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Abstract

The accuracy of plant parameters estimated in closed-lpepation is investigated for a class of multivariable systend for the situation
where only some of the reference inputs are excited. Thigiss important for at least two reasons: (i) there are comtpplications

where it is preferable not to excite all references in ordeavoid performance degradation, and (ii) it is not clear thbethe results in
the context of open-loop identification, where the existeat common parameters between the various transfer fursci®a condition
for improved accuracy with additional excitation, alsodat the closed-loop case. The paper examines the effecteofdh-excitation
of some reference inputs on the variance of the estimateghpers. The proposed expressions are valid for all colovehtmodel

structures used in prediction error identification. Altgbwexciting all reference inputs is not necessary for idiafiity, this work shows
that, regardless of the parametrization, the excitatioalbfeferences never worsens and, in most cases, improeeacituracy of the
parameter estimates. The analytical results developeldisnatork are illustrated by two simulation examples.

Key words: Closed-loop identification, covariance matrices, muttalale systems, system excitation.

1 Introduction ing a product of non-uniform quality, which is not accept-
able in most cases. Instead, it is preferable to perform the

A common approach in closed-loop identification of mul- @dentification by exciti_n_gthe other refere_nce inp_uts. Arest .
incentive for not exciting all reference inputs is of practi

tivariable systems is to excite all external referenceagn o e
y g cal nature: When performing identification on a real plant,

simultaneously and then use the acquired data to identify . X
the parameters of the selected model structure. However, in control engineer has to speq_fy, for each of the reference
practice, it is not rare to encounter the situation where it i [NPUtS, the experimental conditions such as the type of ac-

not convenient to excite all references due to process limi- CEPtable input signals, the acceptable level of excitatton
tations or for economic reasons. For example, in an indus- experiment time, etc. Itis cleqr that excmng_only one or a
trial process where product quality is one of the reference few reference inputs makes this task much simpler and thus

signals, exciting this reference would result in manufactu MOre appealing to engineers.

P . ) In this context, the identifiability of multivariable lineays-
An early version of this paper was presented at the 14th IFAC tems has been recently re-examined in [1]. It has been shown
Symposium on System Identification 2006 (SYSID 2006), New- 4t in contrast to commonly held beliefs, it is not neces-
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—— . . sary to excite all reference signals for the identificatién o
Current address: Laboratory of Computational SystemsBiet o' iiariable system operating in closed loop with a lin-
nology (LCSB), Ecole Polytechnique Fédérale de Lausanne . - - :
(EPFL), CH—1015 Lausanne, Switzerland ear time-invariant controller. In fact, provided that ttane
' ' ' troller is of sufficient complexity, it is possible to idefytia
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gever s@ nma. ucl . ac. be (M. Gevers). long data sequence in order to satisfy the prescribed level
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of accuracy. In that case, an additional excitation at one or loop identification (with the difference that, in closedn
several of the reference inputs would help achieve the de-operation, the external reference signals are excitedadst
sired accuracy in a shorter time. In the same line of resgarch of the inputs)?
the questions of identifiability and the transfer of exditat
are treated in [6]. There, the authors investigate, forlsing  To answer these questions, a general model structure is in-
input single-output (SISO) systems, the smallest degree oftroduced that encompasses all commonly used parametric
richness of the external excitation that is required to@ahi  model structures. It is assumed that the true plant (includ-
identifiability. Closely related questions to these apprar ing the noise model) is in the model set. For clarity of pre-
the context of least costly identification experiment fonco  sentation, it is first assumed that = p = 2 and the main
trol [3,8]. findings are presented. Then, the results are extended to ar-
bitrary values ofn andp. An analysis of the variance of the
When identifying a plant for which it is imperative to avoid estimated parameters, which is asymptotic in data lendth bu
the excitation of one or several reference inputs, it is tefrin not in model order, is performed for two cases of excitation:
est to establish whether there are any drawbacks comparedi) a single reference signal is used to excite the closeg-lo
to the identification where all reference inputs are excited system; (ii) both references are applied simultaneously. A
Since different experimental conditions yield differeet similar asymptotic analysis has been performed in [2], wher
els of accuracy of the estimated parameters, the obvious waythe variances in both open and closed loop are compared for
to quantify the aforementioned drawbacks is to analyze the SISO systems represented by BJ model structures.
accuracy for the two cases.
The result of this variance analysis is that, in the case of
A similar accuracy analysis in the context of open-loop iden closed-loop identification, the following two situationanc
tification of multi-input systems has been considered re- be distinguished:
cently in [7]. More specifically, the effect of an additional
input signal on the variance of the polynomial coefficients (i) If all parameters of the noise model are present in the
in the case of FIR, ARX, ARMAX, OE and BJ models has  plant model, or if there is no noise model at all, then the
been investigated. Necessary and sufficient conditions on accuracy of all parameter estimates is always improved by
the parametrization of MISO models under which the addi-  exciting both references simultaneously. For the FIR and
tion of an input decreases the covariance of the parameter OE structures, this result is in contrast to the open-loop
estimates have been provided. It has been shown that, for case, where existence of common parameters between the
model structures that have common parameters in the plant plant and noise models is required to improve the accuracy
and noise models, any additional independent input signal of all parameter estimates.
reduces the covariance of all parameters, including the p4ii) If the noise model contains some parameters that are in-
rameters of the noise model and those associated with the dependent of the plant model, then simultaneous excita-
other inputs. It has also been shown that the accuracy im- tion of both reference signals may improve but can never
provementresulting from an additional input extends beyon ~ worsen the quality of the parameter estimates.
the case of common parameters in all transfer functions.
The paper is organized as follows. Preliminaries concern-
The present contribution is a continuation of the work pre- ing prediction error identification are given in Section 2. |
sented in [7], but in the context of direct closed-loop idlent  Section 3, an expression describing the influence of the ref-
fication. Here, a Linear Time-Invariant (LTI) system with erence signals on the information matrix is derived. This
inputs andp outputs is to be identified using data collected expression is used for computing the variance of the param-
in closed-loop operation. It is assumed that the following eter and transfer function estimates in Section 4. The tesul
two assumptions hold: presented in Sections 3 and 4 are generalized to arbitrary
numbers of inputs and outputs in Section 5. Section 6 il-
Al) there are no common parameters between the modeldustrates the analytical results via two simulation exaapl
associated with the various outputs Finally, conclusions are given in Section 7.
A2) the disturbances acting on the different outputs are not
correlated with one another Lo
2 Preliminaries
Clearly, these two assumptions restrict the class of naritiv ] ) )
able systems for which the results of this work apply. For The following unknowr2 x 2 LTI “true” plant is considered:
systems fulfilling these assumptions, a MISO model can be . .
identified for each output separately and the resulting-indi S:y(t)=G(q ul(t) + H(g™)n(t)

vidual models combined into a final MIMO model [4]. The Giy Gis H, 0
guestions that this paper addresses are along the following = u(t) + n(t) Q)
two lines: (i) What are the possible drawbacks of not ex- G21 Ga2 0 Ho

citing all reference signals? (ii) Do the conditions on the
parametrization of the MISO structures that apply to open- where G11, G12, Go1 and Gao are strictly causal, finite-
loop identification carry over to the case of direct closed- order, rational transfer functions that are not necessarit



Fig. 1. Multivariable closed-loop system

alytic outside the unit circle, anff; and H, are stable and
inversely stable transfer functions. The backward-shift o
eratorg—! will be omitted in the sequel whenever appropri-
ate. The signay(t) € R? is the output of the true plant,
u(t) € R? the control signaly(t) € R? an external refer-
ence signal and(t) € R? white noise input with variance
o2 = dlag( T ~.)- The systens is controlled by the sta-
b7]|2|ng 2x2 controllerK as depicted in Fig. 1. The control
signalu(t) can be expressed as a function-¢f) as follows:

ult) =U (r(t) — Hi(®) @
- g Z (r(t) — H(t) €)

where the input sensitivity functioty is U = K S, with
S = (I + GK)~! being the output sensitivity function and
I € R?*2 being the identity matrix.

Under the assumptions A1 and A2, the plant (1) can be
divided in the following two distinct subsystems

81 : yl(t) =
82 : yg(t) =

Griui(t) + Graua(t) + Himi(t)
Ga1ui(t) + Gaaua(t) + Homa(t)

(4)
(%)

Since the identification of these two subsystems can be per-

formed separately, only the identification of the subsystem
S1 will be treated subsequently. By duality, the same results
will hold for the subsystenss,.

Consider the direct closed-loop identification of the sisbsy
tem S; using the following model structure:

M= {Gll(a), GIQ(avﬁ)v H, (Oé, 657)7

o= (ot g7 WT)TEDeCR"Q} ©)

whereG11 (), G12(«, 8) andH; («, 3, ) are rational trans-
fer functions,d € R™ is the vector of model parameters,
and Dy is a subset of admissible values forlt is assumed
that the true subsyste, can be described by this model
structure for soméy, = (o, L,+I)T € Dy. Note that
this parametrization covers a wide range of model struc-
tures. For example, if one considers the ARMAX structure
Ay1(t) = Briua(t ) + Bious(t) + Cim(t) then the sub-
vectora contains the parameters of the polynomidlsind

By, 0 contains the parameters &, and~ contains the
parameters of’;. Also, in this caseH; = Hy(a, 7).

The direct identification method gives consistent estimate
of the open-loop plant if the data are sufficiently infornaati
with respect to the adopted model structure and if the true
plant, including the noise model, can be described withén th
chosen parametrization [11]. Here, sufficiently informati
data means that the signalgt) are persistently exciting
of appropriate order. In closed loop, this is ensured e.g.
by a persistently exciting reference signal or by using a
sufficiently complex controller. The reader is referred1d [
for more details. Using a set of input-output data of length
N acquired in closed-loop operation, the estiméte is
calculated via the prediction error criterion [10]:

an
AN
AN

N

= arg min % Z[E(t, 0)]?

0eD
o4 =1

(@)

On =

where the one-step ahead prediction eer@r 6) for (4) is
defined as:

e(t,0) 2y (t) —
=Hi(6) ' (na

(|t —1,0)
(t) = Gu(O)ua (t) —

and the transfer functions are written generically as fionst
of the parameter vectak.

G12(0)ua(t))(8)

Let us assume that the parameter estiméesonverge to
the true parameter vecté asN tends to infinity. Then, the
parameter error converges to a Gaussian random variable:

VN (éN - 90) 4= Ar(0, Py) 9)
where the covariance matri is given by:
Py = oy [EY(L,00)07 (t,60)] ' £ o2 (M~ (10)

with (t,0) £ as(t % and M the information matrix. Typ-
ically, to compute approximate expressions for the covari-
ance of the parameter vector estimates, the asymptotic co-
variance formulas (9)-(10) are used:

2
T () ML

—pPy= N

cov(On) ~ N

(11)

In the next section, an expression fof is derived that
shows the dependence of this matrix on the external excita-
tion signalsry (t) andra(t). In turn, this expression will help
analyze the dependence of the covariance of the parameter

estimatefy onr(t) andra(t).



3 Expression for the information matrix M

Consequently, the contribution of (¢), r2(t) andna(t) to
M,i.e.M(r1)+ M/ (rz)+M(n2), can formally be expressed

Combining (3), (4) and (8), the gradient of the prediction as:

error with respect to the parametersfat 6, can be ex-
pressed as follows:

o(t,00) = Hi ™t [(971Un1 + gf5Ua1) (1)
+ (91 U12 + ¢¥2Usa) 1a(t)

+ (hf = g% UriHy — gY,Uay Hi) mu(t)

— (911U12Hs + g15Uaa Ha ) 1 ()]

2 17 (1) + Tyra () + I (t) + T3n(t) (12)
where
o = ac;éle(e) g0 = aG(;Z(H)
6=>0, 6=>06o
and
i = 8%(9) o (13)

The quantitiedI], II5, II7 andII] are introduced in (12)
for the sake of simplicity of notation.

From (10)-(13), and using Parseval’s theorem and the f

thatry (¢), r2(t), m(¢) andnz(t) are not correlated, the in-
formation matrix can be rewritten as:

1 (" \ \
M:%/ (I, ®,, + TI5115®,, +

+ MY 0, + TS 0} do

£ M(r1) + M(re) + M(m) + M(n2) (14)

where(.)* is used to denote the complex conjugate trans-

pose.
Consider now the partition of the parameter veétan (6).

The sensitivities of the transfer functiofs, Gi» and H;
with respect to@) read:

T
dh=(ot 0 0) . gh=(on o 0)

T
and hf = (h? h? h?)

T

(15)

where the definition of the components g, ¢f, andh¢
is analogous to that in (13). It follows from (12), (13) an
(15) that the quantitieBl}, I15, 117 andIl] reduce to:

=12

3

)

98U Hy  — giyUsy Hy 0) (16)

b= (gt U+ ot Uk ghUok 0)

2
Il =Hy' (h? =Y gUuH: W — glUnH h]
=1
2
) =H;* <—

=1

My (r,n2) Mia(r,m2) 0
MQI(Ta 772) M22(T7 772) O
0 0 0

M(r,m2) = (17)

Similar calculations provide expression ff ()

Mi1(m) Miz(m) Mis(m)
Mai(n1) Maz(n) Mas(m)
M1 (m) Msz(m) Mss(m)

M(nl) = (18)

)

from which the information matrix}{/ becomes:

My (r,m) Mia(r,n) Mis(n)
Mai(r,n) Maz(r,n) Maz(m)
M3y (m) Msa(ni) Mss(n)

(19)

act|n expressions (17)-(19), if a submatrix af carries the
argument, this means that this particular submatrix depends
on the statistics oboth r;(¢) and r2(¢). The same holds
for the argument). Otherwise, the submatrices f carry
as argument only the particular component on which they
depend, for examplé/s3(r; ) depends only on the statistics

of 1 (2).

In the sequel, the effect of the presence or absence of the
second external reference signa(t) on the variance of the
elements of the parameter vector estimate is analyzed. Note
that, for a given model structure, the presence or absence
of a particular external reference signal does not charge th
structure of the information matrix{ since, in closed-loop
operation, both inputs, (t) andus(t) are excited by both
reference signals.

4 Effect of the second reference signal

Consider the matrix/ given in (19). All the possible model
structures that correspond to the parametrization (6) ean b
d classified in two groups:

A) The model structures that have no noise model or where
the subvectory of the vectorf is empty (there are no
parameters in the noise modé| that are independent of
the plant model). This group includes the classical FIR,
ARX and OE model structures.

The model structures whose noise model contains some
(not necessarily all) parameters that are independent of
the plant model. This group includes the ARMAX and BJ
model structures.

B)



In order to study the effect of (¢) andrz(¢) on the accuracy
of the parameter estimates of 5 and~, we introduce:

Co Cop Cay
Csa Cp  Cpy
C’va O’Yﬁ C’Y

ceMl= (20)

whereC,, Cs andC,, are diagonal sub-matrices af —!
related to the covariances afy, Sy andyy ascov(ay) ~

2 “ o2 o2
UNAC_'OH cov(Bn) ~ §+Cp, andcov(yn) ~ +C,. The
off-diagonal submatrices represent the cross-covargote
ay, By andyy and are not used in the sequel. Furthermore,
the variance of the identified plant modﬁﬂﬁl(ézv) and
Glg(é]\[) and the identified noise modéfl(éN) can be
calculated using Gauss’ approximation formula [10]. For a

large number of dat&’ and by using (15) fog{,, ¢%, and
hf, one obtains:

~
~

var (Gu(ej“’, éN)) ~

var (Glg(ej“’,éN)) ~ 1

(21)

In the sequel, the analysis is performed separately for the

two groupsA andB, and thus the corresponding covariance
matricesC' and their elements will carry the appropriate sub-
scripts “A” and “B”, respectively. Furthermore, the block-
diagonal element€’,, Cg, C,, and the matrice€’ and M/
will carry the superscript(1)” when only reference signal
r1(t) is applied and (2)” when both reference signals are
applied simultaneously.

4.1 Main result

For a structure of groupd, when the vectory is empty
and both excitation signals (t) andry(t) are present, the
information matrix/ in (19) reduces to

Mf)_<

Whenr (t) alone is excited, the corresponding information
matrix reads:

Mi1(r,n) Mia(r,m)

(22)
Moy (r,n) Mas(r,m)

My (r1,m) Mia(ri,n)

MY = ( ) : (23)
Mo (r1,m) Maa(r1,m)

The matrifo) can be written as:

MY =M + My (24)
with
- M M
MA£< 11(r2) 12(7“2)>. (25)
M1 (re) Maa(rs)

Consider next a structure of group When onlyry () is
excited, the information matriMl(gl) has the following form:

Mui(r1,m) Mi2(r1,m) Mas(m)
My (r1,m) Maa(r1,n) Mas(m)
Msi(n1)  Maz(m) Msz(n)

M= (26)

When bothr; () andr(t) are present, the information ma-

trix M is given by expression (19)v5” and M are
related as follows:

Mg) = Ml(gl) + Mg (27)
with
Mi1(r2) Mia(r2) O
Mp = | Mai(r2) Maa(r2) 0 (28)
0 0 0

Next, the following result can be established.

Theorem 1 Consider the closed-loop identification of the
parameter vectof of the model structuregl, B ¢ M. Let
the excitation signals; (t) and r2(t) be independent and
persistently exciting of sufficient order. Then:

(i) for model structures of grougl, the covariance matrices
of the parameter estimatésand 3 decrease by addition of
the second excitation; (), i.e.

c? <l and O <ci. (29)
(ii) for model structures of grous, tr]e covariance matri-

ces of the parameter estimatésand 3 cannot increase by
addition of the second excitation (¢), i.e.

c? <)y and c;fgg <. (30)

In addition, the covariance matrices ®fare strictly smaller
by addition of the second excitatian(t), i.e.

o <t @



Proof. Part (i) follows as an immediate consequence of the
expression (24) and the fact thaf, > 0:

oD e = o (P~ ald) o
1) yvr— 2
= (Mg M)

~ —1
= (MM + M) >o.

-1
(32)

Part (ii): the matrix\/; is positive semi-definite (note the
non-negative contribution af;(¢) to the elements oM in
(14)). Consequently,

oy —of) =
~ —1
= (M a1z m) + M) = 0.

oy MsCy)
(33)

Now, the expression (30) follows from the fact that any prin-
cipal submatrix of a positive semi-definite matrix is pasti

semi-definite. Also, it follows from (33) that’, 2) < C’(l)
However, this |nequaI|ty can be strengthened as follows.
Whenr (t) alone is present, by straightforward calculation

of the inverse of the3, 3) element ofMél), one obtains:

Ck = (Mg (m) = (M1 (1) Msa () (34)
( 1(r1,m) Maia(ri,n )>_>1< <M13(771)>
1(r1,m) Maa(r1,m) Ma3s(m)
Similarly, when bothr; () andr,(¢) are applied:
C% = (Mg (m) — (M1 (1) Mo (1))
<<M11 L, M12(7°1777)> +J\;[A> -
Mo (r1,m) Maa(r1,m)
X (M13(771)M23(771))T)_1 (35)

where the matrix\/ 4 > 0 is given in (25). By comparing
expressions (34) and (35), the expression (31) follows im-
mediately. O

Comments on part (i)

1) For a structure of groupl, the simultaneous excitation
of r1(t) andry(t) reduces the covariance of the estimates
of the parameter vectors and 3 compared to the case
wherer (t) alone is excited.

2) If the variance ofr,(t) tends to infinity,Mf) and M 4

also tend to infinity and consequen(]lff) tends to zero.
The intuition is thato and 8 become perfectly known
when the power of(t), and therefore also the power of
u1(t) andus(t), tend to infinity.

3) The presence of,(t) reduces the variance of all trans-
fer function estimates. If the power ofy(¢) grows

unbounded, the variances @¥;(Ay), Gi2(dx) and
H,(6y) tend to zero.

Comments on part (ii)

1) For a structure of group, the presence of a second ref-
erence signat, (t) does not increase the covariance of the
estimates of the parameter vectarss and reduces the
covariance of the estimates ¢f This statement is valid
also for model structures with independent parametriza-
tion of the plant and noise models such as BJ.

2) If the energy of»(t) grows unbounded, expressions (35)

and (25) reveal thatﬂ tends toM33 (m). At the same
time, using (19), it is stralghtforward to show th@ 223

and C’gg tend to zero. This can be explained as follows:
whenry(t) goes to infinity,u, (¢t) and ux(t) also go to
infinity, and the parameters and 5 become perfectly
known; then, the estimation af corresponds to the iden-
tification of the unknown parameters of the Moving Av-
erage (MA) mode(t) = Hy(q~ ) (t) (note that some
parameters off; might already be known as they are part
of a and/orp).

3) The excitationr,(t) never impairs, and in most cases
improves, the accuracy of all transfer function estimates:
see (30), (31) and (21). When the powerrgft) goes to
infinity, the variances o711 (fx) and G12(Ax) tend to
zero.

4) Even when the plant and noise models are parameter-
ized independently, there is a strong correlation between
the parameter estimates due to closed-loop operation. A
smaller variance of the plant parameter estimates implies
a smaller variance of the parameter estimates associated
with the noise model and vice versa.

It follows from Theorem 1 that, regardless of the
parametrization, the addition of the external signa(t)
never increases (and typically reduces) the variance of the
parameter estimates obtained via direct closed-loopifitent
cation. This conclusion holds for any controli§rthat guar-
antees informative experiments in closed loop. Furtheemor

it follows from (14) that, for direct closed-loop identifica
tion and for both groupsd and 3, the contribution of the
noise is never detrimental to the precision of the parameter
estimates.

5 Extension to general multivariable systems satisfying
assumptions Al and A2

In this section, the analysis presented in Sections 3 and 4
for the case of two inputs and two outputs is generalized
to multivariable systems with arbitrary numbers of inputs
and outputs that satisfy the assumptiohisand A2. Let us
consider then-input 1-output subsystes),,; of anm-input



p-output systens,,,,:
Smi1 1 (t) = Griua(t) + Graue(t) + - -
+Grmum(t) + Him(t)  (36)
and suppose thd,,,; is to be identified using the following
model structure:
M1 = {G11(a)

1G12(a76)7"' aclm(a767"' 75 3

T
Ha B 00), 0= (o7 g7 57 47) " ha)
with 6 € Dg C R™. Here Gi1(«a), Giz(a,B), -,
Gim(a, B,---,0)andHy (o, 8, - - - , 4, ) are rational trans-

fer functlons Observe that the partition &fn the subvec-
torsa, G, ...
assumed tha$,,, is controlled by then x p controller K.

The control signak(t) € R™ can be expressed as in (2)
with r(t) € RP andn(t) € RP. The one-step ahead predic-

tion errore,,1 (¢, 6) for (36) reads:

e (t,0) = Hy (0 (

Zleuk )

(38)

From (3), (36) and (38) the gradient of,; with respect to
the parameters @ = 6, can be expressed as:

VYm(t,00) = [(Z glkUm)
(i 91kUk2> + (Z g?kUkm> Tm(t)
k=1

+ < Zg?kUk1H1> m(t <Z 91kUk2H2> 2(t)
k

1

- <Z gkakam> nm(t)]

Z Iy re (t) + Z I (2)
=1

(39)

where the sensitivitieg{,, ¥k = 1,m are defined analo-
gously as in (13). Recall thaky = [od, 8L, ..., 68 1"

will be different for each of the outputs. It is

and

71(29?‘1(]11@ nglUlk o g Unmk 0)
Iy =H ( ZgllUllHl ? nglUllHl
1=2
< b = gl Uiy B])
HZZHfl(—ZQf}Ulka = > gnUnHy
=1 1=2

— ¢ UpnHy, o) (41)

where, in the equation fdi;, the indexk ranges fromi to
m, while in that forII}, k ranges fron® to m. Using (41)
in (40) gives the information matrid/,,, in the following
form:

My (r,n) © Mim(r,m)  Migmg1)(m)
My, =
Mml(ra 77) : Mmm(ra 77)
Mpi1y1(m) M1y (m+1)(m)

The contribution of a component oft), sayri(t), to M,,
reads

]\/[11(7‘1) Mlm(rl) 0

Mm(Tl) = .
Mml(rl) et Mmm(rl) :

0 0

Observe that\/,,, and M, (r1) have exactly the same struc-
ture asM in (19) andM (r,n2) in (17), respectively. Hence,
the results of Theorem 1 apply mutatis mutandis to the gen-
eral multivariable structures satisfying A1 and A2.

6 Simulation Results

In order to illustrate the analytical results for both greup
A and B, two 2 x 2 simulated plants are considered. Both
plants are controlled by the sarfe< 2 controller:

represents the values of the model parameters that exactly

describe the true subsyste$p,;. A calculus similar to the
one that led to (14) and (16) yields:

M,, =

i " HTH”WI)T 4+ H"H"*az dw
v [ {3 me, s Y, |

k=1

2N M () + > My ()
P Pt

(40)

Kl = 0.8(1 — 0.3¢1) <

1 025
(1-0.4¢™ Y ) (42)

0.25 —1

The controller is designed so as to stabilize both plants-wit
out other performance consideration

1 Note that the direct closed-loop identification approach lsa
used for identification of unstable plants provided the joted



A Monte-Carlo simulation is performed to compare the case
where the reference signal(¢) alone is excited with the

var G12

var Hl

case where the two reference signals are applied simultane107?} \

ously. The reference signals(t) andry(t) are PRBS gen- \

erated by a 10-bit shift register with data length= 1023
and standard deviations, = 0.4 ando,, = 1. The distur-
bance signals; (¢t) andn,(t) are white noises with standard
deviationso,, = o,, = 0.4. The signals-(t), r2(t), 71 (¢)

andr- (t) are mutually independent. This way, the assump-

tions of Theorem 1 are verified.

Simulation 1: Group A
The following FIR plant is considered:

y1(t) = Briua (t) + Brzua(t) +mi(?)
Y2(t) = Barua (t) + Bazua(t) + 12(2)

with By = 0.5~ + 0.15¢72, Bio = 0.26¢"! + 1.6¢~2,
Boy = 0.06¢~ 1 +0.45¢=2 andBas = 0.7¢~ L +0.2625¢~2.

The variance of the parameter estimates is computed for both

-3
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10°F

10°t

107 107 107 10°
w [rad/s]

10°
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10°
w [rad/s]

cases of excitation. In these simulated gxamples, we cc&nput#:ig_ 2. Variance of the transfer function estimatsi (¢~ ) (left),
the parameter estimates corresponding to both outputs of;

the system; thug = (bi;,b3;, bia, bia, b3y, b3y, bdo, b35) "

Whenr (t) alone is excited, the asymptotic variances of the

elements of computed by 1000 Monte-Carlo runs are:

var(§M) = 107%(3.546 2.777 9.115 12.49
3.712 2.494 8.736 12.11)

The asymptotic variances @f computed when both; (¢)
andry(t) are excited simultaneously are:

var(§®) =1074(1.103 0.749 1.549 2.621
1.202 0.778 1.619 2.585)

The variances are reduced by addition of the second excita- |

tion, which is due to the additional energy in bath(¢) and
us(t) caused by the extra signal(t). Note that, in the case
of open-loop identification of FIR models, the asymptotic
accuracy of the estimates of th¢, coefficients is totally
independent of the presencewf(t).

Simulation 2: Group B
The following ARMAX structure is considered:

A1y1(t) = Briui(t) + Biaua(t) + Cim(t)
Aoya(t) = Barui(t) + Bagua(t) + Cona(t)

with 4 =1 — 0.45(]_1, By = q_l, Bis = 0.6(]_1, &
1-— 0.8(]71, Ay =1 — O.55q’1, B = 0.75(]71, Boo
0.8¢ ' andC, = 1 — 0.7¢~'. The parameter vectat
(a1, ag,bly, bly, bd; by c1,c2)T is considered. The Monte-
Carlo simulations provide the following variances:

var(M) =1073(0.653 32.19 0.742 0.191
2.810 32.41 0.518 1.23).

and the closed-loop system are stable [10].

12(¢g™") (middle) andH; (¢~ ') (right), for the ARMAX model
with 2 reference inputs (solid line) and one input (dashed)li
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Fig. 3. Variance of the transfer function estimat@s; (¢~ *) (left),
G22(¢~") (middle) andH2 (g™ ") (right), for the ARMAX model
with 2 reference inputs (solid line) and one input (dashed)li

var(9®)=1073(0.551 0.185 0.686 0.134
0.751 0.204 0.478 0.726).

As expected, the presence @f(t) improves the precision

of all estimated coefficients. The corresponding variances
of the transfer function estimate§i:(¢~'), Gi2(¢71),
G21(q71), Gaa(q™1), Hi(q™ ') andHa (¢~ 1) are computed

at 500 frequency points for the two cases of excitation and
compared in Figs. 2 and 3. As expected, the accuracy of the
six transfer function estimates is improved.



7 Conclusions [6] M. Gevers, A.S. Bazanella, and L. Miskovic. Identifiity and
informative experiments in open and closed-loop identifica

In this contribution. the effect of not exciting some of the In 'Modeling, Estimation and Control: Festschrift in honor of
! 9 Giorgio Picci on the occasion of his sixty-fifth Birthday’ 8hiuso,

references is quantified for the case of closed-loop identifi A. Ferrante and S. Pinzoni EdsLecture Notes in Control and
cation. A variance analysis of the identified parameters has Information Sciences, pages 167—187. Springer Verlag7.200
been performed for two situations: (i) when a reference in- 71\ Gevers, L. Miskovic, D. Bonvin, and A. Karimi. Ideifitation

put is not excited; (ii) when all reference signals are extit of multi-input systems: Variance analysis and input desigues.
simultaneously. It follows from this analysis that, redass Automatica 42(4):559-572, April 2006.

of the parametrization, the non-excitation of one or sdvera [g] H. Jansson and H. Hjalmarsson. Optimal experiment desiglosed
references almost always impairs the quality of the param- loop. In 16th IFAC World Congress on Automatic Control, paper
eter estimates. This result might not surprise the reader, e 04528 July 2005.

pecially if one considers that an additional referenceaign [9] A. Karimi and I. D. Landau. Comparison of the closed loop
increases the energy of all inputs, which in turn results in identification methods in terms of the bias distributi®ystems and

improved accuracy of the plant model parameters. However, ~ Control Letters 34(4):159-167, July 1998.

before this work was undertaken, it was not clear: (i) how [10] L. Ljung. System Identification - Theory for the Usé&rentice Hall,
an additional reference signal affects the parameterseof th Upper Saddle River, NJ, Il edition, 1999.

noise model; (ii) whether the improved accuracy of the plant [11] L. Ljung and U. Forssell. An alternative motivation fdhe
model parameters occurs for any (arbitrary) model stretur indirect approach to closed-loop identificatiolEEE Transactions
Observe that the result presented here contrasts withtthe si o1 Automatic Control AC-44(11):2206-2209, November 1999.
uation of open-loop identification, where an additionakihp

improves the accuracy of the estimated parameters only for

the model structures that have common parameters between

the different transfer functions [7].

The assumption of having the true plant and noise models
in the model se; € M is rarely met in practice. In partic-
ular, it is well known in the literature concerned with direc
closed-loop identification [5,9,10] that a noise model not
covering the true noise characteristics introduces a ltias.
is shown in [10], Section 13.4, expression (13.53), that the
bias term is proportional t®? /®,,, where®,, denotes the
input signal spectrum an® is the contribution of the noise
n(t) to @,,. It is easy to see that, when all references are ex-
cited simultaneously, the input signal spectri@mis larger
than the one prevailing when one or more reference signals
are non-excited, where&g] remains constant in both cases.
Hence, the quantitp? /®,, is reduced in the case of simul-
taneous excitation. In other words, whéh ¢ M, simul-
taneous excitation of all references is to be preferredéo th
other excitation scenarios both in terms of the bias errdr an
the variance error.
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