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Abstract

Model Reference control design methods fail when the plant has one or more non minimum phase zeros that are not included
in the reference model, leading possibly to an unstable closed loop. This is a very serious problem for data-based control design
methods, where the plant is typically unknown. In this paper, we extend the Virtual Reference Feedback Tuning method to
non minimum phase plants. This extension is based on the idea proposed in [10] for Iterative Feedback Tuning. We present a
very simple two-step procedure that can cope with the situation where the unknown plant may or may not have non minimum

phase zeros.
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1 Introduction

When Model Reference control design is used, it is im-
portant that the possible Non Minimum Phase (NMP)
zeros of the plant to be controlled be included in the
reference model. Failure to do so may even result in an
unstable closed loop system. Thus, a good knowledge of
the NMP zeros of the plant is essential.

In the last 15 years, a number of data-based control
design methods have been proposed [6,5,3,8], where a
parametrized controller structure is chosen a priori, and
the controller tuning is based directly on input and out-
put data collected on the plant without the use of a
model of this plant. These data-based controller tun-
ing methods will fail if the plant contains one or more
NMP zeros that have not been included in the Reference
Model. It is important to notice that this drawback is
due to the reference model formulation and not to the
data-based nature of the design approach. The only way
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to avoid it in reference model design is by including the
non minimum phase zero in the reference model. Doing
this a priori, when choosing the reference model, requires
the exact knowledge of this zero, which in turn may be
a rash hypothesis even for model-based design.

To overcome this difficulty in the case of the Iterative
Feedback Tuning (IFT) method [5], a procedure was pro-
posed in [10]. It involves an extension of the model refer-
ence formulation by adding to the classical H criterion
an additional term that penalizes the mean square error
between the achieved output of the closed loop system
and a flexible reference model whose poles are the same
as those of the desired reference model, but whose zeros
are entirely free. Actually, the numerator polynomial of
this flexible reference model has all its parameters free.
The global criterion is a weighted version of the stan-
dard criterion and of this flexible criterion; it contains
the controller parameters and the coefficients of the flex-
ible reference model. This global reference model is then
minimized jointly with respect to these two sets of pa-
rameters. A convergence analysis for this modified IF'T
criterion is quite difficult; it was performed in [10] only
for the case where the controller is tuned for step changes
in the reference. However, simulations have shown that
this modified scheme performs remarkably well: in the
case where the plant has NMP zeros, the simulations
show that the parameters of the flexible reference model
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actually converge to values that reproduce the NMP ze-
ros of the plant.

The objective of the work reported in this paper was to
examine whether a similar idea could be developed for
the VRFT method [3]. The application of the flexible ref-
erence model idea to VRFT seems more difficult, because
in the VRFT scheme the criterion that is minimized is
different from the desired criterion; it can be made to
approximate the desired criterion only by a proper pre-
filtering of the data. However, we show in this paper
that the idea of a flexible reference model can in fact be
adapted to the VRFT method of controller tuning. Just
like in the case of IFT with a flexible criterion, we intro-
duce a flexible VRFT criterion that contains a reference
model whose numerator is a polynomial parametrized
with a set of free parameters. Our result is thus an exten-
sion of VRF'T to the case of non minimum phase plants,
inspired by a similar solution proposed for IFT.

We first show that the expression appearing in this flex-
ible H, criterion is a bilinear function of the parame-
ters of the numerator of the flexible reference model and
of the controller parameters. This means that the mini-
mum of this flexible part of the criterion can be obtained
using an appropriate iterative least squares procedure.

We have applied this flexible VRFT scheme to a num-
ber of simulation examples reflecting the two main sit-
uations: one where the unknown plant contains NMP
zeros, one where it does not. This leads us to propose a
two-step procedure that applies to these two situations.
In the first step, only the flexible part of the criterion is
minimized with respect to the numerator coefficients of
the reference model and the controller parameters. We
show that at the minimum of this flexible criterion the
numerator polynomial contains the NMP zeros of the
plant. Thus, the user is immediately alerted to the exis-
tence of NMP zeros of the plant, if any, and more impor-
tantly of their precise locations. The second step then
proceeds as follows: (i) if the first step shows that the
system contains NMP zeros, the desired reference model
is modified so as to contain these NMP zeros, while the
poles are kept at their desired values; (ii) if the flexible
reference model has converged to a value that does not
exhibit NMP zeros, the initially chosen reference model
is kept. Then, the standard VRFT is used to find the
controller parameters.

The paper is organized as follows. Definitions and the
problem formulation are presented in Section 2. Section
3 reviews the standard VRFT method and the proposed
flexible criterion for VRFT is then presented in Section 4,
while Section 5 shows some examples of the application
of the proposed method. In the end, we present some
conclusions.

2 Preliminaries
2.1 Definitions

Consider a linear time-invariant discrete-time single-
input-single-output process

y(t) = Go(2)u(t) + v(t), (1)

where z is the forward-shift operator, Go(z) is the pro-
cess transfer function, u(t) is the control input and v(t)
is the process noise. The noise is a quasi-stationary pro-
cess which can be written as v(t) = Ho(z)e(t) where e(t)
is white noise with variance o2. Both transfer functions,
Go(z) and Hy(z), are rational and causal and it is as-
sumed that Go(z) has a nonzero static gain.

This process is controlled by a linear time-invariant con-
troller which belongs to a given - user specified - class
C of linear transfer functions. This class is such that
C(2)Go(z) has positive relative degree for all C(z) € C;
equivalently, the closed loop is not delay-free. The con-
troller is parametrized by a parameter vector p € R", so
that the control action u(t) can be written as

u(t) = C(z,p)(r(t) — y(t)), (2)

where r(t) is a reference signal, which is assumed to be
quasi-stationary and uncorrelated with the noise, that is

Er(t)e(s)] =0Vt,s

where E[-] is defined as

1 N
E[f(t)] = lim NZE[f(t)]
t=1

N—o0

with F[-] denoting expectation |11]. The system (1)-(2)
in closed loop becomes
y(t,p) =T (z,p)r(t) + S(z, p)v(t)

7o) = 1 gt = Clp)Ca(2)S )

where we have now made the dependence on the con-
troller parameter vector p explicit in the output signal
y(t, p). It is also assumed that the controller has a linear
parametrization, i.e. it belongs to a controller class C as
specified below

C={C(z,p) = p" B(2),p € R"}, (3)

where 3(z) is a n-column vector of fixed causal rational
functions, whose poles are strictly inside the unit circle
except for possible poles at z = 1.
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Some of the most common controller structures are in-
deed linearly parametrized. A PID with fixed derivative
pole, for example, can be parameterized as:

Olerp) = [hy ki b [1 27 =21]

z

2.2 Problem Statement

Model reference control design consists of specifying a
“desired” closed loop transfer function M (z), which is
known as the reference model, and then finding the con-
troller that makes the closed loop behavior as close as
possible to the desired one. In other words, the controller
is designed by solving the following optimization prob-
lem

min 7 ) 0
PR & B [((T(z.p) - H()r(1)]. Q

The model matching controller C2 (%) is the one that
allows the closed loop system to match exactly M (z)
and is given by
M(z)
CME(2) = — . 6
R NEIEE) ©

Should the model matching controller C}/%(z) be put
in the control loop, the objective function would eval-
uate to zero. However, this model matching controller
may not be causal, or may produce an internally unsta-
ble closed loop system through the cancellation of the
NMP zero, both of which would be disastrous. Thus, the
choice of the reference model M (z) must be made under
some constraints to prevent these disasters; these con-
straints are directly verified in (6). In order for the model
matching controller to be causal, the relative degree of
the reference model can not be smaller than that of the
plant Go(z). To prevent the unstable pole-zero cancella-
tion, the reference model must have the same unstable
zeros as the plant. So, the choice of the reference model
requires the a priori knowledge of an overbound for the
relative degree of the process and the exact location of
the unstable zeros, if any.

When the process model is known, the reference model
can be chosen to satisfy these constraints, and the
model reference problem can be solved using a Linear
Quadratic Regulator (LQR) and is then called Model
Matching by LQR [4]. If in addition the model matching
controller belongs to the controller class C in (3) and
the process model is known, then the reference model
design is trivial: it suffices to apply equation (6).

On the other hand, data-based control methods and di-
rect adaptive control methods address the minimization

of the criterion (5) directly from data collected from the
system, without deriving a process model from these
data [5,7,3,8]. Then it is not always possible to assume
a priori knowledge of the existence of NMP zeros, and
certainly not their exact positions in case they do exist,
and thus the choice of an appropriate reference model
is compromised. Thus most data-based design methods
tend to fail when applied to non minimum phase plants.

In this paper we propose a solution to this problem, ex-
tending the VRFT [3] method to cope with NMP plants.
We start by presenting the standard VRFT method.

3 The standard VRFT method

Different data-based methods exist that solve the opti-
mization (4). Mostly, these are iterative methods which
consist of estimating local quantities (first and second
derivatives) of the cost function J%(p) and applying
standard optimization methods - steepest descent, quasi-
Newton. A limiting factor in the application of these
methods is the fact that the function being minimized is
not convex, which can result - and often does - in con-
vergence to a local minimum. This convergence problem
has been studied in depth in [1], where conditions for a
successful convergence to the global optimum have been
derived, and manoeuvres to achieve such conditions in
practice have been proposed.

The Virtual Reference Feedback Tuning Method
(VRFT) presents an alternative to these iterative meth-
ods, which solves this local minima issue and at the
same time requires no iterations - it is a “one shot”
method, as the authors put it. VRFT consists of mini-
mizing a different objective function, whose minimum is
known to be the same as the desired one under certain
ideal conditions. This new function is quadratic, and
thus easy to minimize.

The VRFT method can be described as follows. Through
either an open loop or a closed loop experiment, input
data u(t) and output data y(t) are collected on the actual
process. Given the measured y(t), we define the virtual
reference signal 7(t):

M(2)r(t) = y(t).

This signal is such that, if the system were in closed loop
with the model matching controller, and we apply 7(t)
to the reference, the resulting experiment would result
in the data y(t) that have been collected in the output.
Should the data have been collected like this, the refer-
ence tracking error would have been given by

e(t) =7(t) — y(t)-

This &(t) is the signal that would have fed the model
matching controller in this fake experiment. We thus
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have input and output data (&(t) and u(t) respectively)
of the model matching controller C3/%(z) and we can use
these data to identify it. The identification is performed
by minimizing the following criterion

JVE(p) = Eu(t) — C(z, p)e(t))?

un— (et )]

Il
s

Since C(z,p) is linear in p, the criterion in (7) is a
quadratic function of the parameter vector p and hence
the solution of the optimization problem can be obtained
through the application of least squares, that is, by the
following calculation:

-1

p=Elet)e®)"]  E[p(t)u(t)) (8)

where ¢(t) = B(z)é(t). This is the key advantage of the
VRET criterion (7) over the MR criterion (5), and hence
of VRFT over other data-based methods, like IFT or
CbT, which are iterative.

Consider that the model matching controller (6) be-
longs to the controller set considered, that is, that the
following assumption is satisfied.

Assumption 1 CME(2) € C or, equivalently,

3pa: C(2,pa) = py B(z) = Ci™(2)

Under Assumption 1 the parameter value pg4 is the global
minimum of both criteria, (5) and (7), since both evalu-
ate to zero at p = pg. It is also easy to demonstrate that
this global minimum is unique, for both criteria, pro-
vided that the corresponding regression vector is persis-
tently exciting [1,3]. When Assumption 1 does not hold,
the minima of the two criteria are not the same, but they
can be made close to each other by proper filtering of
the signals u(t) and é(t). The appropriate filter is L(z)
defined by [3]:

L) =1 —M(Z)IQIM(Z)IQ%Z, (9)

where ®,, is the power spectrum of the signal u(t) and @,
is the power spectrum of 7(¢). In this case, the parameter
vector p is estimated by

p=E[prer®)”] " Elpr(t)ur(t)] (10)

where ¢ (t) = L(2)p(t) and ur(t) = L(z)u(t).

The formulation of the VRFT method is based on signals
obtained from a plant which is not affected by noise. In
the presence of noise, an instrumental variable can be
used instead of the standard least squares solution, in
which case equation (8) is replaced by

p=E[Cpr®T] " EC(tyur(t)] (11)

where ((t) is a n-vector of instrumental variables; see |3|
for details.

Now, being a model reference design in which no previ-
ous knowledge on the process is assumed, the VRFT is
bound to fail for NMP plants, for the reasons discussed
in Section 2. In the next section we present a modifica-
tion of the optimization criterion of VRFT in order to
successfully cope with NMP plants.

4 Flexible criterion for VRFT

A solution for the NMP limitation of the reference
model formulation has been proposed in [10] for the
IFT method. That proposal consists of using a reference
model with free parameters in the numerator, so that
its zeros are free. In general, such a reference model can
be described as

M(z,m) =n"F(z), (12)

where n € R? is the parameter vector and F(z) is a ¢-
vector of rational functions. This defines a class of ref-
erence models, instead of a single reference model. By
leaving the numerator of the reference model to be deter-
mined, the optimization can “find” the zeros of the pro-
cess, and particularly the NMP ones. It is worth notic-
ing that in this formulation we assign the closed loop
transfer function only partially. Specifically, the denom-
inator is assigned and, if the number of free parameters
q equals the order of the numerator, then the numerator
is entirely free and the formulation becomes conceptu-
ally equivalent to a pole assignment design.

By using this idea in the VRFT criterion we get the
following optimization criterion [2]

30 = E{ 162) a0 - (57 e ) |
= Blus(t) - C(z. s (n, 1) (13)

where ér(n,t) = L(z)é(n,t). In the standard VRFT
method, the model matching hypothesis - Assumption 1
- is crucial. Our analysis for this new design criterion re-
quires a similar hypothesis. Assumption 2 below states
that there exists, within the class of reference models
considered, one reference model for which model match-
ing is possible.

Preprint submitted to Automatica
Received October 30, 2009 09:08:55 PST



CONFIDENTIAL. Limited circulation. For review only

Assumption 2 There exists a pair (n*,p*) such that
J(}/R(n*, p*) =0, or, equivalently,

M(z,n%)
an* p*: Clz,p . 14
S T VD TeTe
Under Assumption 2, min, ,JJ®(n,p) = 0 and

argmin, , JY%(n, p) = (n*, p*). It thus follows that

argmin Jg (1, p) =arg  min " (n, p) (15)
’ (n, p)?f{U 0}

where

Jo (. p) = E [LM (n)u(t) — LC(p)(1 — M (n))y(t)]t16)

We have omitted the dependence on z in (16) for read-
ability.

Given the linear parametrization of both the controller
and the reference model, J) #(0,0) = 0. Thus, the mul-
tiplication by M(z,n) has created an additional - and
undesired - global minimum at the origin. This is the rea-
son why the right hand side of (15) is subjected to a con-
straint whose purpose is to exclude this undesired mini-
mum (7, p) = {0, 0}. In most control applications, a nat-
ural constraint exists which automatically does that: the
reference model must have steady-state gain M(n, 1) =
1.

We now show that the minimization of (15) yields a
minimum (n*, p*) such that M (z,n*) contains all NMP
zeros of Go(z).

Theorem 1 Let B(z) be the least common denomina-

tor of the elements of 3(z) and let Go(z) = Zg((j)) be a

coprime factorization of Go(z). Let Assumption 2 be sat-
isfied. Then the NMP zeros of Go(z) are also zeros of
M(z,n%).

Proof 1 From (14) we have that

(Zan*)dG(Z)
[dar(z ) —nn(z,n%)na(z)

Since Go(2) has a nonzero steady state gain, ng(z) has
no zero at z = 1. Since the poles of C(z, p*) (i.e. the roots
of B(z)) are either at z = 1 or strictly inside the unit
circle, it follows that B(z) and ng(z) have no common
unstable roots. Therefore, since the left hand side of (17)
is stable, any unstable root of ng(z) must be canceled by
a root of nar(z,m*).

C(e,p") = (17)

Now, inserting (12) in (16), one can rewrite it as

Jo (. p) = E{n" F(2)[uL(t) + p" B(2)yL(t)]
=" B(z)ye ()} (18)

The expression in (18) is biquadratic in the parameters
n and p. For fixed p, the minimization of (18) wrt 7 is
obtained by least squares, since (18) is quadratic in the
parameter 7):

n*(p) £ argmin Jy ¥ (n, p)

= E{[F()w(p.D][F()w(p.t)]"}
E{[F(z)w(p, )][C(z p) ( )y(t)]} (19)

where w(p,t) = L(2)[u(t) + pTB(2)y(t)]. We note
that w(p,t) can be generated from the data, since
u(t),y(t), L(z) and C(z, p) are all known. Similarly, for
fixed n the minimization of (18) wrt p is obtained by
least squares:

p*(n) = arg mpin Jo (. p)

= E{[B(z)v(n, )][B(=)u(n, )T} x

E{ B(Z)U( )][M(Zm)L(Z)U(f)]} : (20)
where v(n,t) = L(2)[1 — nT F(2)]y(t).

Since the argument in (18) is bilinear in 7 and p, the

minimization of jg/R(n, p) can be treated as a sequence
of least squares problems [11]:

0" = argmin Jo™ (0, p" V) (21)

Pt = argmin Ji' (i, p) (22)

where each least squares step is performed by the ex-
pressions (19)-(20) above.

This sequential least squares is guaranteed to converge
at least to a local minimum [11,14].

Theorem 2 The algorithm (21)-(22) converges to an
extremum of J§ ®(n, p).

Proof 2 The proof is based on the Lyapunov theory, us-
ing the Lyapunov function JY (n, p), that by definition
is positive definite. It is clear from the very definition of
the algorithm that j(}/R(n, p) is a strictly decreasing func-
tion of the sequence 1), p\V). Then the convergence is a
standard result in Lyapunov theory [9].

When the data are collected in closed loop, it is natu-
ral to use the parameters of the controller that is in the
control loop during the experiment as the initial value,
but this is not the only possible choice. The algorithm
also needs an initial value for the filter L(z), which de-
pends on M (z,7). One possible choice is to use M (z) for
this purpose. It is worth stressing that even though the
minimization algorithm is iterative, the data from the
system is collected just once, thereby keeping the “one-
shot” property of the VRFT method.
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Two-step procedure

The method just presented can be applied to NMP
plants, which standard VRFT can not. On the other
hand, when the process is minimum phase, a full model
reference design is possible, so the designer may want to
stick to the standard VRFT criterion, where he/she can
take advantage of its simplicity. But without previous
knowledge of the process, the designer can not make
the a priori decision on which method to use. For cases
where it is not known a priori whether there are NMP
zeros or not and how many, we propose the following
two-step procedure. To simplify the presentation of this
procedure and of the simulation results in the next sec-
tion, we define the following generic design criterion
inspired by [10]:

I, p) = (1= NI (0, p) + ATV (p). (23)

where A = 0 or A = 1. When A = 1, this becomes the
standard VREFT criterion (7); when A = 0 it represents
the modified VRFT criterion for NMP plants (13).

The two-step procedure can then be described as follows.
Step 1. Minimize JY f(n, p) in (23) with A = 0. Call
(7, p) the minimizing parameters and check the zeros of
M(z,7).

Step 2. If M(z,7) obtained in Step 1 has NMP zeros,
then modify the reference model M (z) so that it contains
these NMP zeros. If not, keep the initially chosen M (z).
Now, apply the standard VRFT with M (z),i.e. use A =
1.

5 Illustrative examples

In this section we present simulation studies using the
flexible VRFT scheme. If the plant has NMP zeros, the
proposed method estimates these zeros and then they
can be included in the fixed reference model.

5.1 Process with one non-minimum phase zero

Suppose that we design a controller for a process whose
transfer function is given by

(z—1.2)(z—0.4)

G = . 24
1) = 03 0s) (24)
We want to control it with a PID controller
Z2
22—2
Clz,p) = p" B(2) = [p1 p2 p3] | == (25)
22—2

The experiment from which we get data is a closed loop
experiment, where a step is applied as the reference sig-
nal, and the controller in the loop is given by

_ —0.7(z — 0.4)(z — 0.6)

2 _ 4 :

Cinit(2)

z

5.1.1  Assumption 2 is satisfied

Consider the following flexible reference model, for which
Assumption 2 is satisfied:

mz?+mez 4 s

M(z,n) = '
(=) = = 0885) (22 — 0.7062 + 0.32)

(26)

For the fixed reference model we choose the same poles,
but all zeros at the origin and M (1) =1,

_ 0.0706122
M(z) = .
(2) = = 0885) (22 = 0.706: + 0.32)

(27)

This is the reference model we would like to enforce in the
absence of any knowledge on the NMP zero. If the stan-
dard VRFT criterion is used, with the reference model
(27), the controller obtained is

—2.2693(22 — 1.6552 + 0.7007
C(z,p) = ( ),

22—z

which causes the closed loop to be unstable, due to the
NMP zero present in the process but not in the reference
model. So, we must abandon this fixed reference model
(27).

Let us now use the proposed two step procedure. We set
A =0 in (23) and minimize J} (n, p) w.r.t n and p us-
ing the iterative procedure (21)-(22). The step responses
of M(z,7") and the closed loop T'(z, 5”)) obtained at
iterations 1 and 30 are presented in Fig. 2. Note that
M (2,739) and T(z, p3%) are almost indistinguishable.
Table 1 shows the evolution of the corresponding pa-
rameters, by means of the numerators of the controller
and the flexible reference model, obtained in different
iterations. The values of M(z,7%)) and C(z, p(3%)) at
iteration 30 are as follows:

—0.59084(z — 1.2)(z — 0.4022)
(z — 0.885)(z% — 0.706z + 0.32)

—0.59026(z — 0.8)(z — 0.3004)
o 22—z

M (z,739) =

C(z, p5)

Observe in Table 1 that M (z,71%)) reproduces both ze-
ros of G1(z) with a good precision, and the controller

C(z, ") is such that its zeros cancel the poles of the
process. Note also that a good estimate of the NMP
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E?fgiitlion of M(z,n), C(z,p) and Jy (7, p) in the iterative procedure for Gy (z).

i num(M (z,7")) Jo R (@, ptY) num(C(z, o)) Jo @, p)

(x107°) (x107°)

1 —1.07760(z — 1.182)(z — 0.6404) 1.6772616 —0.76020(z — 0.7448)(z — 0.5292) 12.928054

2 —0.87825(z — 1.186)(z — 0.5686) 6.4634327 —0.71172(z — 0.7704)(z — 0.4509) 1.8210199

10 || —0.63076(z — 1.196)(z — 0.4291) 0.0104166 —0.61096(z — 0.7963)(z — 0.3245) 0.0086147

20 || —0.59617(z — 1.199)(z — 0.4061) 0.0002024 —0.59312(z — 0.7996)(z — 0.3038) 0.0001776

21 —0.59512(z — 1.200)(z — 0.4054) 0.0001411 —0.59256(z — 0.7997)(z — 0.3031) 0.0001240

30 || —0.59084(z — 1.200)(z — 0.4022) 0.0000064 —0.59026(z — 0.8000)(z — 0.3004) 0.0000057

zero is already present at iteration ¢ = 21, while conver-
gence to the minimum phase zero is slower. This obser-
vation is consistent with the findings of [12,13] where it is
shown that NMP zeros are easier to estimate than min-
imum phase zeros. This design is by itself satisfactory
and shows the efficiency of the flexible design criterion
in coping with NMP zeros. Whereas a standard VRFT
design would lead to an unstable closed loop, with the
proposed design approach the closed loop is stable and
its behavior resembles the desired one, specified by the
fixed reference model.

We can however make the closed loop behavior even
closer to that of the fixed reference model. Indeed, in
applying the flexible reference model we have left both
zeros of the process unchanged in the closed loop trans-
fer function. But only one of these zeros is NMP and
thus needs to be there; the other closed loop zero can
still be assigned by the designer. So, once we know that
the process actually has a NMP zero and where it is, we
change M (z) to include this NMP zero and then use (23)
for A = 1, that is, standard VRFT. This new reference
model is defined by

VL, () = —0.35303(z — 1.2)z
T (2 —0.885) (22 — 0.706z + 0.32)

(28)

where the gain is chosen so that M,,(1) = 1. Fig. 1
shows the step responses obtained at the end of Step 1
with T'(z, p30) = M(z,739) and at the end of Step 2
with T'(z, p) where p minimizes (8), as well as the step
response of M,,,(z). Observe that the responses of T'(z, p)
and M., (z) are very similar, but that for A = 1 we obtain
a smaller negative response.

5.1.2  Assumption 2 is not satisfied

In the previous example, the reference model (26) was
chosen in such a way that the matching condition (14) is
satisfied for some (n*, p*) pair. Since the process Gy(z)
is unknown, it can not be guaranteed that the designer
can choose the poles of M (z,7) such that Assumption 2

is satisfied. Let us see how the method behaves in this
situation.

Suppose now that we choose for the same process (24)
we choose a different fixed reference model

_ 0.06422

My(z) = =067 (29)

where the subscript f denotes “faster”; as well as a flex-
ible one defined as

2
mze+ 12z +n3
Mf(Z, 77) - (Z . 06)3 )

for which Assumption 2 is not satisfied. For A = 0 we
obtain, in 30 iterations,

Step Response
T

Amplitude

= - Mo
oo barMy

—T(p)>h=1

_08 I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Time (sec)

Fig. 1. Step vresponses obtained in Step 1:
T(z,p%) = M(2,7®) (M(n™)); and in Step 2: T'(z, p)
(T'(p) -> X = 1) with the fixed reference model (28)
(bar{M},,) for Step 2.
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Amplitude

Step Response

Amplitude

- h T
bar (M} H
— - M@y)
— T(p)
| | |
30 35 40 45 50
Time (sec)
Step Response
i=30
-1 | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
Time (sec)

Fig. 2. Step responses of the fixed reference model (27) (bar{M?}), the flexible model M(z,7?) (M (n')) and the closed loop
system T'(z, pV) (T'(p")) for G1(z) with A = 0 for iterations 1 and 30.

—0.54223(z — 1.197)(z — 0.4021)

M 5(30)) —
5@ (z—06) :
(o, o) = —0-52336(z — 0.1932)(z +0.0091)
e —Z

The step responses for iterations 1 and 30 are presented
in Fig. 4. Table 2 presents the numerators of the con-
troller and the flexible reference model, obtained in dif-
ferent iterations. Note that, even though Assumption
2 is not satisfied, the NMP zero is still identified with
good precision by the minimization of JY #(n, p). Be-
sides, the closed loop 7'(z, ﬁ(30)) presents a response that
is not exactly, but very similar to the reference model
M (z,739) response (see Fig. 4).

We can again apply the second step of our procedure,
modifying the fixed reference model to include the NMP
zero just identified. The fixed reference model My ,, (%)
should then be defined as

—0.32492(> — 1.197)
(z—0.6)3

My m(2) =

For A =1, we find the following controller

—0.33598(z + 0.5622)(z — 0.8066
o ( )( ]

22—z

Step Response

Amplitude

Time (sec)

Fig. 3. Closed loop response T'(z) for model G'1(z); controllers
obtained with A = 0 and A = 1 with My ,,(2).

Fig. 3 presents the reference models and the step re-
sponses obtained for A = 0 and A = 1. Again, My ,,(2)
allows the system to present a smaller inverse response,
closer to the response specified by the original reference
model My (z).
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Step Response

Amplitude

Time (sec)

Step Response

Amplitude

20 25

Time (sec)

Fig. 4. Step responses of the fixed reference model (29) (bar{M?}), the flexible model M (z,7") (M (n')) and the closed loop

system T'(z, p?) (T'(p*)) with G1(z) at iterations 1 and 30.
Table 2

Evolution of M (z,7), C(z,p) and J3 (7, p) in the iterative procedure for G (z).

i num(M; (z,7)) Jo R @™, p0Y) num(C(z, o)) T @M, p)
(x107°) (x107°)
1 —0.95696(z — 1.136)(z — 0.5078) 1.3176005 —0.69039(z — 0.7452)(z — 0.2133) 9.5254229
2 || —0.83134(z — 1.161)(z — 0.5205) 4.6132843 —0.66593(z — 0.7628)(z — 0.1892) 1.7675536
10 || —0.63683(z — 1.194)(z — 0.4821) 0.0731824 —0.59054(z — 0.7870)(z — 0.0980) 0.0683009
20 || —0.57682(z — 1.196)(z — 0.4349) 0.0240805 —0.54914(z — 0.7910)(z — 0.0352) 0.0231907
30 —0.54223(z — 1.197)(z — 0.4021) 0.0108115 —0.52336(z — 0.7932)(z + 0.0091) 0.0105319

5.2 Process with two minimum-phase zeros

Finally, we apply the method to an example in which
the plant zeros are both minimum phase:

(z40.2)(z —0.4)

¢2(2) = 03 o 0s)

(30)

It is initially in closed loop with a PID controller

_ 0.7(z — 0.4)(z — 0.6)

Cinit(2) 2,

)

which we want to retune so that the closed loop response
is as close as possible to a given M (z), using a controller
C(z, p) of the form (25).

5.2.1 Assumption 2 is satisfied
In this case, the fixed reference model is given by

() = 0.4600922
" (2= 0.6673)(z% + 0.3063z + 0.07661)’

and the flexible reference model is chosen as

2%+ naz + 13
(z — 0.6673) (22 + 0.3063z + 0.07661)’

M(Zﬂ?) -

for which Assumption 2 is satisfied. In Step 1 the zeros of
M (z,n), estimated using (21)-(22), converge to the zeros
of Gy(z), but more slowly than in the case of NMP zeros:
see Table 3. Since M (z,7*?)) does not present a NMP
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Table 3
Evolution of M(z,n), C(z,p) and Jy (4, p) in the iterative procedure for Ga(z).
i num(M (z,7)) VSN A num(C(z, pV)) VRGN
1 || 0.68335(z — 0.4565)(z + 0.2618) 31.3183375 0.68557(z — 0.8190)(z — 0.2473) |  5.5740771
2 || 0.68326(z — 0.4554)(z + 0.2584) 5.4351676 0.68539(z — 0.8189)(z — 0.2494) |  5.1229686
5 || 0.68315(z — 0.4515)(z + 0.2483) 4.2398648 0.68498(z — 0.8180)(z — 0.2559) 3.9979539
10 || 0.68309(z — 0.4449)(z + 0.2330) 2.8060046 0.68441(z — 0.8155)(z — 0.2661) 2.6413208
30 || 0.68210(z — 0.4253)(z + 0.1933) 0.4965922 0.68219(z — 0.8074)(z — 0.2930) |  0.4657815
40 || 0.68152(z — 0.4198)(z + 0.1833) 0.2196505 0.68134(z — 0.8052)(z — 0.2999) 0.2075660
zero, we can safely go for Step 2 and use the standard Step Response
VRFT method without modifying the reference model. : AT T T T T e i ]
5.2.2  Assumption 2 is not satisfied é‘”’ e )
Suppose now we choose another fixed reference model: 027 D ‘ Step 1 ‘
2 ’ ° Time (sec) * *
_ 0.2162
Mi(2) = ——=, 31
f( ) (Z _ 04)3 ( ) Step Response
and a flexible model having the same poles as M (z): L oo} 1
2 E'-DA: :
_ 2"+ ezt
Mizm) = =g ”f e

With M/(z,n) and the controller (25), Assumption 2 is
not satisfied. Then Step 1 leads to

~0.68702(2% — 0.9865z + 0.3009)

Mf(zaﬁ(lo)) (Z R 04)3 9
. 0.67926(z — 0.8134)(z — 0.1744)
Cy(z,p"1) = 22 '

Note that M (z, 7(*?)) is far from M (z) (see Fig. 5), but
it does not present a NMP zero. We can then safely go
to Step 2 and apply the standard VRFT with the fixed
reference model (31). The controller obtained is

0.19874(z + 0.5094)(z — 0.7791)

C(z, ) = -

The closed loop response obtained with this controller is
compared to the fixed reference model M(z) in Fig. 5.

6 Conclusions and future work

In this paper, we have extended the VRFT design
methodology to cope with NMP plants. This has been
achieved through a flexible design criterion, in which
the numerator of the reference model is not specified,

10

0 5 10 15
Time (sec)

Fig. 5. Step responses of the fixed reference model (31)
(bar{M}), the flexible reference model M (z,7'?) (M (n*°))
in Step 1 and of the closed loop system T'(z,p) (T'(p)) in
Step 2.

but left free to adjust itself to the zeros of the plant. We
have proposed a two-step procedure in which the possi-
ble presence of NMP zeros in the plant, as well as their
location, is detected in the first step. The second step
then becomes a classical VRFT, but with a criterion
that takes account of the presence of these NMP zeros,
if any, detected in the first step.

Extending the analysis to the case where the matching
controller is not in the controller set, as well as adapting
the method to deal with signals corrupted by noise, are
some of the aims of our future research. Simulations have
already shown good performance for the situation where
the matching condition is not satisfied.
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