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Abstract

The accuracy of plant parameters estimated in closed-loop operation is investigated for a class of multivariable systems and for the situation
where only some of the reference inputs are excited. This issue is important for at least two reasons: (i) there are control applications
where it is preferable not to excite all references in order to avoid performance degradation, and (ii) it is not clear whether the results in
the context of open-loop identification, where the existence of common parameters between the various transfer functions is a condition
for improved accuracy with additional excitation, also hold in the closed-loop case. The paper examines the effect of the non-excitation
of some reference inputs on the variance of the estimated parameters. The proposed expressions are valid for all conventional model
structures used in prediction error identification. Although exciting all reference inputs is not necessary for identifiability, this work shows
that, regardless of the parametrization, the excitation ofall references never worsens and, in most cases, improves the accuracy of the
parameter estimates. The analytical results developed in this work are illustrated by two simulation examples.

Key words: Closed-loop identification, covariance matrices, multivariable systems, system excitation.

1 Introduction

A common approach in closed-loop identification of mul-
tivariable systems is to excite all external reference signals
simultaneously and then use the acquired data to identify
the parameters of the selected model structure. However, in
practice, it is not rare to encounter the situation where it is
not convenient to excite all references due to process limi-
tations or for economic reasons. For example, in an indus-
trial process where product quality is one of the reference
signals, exciting this reference would result in manufactur-
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ing a product of non-uniform quality, which is not accept-
able in most cases. Instead, it is preferable to perform the
identification by exciting the other reference inputs. Another
incentive for not exciting all reference inputs is of practi-
cal nature: When performing identification on a real plant,
a control engineer has to specify, for each of the reference
inputs, the experimental conditions such as the type of ac-
ceptable input signals, the acceptable level of excitation, the
experiment time, etc. It is clear that exciting only one or a
few reference inputs makes this task much simpler and thus
more appealing to engineers.

In this context, the identifiability of multivariable linear sys-
tems has been recently re-examined in [1]. It has been shown
that, in contrast to commonly held beliefs, it is not neces-
sary to excite all reference signals for the identification of
a multivariable system operating in closed loop with a lin-
ear time-invariant controller. In fact, provided that the con-
troller is of sufficient complexity, it is possible to identify a
multivariable system even without any external excitation.
In such case, it is the excitation due to noise that provides
the information for the estimation of the parameters. On the
other hand, relying on information from the noise source
only might mean that one has to acquire an unreasonable
long data sequence in order to satisfy the prescribed level
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of accuracy. In that case, an additional excitation at one or
several of the reference inputs would help achieve the de-
sired accuracy in a shorter time. In the same line of research,
the questions of identifiability and the transfer of excitation
are treated in [6]. There, the authors investigate, for single-
input single-output (SISO) systems, the smallest degree of
richness of the external excitation that is required to achieve
identifiability. Closely related questions to these appearin
the context of least costly identification experiment for con-
trol [3,8].

When identifying a plant for which it is imperative to avoid
the excitation of one or several reference inputs, it is of inter-
est to establish whether there are any drawbacks compared
to the identification where all reference inputs are excited.
Since different experimental conditions yield different lev-
els of accuracy of the estimated parameters, the obvious way
to quantify the aforementioned drawbacks is to analyze the
accuracy for the two cases.

A similar accuracy analysis in the context of open-loop iden-
tification of multi-input systems has been considered re-
cently in [7]. More specifically, the effect of an additional
input signal on the variance of the polynomial coefficients
in the case of FIR, ARX, ARMAX, OE and BJ models has
been investigated. Necessary and sufficient conditions on
the parametrization of MISO models under which the addi-
tion of an input decreases the covariance of the parameter
estimates have been provided. It has been shown that, for
model structures that have common parameters in the plant
and noise models, any additional independent input signal
reduces the covariance of all parameters, including the pa-
rameters of the noise model and those associated with the
other inputs. It has also been shown that the accuracy im-
provement resulting from an additional input extends beyond
the case of common parameters in all transfer functions.

The present contribution is a continuation of the work pre-
sented in [7], but in the context of direct closed-loop identi-
fication. Here, a Linear Time-Invariant (LTI) system withm
inputs andp outputs is to be identified using data collected
in closed-loop operation. It is assumed that the following
two assumptions hold:

A1) there are no common parameters between the models
associated with the various outputs

A2) the disturbances acting on the different outputs are not
correlated with one another

Clearly, these two assumptions restrict the class of multivari-
able systems for which the results of this work apply. For
systems fulfilling these assumptions, a MISO model can be
identified for each output separately and the resulting indi-
vidual models combined into a final MIMO model [4]. The
questions that this paper addresses are along the following
two lines: (i) What are the possible drawbacks of not ex-
citing all reference signals? (ii) Do the conditions on the
parametrization of the MISO structures that apply to open-
loop identification carry over to the case of direct closed-

loop identification (with the difference that, in closed-loop
operation, the external reference signals are excited instead
of the inputs)?

To answer these questions, a general model structure is in-
troduced that encompasses all commonly used parametric
model structures. It is assumed that the true plant (includ-
ing the noise model) is in the model set. For clarity of pre-
sentation, it is first assumed thatm = p = 2 and the main
findings are presented. Then, the results are extended to ar-
bitrary values ofm andp. An analysis of the variance of the
estimated parameters, which is asymptotic in data length but
not in model order, is performed for two cases of excitation:
(i) a single reference signal is used to excite the closed-loop
system; (ii) both references are applied simultaneously. A
similar asymptotic analysis has been performed in [2], where
the variances in both open and closed loop are compared for
SISO systems represented by BJ model structures.

The result of this variance analysis is that, in the case of
closed-loop identification, the following two situations can
be distinguished:

(i) If all parameters of the noise model are present in the
plant model, or if there is no noise model at all, then the
accuracy of all parameter estimates is always improved by
exciting both references simultaneously. For the FIR and
OE structures, this result is in contrast to the open-loop
case, where existence of common parameters between the
plant and noise models is required to improve the accuracy
of all parameter estimates.

(ii) If the noise model contains some parameters that are in-
dependent of the plant model, then simultaneous excita-
tion of both reference signals may improve but can never
worsen the quality of the parameter estimates.

The paper is organized as follows. Preliminaries concern-
ing prediction error identification are given in Section 2. In
Section 3, an expression describing the influence of the ref-
erence signals on the information matrix is derived. This
expression is used for computing the variance of the param-
eter and transfer function estimates in Section 4. The results
presented in Sections 3 and 4 are generalized to arbitrary
numbers of inputs and outputs in Section 5. Section 6 il-
lustrates the analytical results via two simulation examples.
Finally, conclusions are given in Section 7.

2 Preliminaries

The following unknown2×2 LTI “true” plant is considered:

S : y(t) =G(q−1)u(t) +H(q−1)η(t)

=

[

G11 G12

G21 G22

]

u(t) +

[

H1 0

0 H2

]

η(t) (1)

whereG11, G12, G21 andG22 are strictly causal, finite-
order, rational transfer functions that are not necessarily an-
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Fig. 1. Multivariable closed-loop system

alytic outside the unit circle, andH1 andH2 are stable and
inversely stable transfer functions. The backward-shift op-
eratorq−1 will be omitted in the sequel whenever appropri-
ate. The signaly(t) ∈ R2 is the output of the true plant,
u(t) ∈ R2 the control signal,r(t) ∈ R2 an external refer-
ence signal andη(t) ∈ R2 white noise input with variance
σ2

η = diag(σ2
η1
, σ2

η2
). The systemS is controlled by the sta-

bilizing 2×2 controllerK as depicted in Fig. 1. The control
signalu(t) can be expressed as a function ofr(t) as follows:

u(t) = U (r(t) −Hη(t)) (2)

=

[

U11 U12

U21 U22

]

(r(t) −Hη(t)) (3)

where the input sensitivity functionU is U = KS, with
S = (I +GK)−1 being the output sensitivity function and
I ∈ R2×2 being the identity matrix.

Under the assumptions A1 and A2, the plant (1) can be
divided in the following two distinct subsystems

S1 : y1(t) = G11u1(t) +G12u2(t) +H1η1(t) (4)
S2 : y2(t) = G21u1(t) +G22u2(t) +H2η2(t) (5)

Since the identification of these two subsystems can be per-
formed separately, only the identification of the subsystem
S1 will be treated subsequently. By duality, the same results
will hold for the subsystemS2.

Consider the direct closed-loop identification of the subsys-
temS1 using the following model structure:

M = {G11(α), G12(α, β), H1(α, β, γ),

θ =
(

αT βT γT

)T

∈ Dθ ⊂ Rnθ

}

(6)

whereG11(α),G12(α, β) andH1(α, β, γ) are rational trans-
fer functions,θ ∈ Rnθ is the vector of model parameters,
andDθ is a subset of admissible values forθ. It is assumed
that the true subsystemS1 can be described by this model
structure for someθ0 = (αT

0 , β
T
0 , γ

T
0 )T ∈ Dθ. Note that

this parametrization covers a wide range of model struc-
tures. For example, if one considers the ARMAX structure
Ay1(t) = B11u1(t) + B12u2(t) + C1η1(t) then the sub-
vectorα contains the parameters of the polynomialsA and

B11, β contains the parameters ofB12 andγ contains the
parameters ofC1. Also, in this caseH1 = H1(α, γ).

The direct identification method gives consistent estimates
of the open-loop plant if the data are sufficiently informative
with respect to the adopted model structure and if the true
plant, including the noise model, can be described within the
chosen parametrization [11]. Here, sufficiently informative
data means that the signalsu(t) are persistently exciting
of appropriate order. In closed loop, this is ensured e.g.
by a persistently exciting reference signal or by using a
sufficiently complex controller. The reader is referred to [1]
for more details. Using a set of input-output data of length
N acquired in closed-loop operation, the estimateθ̂N is
calculated via the prediction error criterion [10]:

θ̂N =









α̂N

β̂N

γ̂N









= arg min
θ∈Dθ

1

N

N
∑

t=1

[ε(t, θ)]2 (7)

where the one-step ahead prediction errorε(t, θ) for (4) is
defined as:

ε(t, θ)
∆
= y1(t) − ŷ1(t|t− 1, θ)

=H1(θ)
−1(y1(t) −G11(θ)u1(t) −G12(θ)u2(t))(8)

and the transfer functions are written generically as functions
of the parameter vectorθ.

Let us assume that the parameter estimatesθ̂N converge to
the true parameter vectorθ0 asN tends to infinity. Then, the
parameter error converges to a Gaussian random variable:

√
N
(

θ̂N − θ0

)

dist−→ N (0, Pθ) (9)

where the covariance matrixPθ is given by:

Pθ = σ2
η1

[Eψ(t, θ0)ψ
T (t, θ0)]

−1 , σ2
η1(t)M

−1 (10)

with ψ(t, θ) ,
∂ε(t,θ)

∂θ
andM the information matrix. Typ-

ically, to compute approximate expressions for the covari-
ance of the parameter vector estimates, the asymptotic co-
variance formulas (9)-(10) are used:

cov(θ̂N ) ≈ 1

N
Pθ =

σ2
η1(t)

N
M−1. (11)

In the next section, an expression forM is derived that
shows the dependence of this matrix on the external excita-
tion signalsr1(t) andr2(t). In turn, this expression will help
analyze the dependence of the covariance of the parameter
estimateθ̂N on r1(t) andr2(t).
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3 Expression for the information matrix M

Combining (3), (4) and (8), the gradient of the prediction
error with respect to the parameters atθ = θ0 can be ex-
pressed as follows:

ψ(t, θ0) = H1
−1
[(

gθ
11U11 + gθ

12U21

)

r1(t)

+
(

gθ
11U12 + gθ

12U22

)

r2(t)

+
(

hθ
1 − gθ

11U11H1 − gθ
12U21H1

)

η1(t)

−
(

gθ
11U12H2 + gθ

12U22H2

)

η2(t)
]

, Πr
1r1(t) + Πr

2r2(t) + Πη
1η1(t) + Πη

2η2(t) (12)

where

gθ
11 =

∂G11(θ)

∂θ

∣

∣

∣

∣

θ=θ0

; gθ
12 =

∂G12(θ)

∂θ

∣

∣

∣

∣

θ=θ0

and

hθ
1 =

∂H1(θ)

∂θ

∣

∣

∣

∣

θ=θ0

. (13)

The quantitiesΠr
1, Πr

2, Πη
1 andΠη

2 are introduced in (12)
for the sake of simplicity of notation.

From (10)-(13), and using Parseval’s theorem and the fact
that r1(t), r2(t), η1(t) andη2(t) are not correlated, the in-
formation matrix can be rewritten as:

M =
1

2π

∫ π

−π

{Πr
1Π

r
1
∗Φr1

+ Πr
2Π

r
2
∗Φr2

+

+ Πη
1Π

η
1
∗
ση2

1

+ Πη
2Πη

2
∗
ση2

2

}

dω

,M(r1) +M(r2) +M(η1) +M(η2) (14)

where(.)∗ is used to denote the complex conjugate trans-
pose.

Consider now the partition of the parameter vectorθ in (6).
The sensitivities of the transfer functionsG11, G12 andH1

with respect toθ read:

gθ
11 =

(

gα
11 0 0

)T

, gθ
12 =

(

gα
12 gβ

12 0
)T

and hθ
1 =

(

hα
1 hβ

1 hγ
1

)T

(15)

where the definition of the components ofgθ
11, gθ

12 andhθ
1

is analogous to that in (13). It follows from (12), (13) and
(15) that the quantitiesΠr

1, Πr
2, Πη

1 andΠη
2 reduce to:

Πr
k =H1

−1
(

gα
11U1k + gα

12U2k gβ
12U2k 0

)

k = 1, 2

Πη
1 =H−1

1

(

hα
1 −

2
∑

l=1

gα
1lUl1H1 hβ

1 − gβ
12U21H1 hγ

1

)

Πη
2 =H−1

1

(

−
2
∑

l=1

gα
1lUl2H2 − gβ

12U22H2 0

)

(16)

Consequently, the contribution ofr1(t), r2(t) andη2(t) to
M , i.e.M(r1)+M(r2)+M(η2), can formally be expressed
as:

M(r, η2) =









M11(r, η2) M12(r, η2) 0

M21(r, η2) M22(r, η2) 0

0 0 0









. (17)

Similar calculations provide expression forM(η1)

M(η1) =









M11(η1) M12(η1) M13(η1)

M21(η1) M22(η1) M23(η1)

M31(η1) M32(η1) M33(η1)









, (18)

from which the information matrixM becomes:

M =









M11(r, η) M12(r, η) M13(η1)

M21(r, η) M22(r, η) M23(η1)

M31(η1) M32(η1) M33(η1)









. (19)

In expressions (17)-(19), if a submatrix ofM carries the
argumentr, this means that this particular submatrix depends
on the statistics ofboth r1(t) and r2(t). The same holds
for the argumentη. Otherwise, the submatrices ofM carry
as argument only the particular component on which they
depend, for exampleM33(η1) depends only on the statistics
of η1(t).

In the sequel, the effect of the presence or absence of the
second external reference signalr2(t) on the variance of the
elements of the parameter vector estimate is analyzed. Note
that, for a given model structure, the presence or absence
of a particular external reference signal does not change the
structure of the information matrixM since, in closed-loop
operation, both inputsu1(t) andu2(t) are excited by both
reference signals.

4 Effect of the second reference signal

Consider the matrixM given in (19). All the possible model
structures that correspond to the parametrization (6) can be
classified in two groups:

A) The model structures that have no noise model or where
the subvectorγ of the vectorθ is empty (there are no
parameters in the noise modelH1 that are independent of
the plant model). This group includes the classical FIR,
ARX and OE model structures.

B) The model structures whose noise model contains some
(not necessarily all) parameters that are independent of
the plant model. This group includes the ARMAX and BJ
model structures.
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In order to study the effect ofr1(t) andr2(t) on the accuracy
of the parameter estimates ofα, β andγ, we introduce:

C , M−1 =









Cα Cαβ Cαγ

Cβα Cβ Cβγ

Cγα Cγβ Cγ









(20)

whereCα, Cβ andCγ are diagonal sub-matrices ofM−1

related to the covariances ofαN , βN andγN ascov(α̂N ) ≈
σ2

η1

N
Cα, cov(β̂N ) ≈ σ2

η1

N
Cβ , and cov(γ̂N ) ≈ σ2

η1

N
Cγ . The

off-diagonal submatrices represent the cross-covariances of
αN , βN andγN and are not used in the sequel. Furthermore,
the variance of the identified plant modelsG11(θ̂N ) and
G12(θ̂N ) and the identified noise modelH1(θ̂N ) can be
calculated using Gauss’ approximation formula [10]. For a
large number of dataN and by using (15) forgθ

11, gθ
12 and

hθ
1, one obtains:

var
(

G11(e
jω , θ̂N)

)

≈ σ2
η1

N
(gα

11)
∗
Cα g

α
11

var
(

G12(e
jω , θ̂N)

)

≈ σ2
η1

N

{

(gα
12)

∗
Cαg

α
12

+(gβ
12)

∗Cβ g
β
12

}

var
(

H1(e
jω , θ̂N)

)

≈ σ2
η1

N

{

(hα
1 )

∗
Cαh

α
1

+(hβ
1 )∗Cβ h

β
1 + (hγ

1)
∗
Cγ h

γ
1

}

. (21)

In the sequel, the analysis is performed separately for the
two groupsA andB, and thus the corresponding covariance
matricesC and their elements will carry the appropriate sub-
scripts “A” and “B”, respectively. Furthermore, the block-
diagonal elementsCα, Cβ , Cγ , and the matricesC andM
will carry the superscript “(1)” when only reference signal
r1(t) is applied and “(2)” when both reference signals are
applied simultaneously.

4.1 Main result

For a structure of groupA, when the vectorγ is empty
and both excitation signalsr1(t) andr2(t) are present, the
information matrixM in (19) reduces to

M
(2)
A

=

(

M11(r, η) M12(r, η)

M21(r, η) M22(r, η)

)

. (22)

Whenr1(t) alone is excited, the corresponding information
matrix reads:

M
(1)
A

=

(

M11(r1, η) M12(r1, η)

M21(r1, η) M22(r1, η)

)

. (23)

The matrixM (2)
A

can be written as:

M
(2)
A

= M
(1)
A

+ M̃A (24)

with

M̃A ,

(

M11(r2) M12(r2)

M21(r2) M22(r2)

)

. (25)

Consider next a structure of groupB. When onlyr1(t) is

excited, the information matrixM (1)
B

has the following form:

M
(1)
B

=









M11(r1, η) M12(r1, η) M13(η1)

M21(r1, η) M22(r1, η) M23(η1)

M31(η1) M32(η1) M33(η1)









. (26)

When bothr1(t) andr2(t) are present, the information ma-

trix M
(2)
B

is given by expression (19).M (1)
B

andM (2)
B

are
related as follows:

M
(2)
B

= M
(1)
B

+ M̃B (27)

with

M̃B =









M11(r2) M12(r2) 0

M21(r2) M22(r2) 0

0 0 0









. (28)

Next, the following result can be established.

Theorem 1 Consider the closed-loop identification of the
parameter vectorθ of the model structuresA,B ⊂ M. Let
the excitation signalsr1(t) and r2(t) be independent and
persistently exciting of sufficient order. Then:
(i) for model structures of groupA, the covariance matrices
of the parameter estimateŝα and β̂ decrease by addition of
the second excitationr2(t), i.e.

C
(2)
α,A < C

(1)
α,A and C

(2)
β,A < C

(1)
β,A. (29)

(ii) for model structures of groupB, the covariance matri-
ces of the parameter estimatesα̂ and β̂ cannot increase by
addition of the second excitationr2(t), i.e.

C
(2)
α,B ≤ C

(1)
α,B and C

(2)
β,B ≤ C

(1)
β,B. (30)

In addition, the covariance matrices ofγ̂ are strictly smaller
by addition of the second excitationr2(t), i.e.

C
(2)
γ,B < C

(1)
γ,B. (31)
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Proof. Part (i) follows as an immediate consequence of the
expression (24) and the fact that̃MA > 0:

C
(1)
A

− C
(2)
A

=C
(2)
A

(

M
(2)
A

−M
(1)
A

)

C
(1)
A

=
(

M
(1)
A
M̃−1

A
M

(2)
A

)−1

=
(

M
(1)
A
M̃−1

A
M

(1)
A

+M
(1)
A

)−1

> 0. (32)

Part (ii): the matrixM̃B is positive semi-definite (note the
non-negative contribution ofr2(t) to the elements ofM in
(14)). Consequently,

C
(1)
B

− C
(2)
B

= C
(2)
B
M̃BC

(1)
B

=
(

M
(1)
B
M̃−1

B
M

(1)
B

+M
(1)
B

)−1

≥ 0. (33)

Now, the expression (30) follows from the fact that any prin-
cipal submatrix of a positive semi-definite matrix is positive
semi-definite. Also, it follows from (33) thatC(2)

γ,B ≤ C
(1)
γ,B.

However, this inequality can be strengthened as follows.
Whenr1(t) alone is present, by straightforward calculation
of the inverse of the(3, 3) element ofM (1)

B
, one obtains:

C
(1)
γ,B = (M33(η1) − (M31(η1)M32(η1)) (34)

×
(

M11(r1, η) M12(r1, η)

M21(r1, η) M22(r1, η)

)−1

×
(

M13(η1)

M23(η1)

)





−1

.

Similarly, when bothr1(t) andr2(t) are applied:

C
(2)
γ,B = (M33(η1) − (M31(η1)M32(η1))

×
((

M11(r1, η) M12(r1, η)

M21(r1, η) M22(r1, η)

)

+ M̃A

)−1

× (M13(η1)M23(η1))
T
)−1

(35)

where the matrixM̃A > 0 is given in (25). By comparing
expressions (34) and (35), the expression (31) follows im-
mediately. 2

Comments on part (i)

1) For a structure of groupA, the simultaneous excitation
of r1(t) andr2(t) reduces the covariance of the estimates
of the parameter vectorsα andβ compared to the case
wherer1(t) alone is excited.

2) If the variance ofr2(t) tends to infinity,M (2)
A

andM̃A

also tend to infinity and consequentlyC(2)
A

tends to zero.
The intuition is thatα and β become perfectly known
when the power ofr2(t), and therefore also the power of
u1(t) andu2(t), tend to infinity.

3) The presence ofr2(t) reduces the variance of all trans-
fer function estimates. If the power ofr2(t) grows
unbounded, the variances ofG11(θ̂N ), G12(θ̂N ) and
H1(θ̂N ) tend to zero.

Comments on part (ii)

1) For a structure of groupB, the presence of a second ref-
erence signalr2(t) does not increase the covariance of the
estimates of the parameter vectorsα, β and reduces the
covariance of the estimates ofγ. This statement is valid
also for model structures with independent parametriza-
tion of the plant and noise models such as BJ.

2) If the energy ofr2(t) grows unbounded, expressions (35)

and (25) reveal thatC(2)
γ,B tends toM−1

33 (η1). At the same

time, using (19), it is straightforward to show thatC(2)
α,B

andC(2)
β,B tend to zero. This can be explained as follows:

when r2(t) goes to infinity,u1(t) andu2(t) also go to
infinity, and the parametersα and β become perfectly
known; then, the estimation ofγ corresponds to the iden-
tification of the unknown parameters of the Moving Av-
erage (MA) modely(t) = H1(q

−1)η1(t) (note that some
parameters ofH1 might already be known as they are part
of α and/orβ).

3) The excitationr2(t) never impairs, and in most cases
improves, the accuracy of all transfer function estimates:
see (30), (31) and (21). When the power ofr2(t) goes to
infinity, the variances ofG11(θ̂N ) andG12(θ̂N ) tend to
zero.

4) Even when the plant and noise models are parameter-
ized independently, there is a strong correlation between
the parameter estimates due to closed-loop operation. A
smaller variance of the plant parameter estimates implies
a smaller variance of the parameter estimates associated
with the noise model and vice versa.

It follows from Theorem 1 that, regardless of the
parametrization, the addition of the external signalr2(t)
never increases (and typically reduces) the variance of the
parameter estimates obtained via direct closed-loop identifi-
cation. This conclusion holds for any controllerK that guar-
antees informative experiments in closed loop. Furthermore,
it follows from (14) that, for direct closed-loop identifica-
tion and for both groupsA andB, the contribution of the
noise is never detrimental to the precision of the parameter
estimates.

5 Extension to general multivariable systems satisfying
assumptions A1 and A2

In this section, the analysis presented in Sections 3 and 4
for the case of two inputs and two outputs is generalized
to multivariable systems with arbitrary numbers of inputs
and outputs that satisfy the assumptionsA1 andA2. Let us
consider them-input 1-output subsystemSm1 of anm-input
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p-output systemSmp:

Sm1 : y1(t) = G11u1(t) +G12u2(t) + · · ·
+G1mum(t) +H1η1(t) (36)

and suppose thatSm1 is to be identified using the following
model structure:

Mm1 = {G11(α), G12(α, β), · · · , G1m(α, β, · · · , δ),

H1(α, β, · · · , δ, γ), θ =
(

αT βT · · · δT γT

)T
}

(37)

with θ ∈ Dθ ⊂ Rnθ . Here G11(α), G12(α, β),· · · ,
G1m(α, β, · · · , δ) andH1(α, β, · · · , δ, γ) are rational trans-
fer functions. Observe that the partition ofθ in the subvec-
torsα, β, ... will be different for each of the outputs. It is
assumed thatSmp is controlled by them× p controllerK.
The control signalu(t) ∈ Rm can be expressed as in (2)
with r(t) ∈ Rp andη(t) ∈ Rp. The one-step ahead predic-
tion errorεm1(t, θ) for (36) reads:

εm1(t, θ) = H1(θ)
−1
(

y1(t) −
m
∑

k=1

G1kuk(t)
)

(38)

From (3), (36) and (38) the gradient ofεm1 with respect to
the parameters atθ = θ0 can be expressed as:

ψm1(t, θ0) = H1
−1

[(

m
∑

k=1

gθ
1kUk1

)

r1(t)

+

(

m
∑

k=1

gθ
1kUk2

)

r2(t) + · · · +
(

m
∑

k=1

gθ
1kUkm

)

rm(t)

+

(

hθ
1 −

m
∑

k=1

gθ
1kUk1H1

)

η1(t) −
(

m
∑

k=1

gθ
1kUk2H2

)

η2(t)

− · · · −
(

m
∑

k=1

gθ
1kUkmHm

)

ηm(t)

]

,

m
∑

k=1

Πr
krk(t) +

m
∑

k=1

Πη
kηk(t) (39)

where the sensitivitiesgθ
1k, k = 1,m are defined analo-

gously as in (13). Recall thatθ0 = [αT
0 , β

T
0 , . . . , δ

T
0 , γ

T
0 ]T

represents the values of the model parameters that exactly
describe the true subsystemSm1. A calculus similar to the
one that led to (14) and (16) yields:

Mm =
1

2π

∫ π

−π

{

m
∑

k=1

Πr
kΠr

k
∗Φrk

+

m
∑

k=1

Πη
kΠη

k

∗
ση2

k

}

dω

,

m
∑

k=1

Mm(rk) +

m
∑

k=1

Mm(ηk) (40)

and

Πr
k =H−1

1

(

m
∑

l=1

gα
1lUlk

m
∑

l=2

gβ
1lUlk · · · gδ

1mUmk 0
)

Πη
1 =H−1

1

(

hα
1 −

m
∑

l=1

gα
1lUl1H1 hβ

1 −
m
∑

l=2

gβ
1lUl1H1

· · · hδ
1 − gδ

1mUm1H1 hγ
1

)

Πη
k =H−1

1

(

−
m
∑

l=1

gα
1lUlkHk −

m
∑

l=2

gβ
1lUlkHk

· · · − gδ
1mUmkHk 0

)

(41)

where, in the equation forΠr
k, the indexk ranges from1 to

m, while in that forΠη
k, k ranges from2 to m. Using (41)

in (40) gives the information matrixMm in the following
form:

Mm =

















M11(r, η) · · · M1m(r, η) M1(m+1)(η1)
...

. . .
...

Mm1(r, η) · · · Mmm(r, η)
...

M(m+1)1(η1) · · · M(m+1)(m+1)(η1)

















The contribution of a component ofr(t), sayr1(t), toMm

reads

Mm(r1) =

















M11(r1) · · · M1m(r1) 0
...

. ..
...

Mm1(r1) · · · Mmm(r1)
...

0 · · · 0

















.

Observe thatMm andMm(r1) have exactly the same struc-
ture asM in (19) andM(r, η2) in (17), respectively. Hence,
the results of Theorem 1 apply mutatis mutandis to the gen-
eral multivariable structures satisfying A1 and A2.

6 Simulation Results

In order to illustrate the analytical results for both groups
A andB, two 2 × 2 simulated plants are considered. Both
plants are controlled by the same2 × 2 controller:

K(q−1) =
0.8(1 − 0.3q−1)

(1 − 0.4q−1)

(

1 0.25

0.25 −1

)

(42)

The controller is designed so as to stabilize both plants with-
out other performance consideration1 .

1 Note that the direct closed-loop identification approach can be
used for identification of unstable plants provided the predictor
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A Monte-Carlo simulation is performed to compare the case
where the reference signalr1(t) alone is excited with the
case where the two reference signals are applied simultane-
ously. The reference signalsr1(t) andr2(t) are PRBS gen-
erated by a 10-bit shift register with data lengthN = 1023
and standard deviationsσr1

= 0.4 andσr2
= 1. The distur-

bance signalsη1(t) andη2(t) are white noises with standard
deviationsση1

= ση2
= 0.4. The signalsr1(t), r2(t), η1(t)

andη2(t) are mutually independent. This way, the assump-
tions of Theorem 1 are verified.

Simulation 1: Group A
The following FIR plant is considered:

y1(t) =B11u1(t) +B12u2(t) + η1(t)

y2(t) =B21u1(t) +B22u2(t) + η2(t)

with B11 = 0.5q−1 + 0.15q−2, B12 = 0.26q−1 + 1.6q−2,
B21 = 0.06q−1 +0.45q−2 andB22 = 0.7q−1 +0.2625q−2.
The variance of the parameter estimates is computed for both
cases of excitation. In these simulated examples, we compute
the parameter estimates corresponding to both outputs of
the system; thusθ = (b111, b

2
11, b

1
12, b

2
12, b

1
21, b

2
21, b

1
22, b

2
22)

T .
Whenr1(t) alone is excited, the asymptotic variances of the
elements ofθ computed by 1000 Monte-Carlo runs are:

var(θ̂(1)) = 10−4( 3.546 2.777 9.115 12.49

3.712 2.494 8.736 12.11)

The asymptotic variances ofθ computed when bothr1(t)
andr2(t) are excited simultaneously are:

var(θ̂(2)) = 10−4( 1.103 0.749 1.549 2.621

1.202 0.778 1.619 2.585)

The variances are reduced by addition of the second excita-
tion, which is due to the additional energy in bothu1(t) and
u2(t) caused by the extra signalr2(t). Note that, in the case
of open-loop identification of FIR models, the asymptotic
accuracy of the estimates of thebj11 coefficients is totally
independent of the presence ofu2(t).

Simulation 2: Group B
The following ARMAX structure is considered:

A1y1(t) =B11u1(t) +B12u2(t) + C1η1(t)

A2y2(t) =B21u1(t) +B22u2(t) + C2η2(t)

with A1 = 1 − 0.45q−1, B11 = q−1, B12 = 0.6q−1, C1 =
1 − 0.8q−1, A2 = 1 − 0.55q−1, B21 = 0.75q−1, B22 =
0.8q−1 andC2 = 1 − 0.7q−1. The parameter vectorθ =
(a1, a2, b

1
11, b

1
12, b

1
21, b

1
22, c1, c2)

T is considered. The Monte-
Carlo simulations provide the following variances:

var(θ̂(1)) = 10−3(0.653 32.19 0.742 0.191

2.810 32.41 0.518 1.23).

and the closed-loop system are stable [10].
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11
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10
0

10
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10
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10
−3

ω [rad/s]
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Fig. 2. Variance of the transfer function estimates:G11(q
−1) (left),

G12(q
−1) (middle) andH1(q

−1) (right), for the ARMAX model
with 2 reference inputs (solid line) and one input (dashed line).
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22

10
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10
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10
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2

Fig. 3. Variance of the transfer function estimates:G21(q
−1) (left),

G22(q
−1) (middle) andH2(q

−1) (right), for the ARMAX model
with 2 reference inputs (solid line) and one input (dashed line).

var(θ̂(2)) = 10−3(0.551 0.185 0.686 0.134

0.751 0.204 0.478 0.726).

As expected, the presence ofr2(t) improves the precision
of all estimated coefficients. The corresponding variances
of the transfer function estimatesG11(q

−1), G12(q
−1),

G21(q
−1), G22(q

−1), H1(q
−1) andH2(q

−1) are computed
at 500 frequency points for the two cases of excitation and
compared in Figs. 2 and 3. As expected, the accuracy of the
six transfer function estimates is improved.
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7 Conclusions

In this contribution, the effect of not exciting some of the
references is quantified for the case of closed-loop identifi-
cation. A variance analysis of the identified parameters has
been performed for two situations: (i) when a reference in-
put is not excited; (ii) when all reference signals are excited
simultaneously. It follows from this analysis that, regardless
of the parametrization, the non-excitation of one or several
references almost always impairs the quality of the param-
eter estimates. This result might not surprise the reader, es-
pecially if one considers that an additional reference signal
increases the energy of all inputs, which in turn results in
improved accuracy of the plant model parameters. However,
before this work was undertaken, it was not clear: (i) how
an additional reference signal affects the parameters of the
noise model; (ii) whether the improved accuracy of the plant
model parameters occurs for any (arbitrary) model structure?
Observe that the result presented here contrasts with the sit-
uation of open-loop identification, where an additional input
improves the accuracy of the estimated parameters only for
the model structures that have common parameters between
the different transfer functions [7].

The assumption of having the true plant and noise models
in the model setS1 ∈ M is rarely met in practice. In partic-
ular, it is well known in the literature concerned with direct
closed-loop identification [5,9,10] that a noise model not
covering the true noise characteristics introduces a bias.It
is shown in [10], Section 13.4, expression (13.53), that the
bias term is proportional toΦη

u/Φu, whereΦu denotes the
input signal spectrum andΦη

u is the contribution of the noise
η(t) to Φu. It is easy to see that, when all references are ex-
cited simultaneously, the input signal spectrumΦu is larger
than the one prevailing when one or more reference signals
are non-excited, whereasΦη

u remains constant in both cases.
Hence, the quantityΦη

u/Φu is reduced in the case of simul-
taneous excitation. In other words, whenS1 /∈ M, simul-
taneous excitation of all references is to be preferred to the
other excitation scenarios both in terms of the bias error and
the variance error.
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