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Abstract— Model Reference control design methods fail when
the plant has one or more non minimum phase zeros that
are not included in the reference model, leading possibly to
an unstable closed loop. This is a very serious problem for
data-based control design methods where the plant is typically
unknown. For Iterative Feedback Tuning a procedure was
proposed in [1] to overcome this difficulty. In this paper we
extend this idea for Virtual Reference Feedback Tuning, another
data-based control design method. We present a very simple
two-step procedure that can cope with the situation where the
unknown plant may or may not have non minimum phase zeros.

I. INTRODUCTION

When Model Reference control design is used, it is impor-
tant that the possible Non Minimum Phase (NMP) zeros of
the plant to be controlled be included in the reference model.
Failure to do so may even result in an unstable closed loop
system. Thus, a good knowledge of the NMP zeros of the
plant is essential.

In the last 15 years, a number of data-based control design
methods have been proposed [2], [3], [4], [5], where a
parametrized controller structure is chosen a priori, and the
controller tuning is based directly on input and output data
collected on the plant without the use of a model of this
plant. These data-based controller tuning methods will fail
if the plant contains one or more NMP zeros that have not
been included in the Reference Model. To overcome this
difficulty in the case of the Iterative Feedback Tuning (IFT)
method [3], a procedure was proposed in [1]. It involves
adding to the classicalH2 criterion of IFT an additional term
that penalizes the mean square error between the achieved
output of the closed loop system and aflexible reference
model whose poles are the same as those of the desired
reference model, but whose zeros are entirely free. Actually,
the numerator polynomial of this flexible reference model
has all its parameters free. The global criterion is a weighted
version of the standard criterion and of thisflexible criterion;
it contains the controller parameters and the coefficients of
the flexible reference model. This global reference model
is then minimized jointly with respect to these two sets of
parameters. A convergence analysis for this modified IFT
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criterion is quite difficult; it was performed in [1] only for
the case where the controller is tuned for step changes in
the reference. However, simulations have shown that this
modified scheme performs remarkably well: in the case
where the plant has NMP zeros, the simulations show that the
parameters of the flexible reference model actually converge
to values that reproduce the NMP zeros of the plant.

The objective of the work reported in this paper was to
examine whether a similar idea could be developed for the
VRFT method [4]. The application of the flexible reference
model idea to VRFT is more difficult, because in the VRFT
scheme the criterion that is minimized is different from
the desired criterion; it can be made to approximate the
desired criterion only by a proper prefiltering of the data.
However, we will show in this paper that the idea of a
flexible reference model can in fact be adapted to the VRFT
method of controller tuning. Just like in the case of IFT
with a flexible criterion, we will introduce a flexible VRFT
criterion that contains a reference model whose numerator is
a polynomial parametrized with a set of free parameters.

We will first show that the expression appearing in this
flexible H2 criterion is a bilinear function of the parameters
of the numerator of the flexible reference model and of
the controller parameters. This means that the minimum of
this flexible part of the criterion can be obtained using an
appropriate iterative least squares procedure. We will then
show that the global criterion can similarly be minimized by
an iterative least squares procedure.

We have applied this flexible VRFT scheme to a number of
simulation examples reflecting the two main situations: one
where the unknown plant contains NMP zeros, one where
it does not. This leads us to propose a two-step procedure
that applies to these two situations. In the first step, only
the flexible part of the criterion is minimized with respect
to the numerator coefficients of the reference model and
the controller parameters. All our simulations have shown
that when the plant contains NMP zeros, the numerator
coefficients of the flexible reference model converge to a
polynomial that contains these NMP zeros. Thus, the user
is immediately alerted to the existence of these zeros and,
more importantly, their precise locations. The second step
then proceeds as follows: (i) if the first step shows that the
system contains NMP zeros, the desired reference model is
modified so as to contain these NMP zeros, while the poles
are kept at their desired values; (ii) if the flexible reference
model has converged to a value that does not exhibit NMP
zeros, the standard VRFT can be used with desired fixed
reference model.



Our analysis is so far limited to the situation where
the controller set is able to produce an exact matching
between the closed loop system and the flexible reference
model for some values of the controller parameters and of
the numerator coefficients of this reference model, i.e. the
matching controller is in the controller set. Our simulations
will show, however, that the method works well also when
that is not the case.

The paper is organized as follows. Definitions and the
problem formulation are presented in Section II. Section III
reviews the standard VRFT method and the proposed flexible
criterion for VRFT is then presented in Section IV. The
iterative procedure used for the minimization of the flexible
criterion is presented in Section V, while Section VI shows
some examples of the application of the proposed method.
In the end, we present some conclusions.

II. PRELIMINARIES

A. Definitions

Consider a linear time-invariant discrete-time single-input-
single-output process

y(t) = G0(z)u(t) + v(t), (1)

wherez is the forward-shift operator,G0(z) is the process
transfer function,u(t) is the control input andv(t) is the
process noise. The noise is a quasi-stationary process which
can be written asv(t) = H0(z)e(t) wheree(t) is white noise
with varianceσ2

e . Both transfer functions,G0(z) andH0(z),
are rational and causal.

This process is controlled by a linear time-invariant con-
troller which belongs to a given - user specified - classC of
linear transfer functions. This class is such thatC(z)G0(z)
has positive relative degree for allC(z) ∈ C; equivalently, the
closed loop is not delay-free. The controller is parameterized
by a parameter vectorρ ∈ R

n, so that the control actionu(t)
can be written as

u(t) = C(z, ρ)(r(t) − y(t)), (2)

where r(t) is a reference signal, which is assumed to be
quasi-stationary and uncorrelated with the noise, that is

Ē [r(t)e(s)] = 0 ∀t, s

whereĒ[·] is defined as

Ē[f(t)] , lim
N→∞

1

N

∞
∑

t=1

E[f(t)]

with E[·] denoting expectation [6]. The system (1)-(2) in
closed loop becomes

y(t, ρ) = T (z, ρ)r(t) + S(z, ρ)v(t)

T (z, ρ) =
C(z, ρ)G0(z)

1 + C(z, ρ)G0(z)
= C(z, ρ)G0(z)S(z, ρ)

where we have now made the dependence on the controller
parameterρ explicit in the output signaly(t, ρ). It is also

assumed that the controller has a linear parametrization, i.e.
it belongs to a controller classC as specified below

C = {C(z, ρ) = ρT β(z), ρ ∈ ℜn}, (3)

where β(z) is a n-column vector of fixed causal rational
functions.

Some of the most common controller structures are indeed
linearly parametrized, PID with fixed derivative pole being
the most popular,

C(z, ρ) = [kp ki kd]
[

1 z
z−1

z−1
z

]T
.

B. Problem Statement

A good control system is one that can lead the control
variable to its desired value as fast as possible with low
input power. To reach this goal, we design a controller for
which the closed loop system presents a desired performance,
that is specified through a “desired” closed loop transfer
function M̄(z), also known as thereference model. One
way of finding this controller is through the solution of an
optimization problem

min
ρ

JMR(ρ) (4)

JMR(ρ) , Ē
[

(

(T (z, ρ) − M̄(z))r(t)
)2

]

. (5)

The model matching controllerCMR
d (z) is the one that

allows the closed loop system to match exactlyM̄(z) and is
given by

CMR
d (z) =

M̄(z)

G0(z)(1 − M̄(z))
. (6)

However, without some constraints on the choice ofM̄(z) as
a function ofG0(z), this model matching controller may not
be causal, or may produce an unstable closed loop system.
The latter will happen if the plantG0(z) contains NMP zeros
that are not included as zeros of̄M(z).

The design formulation (4)-(5) is used by some model-
based control methods. It can be solved using a Linear
Quadratic Regulator (LQR) and is then called Model Match-
ing by LQR [7]. Such model-based designs require the
knowledge of the process modelG0(z). On the other hand,
data-based control methods address the minimization of the
criterion (5) directly from data collected from the system,
without deriving a process model from these data [3], [4],
[8].

This paper considers a solution to the minimization of the
H2 criterion (5) using the VRFT control design method [4]).
Rather, we consider a modified version of the VRFT crite-
rion, inspired by [1], to cope with the possible occurrence of
NMP zeros inG0(z). First we present the standard VRFT
method.

III. THE STANDARD VRFT METHOD

Through either an open loop or a closed loop experiment,
input datau(t) and output datay(t) are collected on the
process. Given the measuredy(t), we define a reference
signal r̄(t) such that

M̄(z)r̄(t) = y(t).



This signal is called avirtual referencesince it is not used
to generatey(t). If we now apply r̄(t) to the closed loop
system with the controllerC(z, ρ), we want it to present
y(t) (the measured output signal) as its output. In this case,
the reference tracking error is given by

e(t) = r̄(t) − y(t).

Even though the plantG0(z) is unknown, when it is fed by
u(t) (the measured input signal), it generatesy(t) as output.
So, a “good” controller is one that generatesu(t) when fed
by e(t). Since both signalsu(t) and e(t) are known, the
controller design can be seen as the identification of the
dynamical relation betweene(t) and u(t). As a result of
this reasoning, the VRFT method minimizes the following
criterion

JV R(ρ) = Ē [u(t) − C(z, ρ)e(t)]
2

= Ē

[

u(t) −

(

1 − M̄(z)

M̄(z)
C(z, ρ)

)

y(t)

]2

(7)

The criterion in (7) is a quadratic function of the
parameter vectorρ and the solution of the optimization
problem can be obtained through the application of the least
squares method [6], which is an advantage over methods
like IFT or CbT.

Consider now the following simplifying assumption.

Assumption 1:CMR
d ∈ C or, equivalently,

∃ρd : C(ρd) = CMR
d = ρT

d β(z).

Under Assumption 1, the criteria (5) and (7) have the same
minimum. When Assumption 1 does not hold, the minima
of the two criteria can be made close provided the signals
u(t), e(t) andy(t) in (7) are filtered by a filterL(z) defined
by [4]:

|L(z)|2 = |1 − M̄(z)|2|M̄(z)|2
Φr

Φu

, (8)

whereΦu is the power spectrum of the signalu(t) andΦr

is the power spectrum ofr(t). The key advantage of the
VRFT criterion (7) over the MR criterion (5) is thatJV R(ρ)
is quadratic inρ. The optimalρ is thus computed as a least
squares solution

ρ̂ = Ē
[

ϕL(t)ϕL(t)T
]

−1
Ē [ϕL(t)uL(t)] (9)

whereϕL(t) = β(z)L(z)e(t) and uL(t) = L(z)u(t). The
formulation of the VRFT method is based on signals obtained
from a plant which is not affected by noise. In the presence
of noise, an instrumental variable can be used instead of the
least squares solution: see [4] for details.

IV. FLEXIBLE CRITERION FOR VRFT

By analogy to the flexible IFT criterion proposed in [1],
the flexible VRFT criterion can be defined as follows

JV R
λ (η, ρ) = (1 − λ)JV R

0 (η, ρ) + λJV R(ρ) (10)

where

J
V R
0 (η, ρ) = Ē

{

L(z)

[

u(t) −

(

1 − M(z, η)

M(z, η)
C(z, ρ)

)

y(t)

]}2

= Ē [uL(t) − C(z, ρ)eL(η, t)]2 (11)

HereM(z, η) is parametrized as

M(z, η) = ηT F (z), (12)

whereF (z) is a vector of basis functions,uL(t) = L(z)u(t),
and

eL(η, t) = (1 − M(z, η))r̄L(t)

=
(1 − M(z, η))

M(z, η)
L(z)y(t) (13)

Note that when minimizingJV R
0 (η, ρ) with complete free-

dom in the position of the zeros, we solve a pole placement
problem while minimizingJV R(ρ) yields the solution of a
model reference problem.

From (10), we can see that only the first term depends
on η. Therefore, the flexible criterion for the VRFT problem
can be reformulated as follows:

min
η,ρ

JV R
λ (η, ρ) = min

ρ
{(1 − λ)min

η
JV R

0 (η, ρ) + λJV R(ρ)}

(14)

V. MINIMIZING THE FLEXIBLE CRITERION

We can first minimizeJV R
0 (η, ρ) with respect toη, and

then the optimization problem (14) is reduced to a mini-
mization problem inρ only. In order to proceed, we make
the following model matching assumption.

Assumption 2:There exists a pair(η∗, ρ∗) such that
JV R

0 (η∗, ρ∗) = 0, i.e. for some(η∗, ρ∗) we have

C(z, ρ∗) =
M(z, η∗)

[1 − M(z, η∗)]G0(z)
. (15)

Under Assumption 2,minη,ρ JV R
0 (η, ρ) = 0, and there-

fore

arg min
η,ρ

JV R
0 (η, ρ) = arg min

η,ρ

(η,ρ)6={0, 0}

J̃V R
0 (η, ρ) (16)

where

J̃V R
0 (η, ρ) = E [LM(η)u(t) − LC(ρ)(1 − M(η))y(t)]

2
.

(17)

For readability we have omitted the dependence onz in (17).
Note thatJ̃V R

0 (η, ρ) is obtained by multiplyingJV R
0 (η, ρ)

by M(z, η), which acts like a frequency weighting variable
function of the unknownη and introduces an undesired
minimum in zero. In order to avoid this minimum(η, ρ) =
{0, 0}, some restrictions should be imposed, for example
by forcing the reference model to have steady-state gain
M(η, 1) = 1.

Inserting (12), one can rewrite (17) as

J̃V R
0 (η, ρ) = E

[

ηT F (z)w(ρ, t) − C(z, ρ)L(z)y(t)
]2

(18)

where w(ρ, t) , L(z)[u(t) + C(z, ρ)y(t)]. We note that
w(ρ, t) can be generated from the data, sinceu(t), y(t), L(z)



and C(z, ρ) are all known. Minimizing (18) yieldsη∗ as a
function of ρ, since (18) is linear in the parameterη:

η∗(ρ) , arg min
η

J̃V R
0 (η, ρ)

=Ē
{

[F (z)w(ρ, t)][F (z)w(ρ, t)]T
}−1

×

Ē {[F (z)w(ρ, t)][C(z, ρ)L(z)y(t)]} .

A. Minimizing the flexible criterion only

The expression in (18) is bilinear in the parametersη and
ρ. Therefore, the minimization of̃JV R

0 (η, ρ) can be treated
as a sequence of least squares problems:

η̂(i) = arg min
η

J̃V R
0 (η, ρ̂(i−1)) (19)

ρ̂(i) = arg min
ρ

J̃V R
0 (η̂(i), ρ) (20)

This iterative minimization method, starting from some
initial value ρ̂(0), leads to a local minimum [6], [9]. Since
the data are collected in closed loop, it is natural to use
the parameters of the controller that is in the control loop
during the experiment as the initial value, but this is not the
only possible choice. It is worth stressing that even though
the minimization algorithm is iterative, the data from the
system is collected just once, thereby keeping the “one-shot”
property of the VRFT method.

B. Minimizing the global criterion

Note that only the termJV R
0 (η, ρ) is a function of η

in the criterion JV R
λ (η, ρ) (see (14)) and that, for given

η, this criterion is quadratic in the parameterρ. Thus, an
iterative algorithm can again be used to minimizeJV R

λ (η, ρ)
by proceeding as follows

η̂(i) = arg min
η

J̃V R
0 (η, ρ̂(i−1)) (21)

ρ̂(i) = arg min
ρ

JV R
λ (η̂(i), ρ) (22)

where

JV R
λ (η̂(i), ρ) = (1 − λ)JV R

0 (η̂(i), ρ) + λJV R(ρ).

C. Two-step procedure

We propose the following two-step procedure for the
application of VRFT to a system that may or may not have
NMP zeros.

Step 1.Useλ = 0. Extensive simulations have shown that,
when the systemG0(z) does have NMP zeros or a delay, the
iterative algorithm (19)-(20) converges with high precision to
a modelM(z, η̄) that reflects this. IfG0(z) does not have
NMP zeros, thenM(z, η̄) will also reflect this, i.e. its zeros
will be minimum phase. If the step response ofM(z, η̄) is
not good enough, go to Step 2.
Step 2. If M(z, η̄) obtained in Step 1 has NMP zeros, then
the desired reference model̄M(z) should be modified so that
it contains these NMP zeros. If not, keep the chosenM̄(z).
Now, apply the standard VRFT with̄M(z), i.e. useλ = 1.

VI. ILLUSTRATIVE EXAMPLES

In this section we present some simulations using the
flexible VRFT scheme, proposed in this paper for handling
unknown plants that may be non minimum phase. If the plant
has NMP-zeros, the proposed method estimates these zeros
and then they can be included in the fixed reference model.

A. Process with one non-minimum phase zero

Suppose that we design a controller for a process whose
transfer function is given by

G1(z) =
(z − 1.2)(z − 0.4)

z(z − 0.3)(z − 0.8)
. (23)

We want to control it with a PID controller

C(z, ρ) = ρT β(z) = [ρ1 ρ2 ρ3]





z2

z2
−z
z

z2
−z
1

z2
−z



 . (24)

The experiment from which we get data is a closed loop
experiment, where a step is applied as the reference signal,
and the controller in the loop is given by

Cinit(z) =
−0.7(z − 0.4)(z − 0.6)

z2 − z
.

1) Assumption 2 is satisfied:For the first design, we
choose the poles ofM(z, η) such that Assumption 2 is
satisfied:

M(z, η) =
η1z

2 + η2z + η3

(z − 0.885)(z2 − 0.706z + 0.32)
. (25)

For the fixed reference model we choose the same poles,
but all zeros at the origin

M̄ =
0.07061z2

(z − 0.885)(z2 − 0.706z + 0.32)
. (26)

The gain ofM̄(z) is chosen such that̄M(1) = 1. If the
standard VRFT criterion is used, (26) is the reference model,
and the controller obtained is

C(z, ρ) =
−2.2693(z2 − 1.655z + 0.7007)

z2 − z
,

which causes the closed loop response to be unstable, due to
the non-minimum phase zero present in the process but not
in the reference model.

Let us now use the proposed procedure. We setλ = 0
and minimizeJ̃V R

0 (η, ρ) w.r.t η and ρ using the iterative
procedure (19)-(20). The step responses ofM(z, η̂(i)) and
the closed loopT (z, ρ̂(i)) obtained at iterations1 and 20
are presented in Fig. 1. Table I shows the evolution of the
corresponding parameters, by means of the numerators of
the controller and the flexible reference model, obtained in
different iterations. Note that the cost̃JV R

0 (η̂(i), ρ) is higher
than J̃V R

0 (η, ρ̂(i−1)) due to the fact that we use the filter
L(z) when minimizing the cost w.r.t.ρ, but not w.r.t.η. The
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Fig. 1. Step responses of the fixed reference model (26) (bar{M}), the
flexible modelM(z, η̂(i)) (M(ηi)) and the closed loop systemT (z, ρ̂(i))
(T (ρi)) for G1(z) with λ = 0 for iterations 1 and 20.

values ofM(z, η̂(20)) andC(z, ρ̂(20)) at iteration20 are as
follows:

M(z, η̂(20)) =
−0.6145(z − 1.2)(z − 0.4258)

(z − 0.885)(z2 − 0.706z + 0.32))
,

C(z, ρ̂(20)) =
−0.6055(z − 0.8001)(z − 0.3148)

z2 − z
.

Observe in Table I thatM(z, η̂(60)) reproduces both zeros
of G1(z), and the controllerC(z, ρ̂(60)) is such that its
zeros cancel the poles of the process. However, the NMP
zero is already perfectly estimated at iterationi = 10,
while convergence to the minimum phase zero is slower.
This observation is consistent with the findings of [10], [11]
where it is shown that NMP zeros are easier to estimate
than minimum phase zeros. Once we know that the process
actually has a NMP-zero and where it is, we can add this zero
to M̄(z) and use (14) for a different value ofλ. If we choose
λ = 1 we then minimize the standard VRFT criterion (7),
but now with a “safer” reference model. The new reference
model is defined by

M̄m(z) =
−0.35303z(z − 1.2)

(z − 0.885)(z2 − 0.706z + 0.32)
, (27)

where the gain is chosen so that̄Mm(1) = 1. Fig. 2
shows the step responses obtained at the end of Step 1 with
T (z, ρ̂(20)) = M(z, η̂(20)) and Step 2 withT (z, ρ̂) where
ρ̂ minimizes (9), and the step response ofM̄m(z). Both
responses are very similar, but forλ = 1 we obtain a smaller
negative response.

2) Assumption 2 is not satisfied:In the previous example,
the reference model (25) was chosen in a way that the
matching condition (15) is satisfied for some(η∗, ρ∗) pair.
Since the processG0(z) is typically unknown, it is unlikely
that any chosen poles ofM(z, η) will allow Assumption 2
to be satisfied.

Suppose then that we choose a fixed reference model

M̄f (z) =
0.064z2

(z − 0.6)3
, (28)

and a flexible one defined as

Mf (z, η) =
η1z

2 + η2z + η3

(z − 0.6)3
,

for which Assumption 2 is not satisfied; forλ = 0 we obtain,
in 20 iterations,

Mf(z, η̂(20)) =
−0.7650(z − 1.201)(z − 0.5846)

(z − 0.6)3
,

C(z, ρ̂(20)) =
−0.6799(z − 0.7917)(z − 0.1817)

z2 − z
.

The step responses for iterations1 and 20 are presented in
Fig. 3. Table II presents the numerators of the controller and
the flexible reference model, obtained in different iterations.
Note that, even though Assumption 2 is not satisfied, the
NMP-zero is still identified with high precision by the
minimization ofJ̃0(η, ρ), in 20 iterations. Besides, the closed
loop T (z, ρ̂(20)) presents a response that is not exactly, but
very similar to the reference modelMf (z, η̂(20)) response
(see Fig. 3).

B. Process with two minimum-phase zeros

Finally, we apply the method to an example in which the
plant zeros are both minimum phase:

G2(z) =
(z + 0.2)(z − 0.4)

z(z − 0.3)(z − 0.8)
. (29)

It is initially in closed loop with a PID controller

Cinit(z) =
0.7(z − 0.4)(z − 0.6)

z2 − z
,

which we want to retune so that the closed loop response
is as close as possible to a given̄M(z), using a controller
C(z, ρ) of the form (24).
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Fig. 2. Step responses obtained in Step 1:T (z, ρ̂(20)) = M(z, η̂(20))
(M(η20)); and in Step 2:T (z, ρ̂) (T (ρ) -> λ = 1) with the fixed reference
model (27) (bar{M}m).



TABLE I

EVOLUTION OF M(z, η) AND C(z, ρ) IN THE ITERATIVE PROCEDURE FORG1(z).

i num(M(z, η̂(i))) J̃V R
0 (η, ρ̂(i−1)) num(C(z, ρ̂(i))) J̃V R

0 (η̂(i) , ρ)
1 −1.8349(z − 1.275)(z − 0.8602) 5.826165 −0.9245(z − 0.7831)(z − 0.5482) 23.102193
2 −0.9143(z − 1.208)(z − 0.6291) 0.083319 −0.7627(z − 0.8018)(z − 0.4200) 0.134643
5 −0.7552(z − 1.201)(z − 0.5353) 0.005507 −0.6854(z − 0.8009)(z − 0.3760) 0.008832

10 −0.6677(z − 1.2)(z − 0.4723) 0.000989 −0.6376(z − 0.8003)(z − 0.3421) 0.001324
20 −0.6145(z − 1.2)(z − 0.4258) 0.000088 −0.6055(z − 0.8001)(z − 0.3148) 0.000108
60 −0.5902(z − 1.2)(z − 0.4018) 6.4 × 10−8 −0.5900(z − 0.8001)(z − 0.3002) 7.2 × 10−8

TABLE II

EVOLUTION OF Mf (z, η) AND C(z, ρ) IN THE ITERATIVE PROCEDURE FORG1(z).

i num(Mf (z, η̂(i))) J̃V R
0 (η, ρ̂(i−1)) num(C(z, ρ̂(i))) J̃V R

0 (η̂(i) , ρ)
1 −1.3552(z − 1.225)(z − 0.7903) 2.708518 −0.9729(z − 0.7678)(z − 0.3676) 9.972294
2 −1.2833(z − 1.206)(z − 0.7580) 0.159566 −0.9217(z − 0.7718)(z − 0.3433) 4.035966

20 −0.7650(z − 1.201)(z − 0.5846) 0.009044 −0.6799(z − 0.7917)(z − 0.1817) 0.077548

TABLE III

EVOLUTION OF M(z, η) AND C(z, ρ) IN THE ITERATIVE PROCEDURE FORG2(z).

i num(M(z, η̂(i))) J̃V R
0 (η, ρ̂(i−1)) num(C(z, ρ̂(i))) J̃V R

0 (η̂(i), ρ)
1 0.8363(z − 0.6470)(z + 0.5586) 0.039204 0.8592(z − 0.8093)(z − 0.0364) 0.002505
2 0.8644(z − 0.6381)(z + 0.4707) 0.000158 0.8595(z − 0.8198)(z − 0.0664) 0.016214

10 0.6895(z − 0.4117)(z + 0.1343) 0.000003 0.6849(z − 0.8006)(z − 0.3223) 0.000049
20 0.6517(z − 0.4040)(z + 0.1846) 3.08 × 10−7 0.6501(z − 0.8002)(z − 0.3051) 6.85 × 10−6
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Fig. 3. Step responses of the fixed reference model (28) (bar{M}), the
flexible modelMf (z, η̂(i)) (M(ηi)) and the closed loop systemT (z, ρ̂(i))
(T (ρi)) with G1(z) at iterations 1 and 20.

1) Assumption 2 is satisfied:In this case, the fixed refer-
ence model is given by

M̄(z) =
0.46009z2

(z − 0.6673)(z2 + 0.3063z + 0.07661)
,

and the flexible reference model is chosen as

M(z, η) =
η1z

2 + η2z + η3

(z − 0.6673)(z2 + 0.3063z + 0.07661)
,

for which Assumption 2 is satisfied. In Step 1 the zeros of
M(z, η), estimated using (19)-(20), converge to the zeros
of G0(z), but much more slowly than in the case of NMP-
zeros: see Table III. SinceM(z, η̂(20)) does not present a

NMP-zero, we can safely go for Step 2 and use the standard
VRFT method without modifying the reference model.

2) Assumption 2 is not satisfied:Suppose now we choose
another fixed reference model:

M̄f (z) =
0.216z2

(z − 0.4)3
, (30)

and a corresponding flexible model having the same poles
asM̄f (z):

Mf (z, η) =
η1z

2 + η2z + η3

(z − 0.4)3
.

With Mf (z, η) and the controller (24), Assumption 2 is not
satisfied. Then Step 1 leads to

Mf (z, η̂(10)) =
0.55939(z − 0.697)(z + 0.2742)

(z − 0.4)3
,

Cf (z, ρ̂(10)) =
0.55643(z − 0.6537)(z + 0.1013)

z2 − z
.

Note thatMf (z, η̂(10)) is far fromM̄f (z) (see Fig. 4 - Step
1), but it does not present a NMP zero. We can then safely
go to Step 2 and apply the standard VRFT with the fixed
reference model (30). The controller obtained is

C(z, ρ̂) =
0.19874(z + 0.5094)(z − 0.7791)

z2 − z
.

Fig. 4 - Step 2 - shows the closed loop responses obtained
with this controller compared to the fixed reference model
M̄f (z).

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a flexible criterion
Jλ(η, ρ) for the tuning of controllers using the VRFT method



0 5 10 15
0

0.2

0.4

0.6

0.8

1

0 5 10 15
0

0.2

0.4

0.6

0.8

1

bar {M}
M(η10)

bar {M}
T(ρ)

Step Response

Time (sec)

A
m

pl
itu

de

Step Response

Time (sec)

A
m

pl
itu

de

Step 1 

Step 2 

Fig. 4. Step responses of the fixed reference model (30) (bar{M}) and the
flexible reference modelMf (z, η̂(10)) (M(η10)) in Step 1; step response
of (30) (bar{M}) and of the closed loop systemT (z, ρ̂) (T (ρ)) in Step 2.

that allows the method to be used for the control of non-
minimum phase plants. We have also proposed a two-step
procedure for the tuning: in the first step we useλ = 0 and
the flexible reference model will reproduce the NMP-zeros
if there are some. If this is the case, then the fixed reference
model should be modified so as to contain this NMP-zeros. In
the second step, we useλ = 1 in order that the closed loop
response can reach the desired reference model response.
The efficiency of the flexible criterion is illustrated in some
simulations.

Extending the analysis to the case where the matching
controller is not in the controller set, for which we have
already obtained good simulation results, as well as adapting
the method to deal with signals corrupted by noise are some
of the aims of future research.
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