realization independent. We now estab- 
lish two new results. First we give an expression for the minimiz- 
ing value of Ma, , over all ( A , ,  B,, C,) in S,. Then we character- 
ize the optimal set S,OP' by relating the optimal realizations in 
delta form to the optimal realizations in shift form. 

Similarly to the procedure used by Thiele, we first replace 
Ma, , by an upper bound ma, , using the same Cauchy-Schwartz 
inequality: 

Theorem 3.3: i) The minimal value of Ma, over all equivalent 
realizations ( A , ,  B,, C,) in S, is 

1 n \ 2  n 

minM,,, = m i n a a , ,  = A' + 2 A E q .  (3.18) 
sa sa k i J  

ii) The set of optimal realizations is characterized by 

S,Op' = { ( A , ,  B,,C,): W, = A2Wo) (3.19) 

where W, and WO are the Gramians of the corresponding z- 
operator realization obtained from (2.10). 

Proofi For every ( A s ,  B,, C,) there exists a corresponding 
triple (A , ,  B,, C,) defined by (2.10); it has a controllability 
Gramian W, and an observability Gramian WO. We now denote 
WO = A2Wo. Therefore, by (3.7), (3.11), (3.12), (3.17) ma,8 can be 
expressed as 

ma, = A' tr (W,) tr (WO) + A2 tr (WO) + tr (W,) 

= tr (WO> tr (W,) + tr (WO) + tr (W,). (3.20) 

Denote U ,  A [Ai(W,Wo)1'/2 = [Ai(A2W,Wo)1'/2 = Aui. It then 
follows by the same proof as that of Thiele [61 (an alternative 
proof can be found in [8]) that the minimizing value of ma,, is 

/ n  \ 2  n 

(3.21) 

and that this value is achieved if and only if W, = WO (i.e., 
W, = A2Wo>, where W, and WO are given in (3.11) and (3.12). 
Using the same procedure as used in [12], one can show that 
mins6 Ma, ,  = minS6 Ma,,. END 

Theorem 3.4: Let StP' = (Agp', BSOP', Ctp'} denote the subset 
of S, that minimizes Ma, E and let S,OP' = {A:@, B:P', C,OPt) 
denote the subset of S, that minimizes Ma,, .  Then to each 
(Azpt, B:P', C,OPt) E S,OP' there corresponds a (Agp', B;P', C;P') 
E S,OP' such that 

- 

AgPt = A-l(A'JP' - I )  BtPt = A-l/ZBoPt 
2 7  

C;Pt = A -  1/2CoPt. (3.22) 

Boot Consider a member (A;P', B,OP', C,"P') of S:Pt. Then 
the corresponding Gramians satisfy W, = WO. Let ( A s ,  B,,C,) 
be obtained from (AzP', B;P', C,OPt) by (2.10): 

A ,  = A-'(A:pt - I ) ,  B, = A-lB,OP', C, = C,OPt. (3.23) 

We know by the proof of Theorem 3.3 that optimality in S, 
requires W, = A2Wo. Now apply a similarity transformation T = 

T-~AOP'T B,' T-~BOP' , , Cf = C,OP'T. (3.24) 

The Gramians of the realization ( A i ,  B:, C,') are W,' = AT. and 
Wd = A-'Wo. Since W, = WO, it follows that W,' = A2Wd, and 
hence, by Theorem 3.3 ii), the &realization corresponding to 
( A t ,  Bf,C:) is optimal in S, [see (3.19)]. It now follows from 
(3.23), (3.24) and T = A-'I2I that this &realization is expressed 
in terms of (AZP', B,OPt, C,OPt) by (3.22). END 

Comment 3.2: Theorem 3.4 is important in that it shows that 
the search for optimal realizations ( A , ,  B,,C,) in &form does 
not require a new construction. The results of Thiele [61 that 
characterize the optimal shift operator state variable forms also 
completely characterize the optimal delta operator forms via 
(3.22). 

Comment 3.3: For nonoptimal realizations, ma, is much eas- 
ier to compute than Ma, and is therefore a reasonable measure 
of comparison between different realizations. A detailed discus- 
sion can be found in [121, [131. 

Comment 3.4: The balanced realization (Ab ,  B,, cb) is one of 
the optimal realizations in shift operator. From (2.10) one sees 
that the choices of A depend on the diagonal elements of 
( A ,  - I ) .  When the largest absolute value of these elements is 
less than the largest absolute value of the elements of A,, we 
will be able to choose A smaller than one. This is the case when 
the poles of a system are clustered around z = +1, i.e., when 
fast sampling is used (see [3]). In this case, the diagonal elements 
of A ,  will be near 1, and hence the diagonal elements of 
( A b  - I )  will be much smaller than 1, which yields the possibil- 
ity of choosing A smaller than 1. We refer the reader to [14] for 
a further discussion of this. The following example also illus- 
trates this point. 

2 9  

IV. NUMERICAL EXAMPLE 

We now illustrate our previous results and calculations on the 
optimal sensitivity measure with the following example, already 
used in [9]. Consider a system described in shift operator imple- 
mentation by the following control canonical from: 

r o  1 0 1  
0 

- 1 S562 1.9749 

0.0232 

0.0792 

The poles are at 0.6579 and 0.6585 j0.5061. The smallest and 
largest numbers (in magnitude) are underlined, as they will be in 
the other realizations. 

The balanced form in S,, one of the optimal realizations 
minimizing Ma, ,, is given by 

0.8236 0.3999 -0.0165 

- 0.3999 0.5935 - 0.3425 
- 0.0165 - 0.3425 0.5577 

AZP' 

0.4424 0.4424 [ 0.16711 [ 0.16711 
B;pt = 0.3799 C,Opt = -0.3799 . 
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The largest number (in magnitude) in the triplet (A;P‘ - I ,  
B,OP‘, C,OP‘) is 0.4423. Therefore, we choose A = 2-’. The corre- 
sponding companion and optimal realizations in S, are 

1 

and 

1 - 0.3527 0.7999 - 0.0329 
-0.7999 -0.8130 0.6849 
- 0.0329 - 0.6849 - 0.8846 

0.6256 0.6256 

0.2363 0.2363 

I AgP‘ = 

B ~ J ‘  = [ 0.53731 cpt = [ - o s m ]  . 

We note that the coefficient ranges of (AZP‘, B,OP‘, C,OP‘) and 
( Agp‘, BiP‘, C:P‘) are roughly the same: in both cases the coef- 
ficients are between 2-6 and 1. The ratios of Imax.coefficientl/ 
(min.coefficient I are, respectively, (0.8236/ 0.0165) = 50 for the 
shift form and (0.8846/0.0329) = 27 for the Sform. The optimal 
values of the sensitivity measures are, respectively, M:$ = 
4.7560 = and M:$ = 1.8886 = @:Pi. We have also com- 
puted pa for the shift operator and delta operator control 
canonical forms. These are, respectively, M:,‘= = 81.9891 and 

These theoretical results will now be confirmed by a numeri- 
cal simulation on the same example. For both the optimal 
z-form realization (AZP‘, B,”P‘, C,”P‘) and the optimal Sform real- 
ization (AgP‘, BtP‘, C:P‘) presented above, we compute the cor- 
responding frequency response HP,,( w )  obtained when the co- 
efficients are implemented in fixed point with p significant bits, 
with p ranging from 5 to 30. We compare this with the ideal 
frequency response HLd( w )  implemented with infinite precision, 
by computing the worst deviation over the frequency range, i.e., 
the H, error: 

= 5.1605. 

R log [ Sup IHid(O) - Hfw,(w)l . 
0 E (0 ,27r )  1 

The results for the example described above are shown in Fig. 
1 in which R,“P‘ and RgP‘ denote the optimal realizations 
(A;!’‘, B,OP‘, C,OP‘) and (A:P‘, BSOP‘, C:P‘), respectively. It clearly 
shows the superiority of the optimal Sform realization over the 
optimal z-form realization whatever the number of bits. 

V. CONCLUSIONS 
Our aim in this note has been to compare shift operator and 

delta operator state space parameterizations in terms of the 
effects of finite wordlength errors on the actual transfer func- 
tion. We have first established the relationships between shift- 
and Soperator parameterizations in terms of transfer function 
as well as state-space realization. Using a commonly adopted 
sensitivity measure, we have then found the optimal realization 
set in Soperator. The relationship between this optimal realiza- 
tion set and that in shift operator has been established. It has 
been shown that the parameterizations in Soperator yield a 
superior sensitivity performance over those in shift operator as 
long as the design parameter A can be chosen less than 1. This 
requirement is almost always satisfied when fast sampling is 
used. 

Number of bits in fractional part of coefficienls 

Fig. 1. 

The results presented in this note relate to the sensitivity of 
the transfer function with respect to coefficient errors in shift or 
delta operator implementations, respectively. Another important 
point of comparison between shift and delta operator realiza- 
tions is their behavior with respect to roundoff errors on the 
signals. This has been examined in [14], with similar conclusions: 
delta operator realizations will typically yield a smaller roundoff 
noise gain than shift operator realizations when the poles are 
clustered around z = 1. 
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