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Abstract— In this work we extend the scope of the classical
Cramér-Rao lower bound, or information inequality, from
Euclidean to function spaces. In other words we derive a tight
lower bound on the autocovariance function of a function
estimator. We do this in the context of system identification.
Two key elements of system identification are experiment
design and model selection. The novel information inequality
on function spaces is important for model selection because it
allows the user to compare estimators using different model
structures. We provide a consistent treatment of the case
where the Fisher information matrix is singular. This makes it
possible to take into account that in optimal experiment design
one tries to mask those parts of the system non-identifiable,
which are irrelevant for the application.
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I. INTRODUCTION

Parameter estimation techniques based on information
inequalities like the Cramér-Rao lower bound have found
a huge amount of applications in statistics, system identifi-
cation and machine learning [11]. These bounds can be used
to quantify the covariance matrix of asymptotically efficient
parameter estimators as the sample size tends to infinity
[12]. Various optimal experiment design techniques have
been proposed to reduce parametric uncertainty. Traditionally
optimality criteria such as A-,D- and E-optimality serve that
purpose by maximizing the trace, determinant or minimal
eigenvalue of the information matrix respectively. However,
in system identification the primary goal is not to estimate
a parameter but to estimate a system. That this is indeed
an issue becomes clear if one keeps in mind that there
exist a variety of natural parametrizations for a given model
structure. For instance the model structure consisting of
transfer function P with

P (z) =
θ1z

−1 + · · ·+ θnz−n

1 + θn+1z−1 + · · ·+ θ2nz−n
=

∑∞

i=1
giz

−i,

can be parameterized using θ = (θ1, . . . , θ2n) or the Markov
parameters g = (g1, . . . , g2n).
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If, for example, we maximize the trace of the information
matrix in the g-coordinate system and in the θ-coordinate
system we perform

minE‖ĝ − g‖2 and minE‖θ̂ − θ‖2,

respectively, where ·̂ denotes the estimator. For some appli-
cation mean-square error (MSE) of ĝ might be important, for
another the MSE of θ̂, and for yet another the MSE of a com-
pletely different parameter vector might be of interest [2],
[13]. In applications, such as robust control, it is more natural
to write a specification in terms of the function estimator.
In order to remain in the computationally feasible realm of
convex optimization such performance specifications have to
be linked to a 2-norm which in a statistical framework is the
variability metric. The autocovariance function Φ : T×T →
C given by

Φ(z, w) := E[∆(z)∆(w)∗] with ∆ = P − P̂ ,

and T ⊆ C denoting the unit circle provides this link. In other
words it is possible to derive sufficient conditions for natural
performance specifications based on the function mismatch
∆ by using the autocovariance function.

In this article will derive a novel information inequality
which generalizes the classical Cramér-Rao lower-bound, of
the form C ≥ J−1, in such a way that it is more suitable
for function estimation. In the new inequality the covariance
matrix C is replaced by the autocovariance function Φ, and
the inverse information matrix J−1 by the reproducing kernel
of the information metric. We will derive all our results
without making the assumption that J is non-singular.

The article is structured as follows: In Section II we use a
simple example to illustrate that a biased estimator, for which
the true system is not even an element of the model structure,
can outperform an unbiased estimator. In Section III we use
duality theory to describe the inverse relationship between
inner-products and reproducing kernels. In this context the
Fisher information metric refers to the inner-product whose
Gramian matrix is the classical Fisher information matrix.
In Section IV we introduce the concept of compression
for inner products. This concept is used in Section V to
derive the information inequality for function spaces given
a possibly singular Fisher information matrix. In Section VI
we conclude.

Notation: K∗ denotes the field of real or complex numbers. If
K = C, and k ∈ K, then k∗ denotes the complex conjugate. If
K = R, then k∗ = k.



II. MOTIVATIONAL EXAMPLE

Let P̂N denote the standard LS-estimator of the transfer
function P given input-output measurements (x1, . . . , xN )
with xt = (ut, yt) in the following statistical model structure

y = Pu + e with P (z) =
∑30

i=1
θiz

−i, (1)

where e denotes Gaussian white noise with variance σ2
e .

We shall compare P̂N with the reduced order estimator
R̂N , defined by R̂N = ρ(P̂N ), where ρ is a model reduction
map. As a concrete example consider the reduced order
model structure given by

R =
{

r1

r2 + z

∣∣ r ∈ R2

}
. (2)

Since R ∈ R is determined by its value at the interpolation
point z0 := eπ/2 = , we may, instead of r, use

r̃ = (r̃1, r̃2) = (Re R(z0), Im R(z0)), (3)

as a coordinate vector.1 The model reduction map

ρ : P → R, P 7→ R with R(z0) = P (z0), (4)

is thus well defined and smooth. For the low order estimator
R̂N we shall use a discrete input spectrum with input power
σ2

u distributed evenly across −π/2 and π/2. For the high
order estimator P̂N we use the same input power but with a
constant input spectrum, which corresponds to white inputs.

The simulation results, see Fig. 1, indicate that the reduced
order estimator can outperform the full order estimator for
high frequencies, despite the inherent bias ρ(P )− P of the
reduced order estimator. This is due to the difference of the
corresponding variance functions, see Fig. 2.
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Fig. 1. Absolute value curves of the true system P (eω), a realization
of the full order estimator P̂N (eω), and the corresponding reduced order
estimator R̂N = ρ(P̂N ), over the frequency band [0, π]. The reduced order
estimator outperforms the full order estimator on the high frequency band
[π/2, π]. For low frequencies the full order estimator performs better. The
simulation was performed with N = 100 and σ2

e/(Nσ2
u) = 0.05

1A simple calculation reveals that the correspondence between r̃ and r

is given by r =

»
−1 r̃1

0 r̃2

–−1

·
»

r̃2

−r̃1

–
.
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Fig. 2. Variance functions of the full order estimator P̂N and the reduced
order estimator R̂N normalized by N · σ2

u/σ2
e . For high frequencies

the reduced order estimator outperforms the full order estimator. For low
frequencies the order is reversed.

For optimal model selection it is therefore of interest to
quantify the variance function of R̂N as well as the variance
of arbitrary functionals of R̂N . The preceeding example
shows that the autocovariance function of R̂N is finite despite
the fact that the system was not in the model set, i.e., P /∈ R,
and despite the fact that the the input, with a discrete power
spectrum supported on {−π/2, π/2}, results in a singular
Fisher information matrix on P . The tools presented in the
next sections will allow us to treat this problem.

III. PRELIMINARIES ON INNER-PRODUCTS

The Fisher-information matrix J is, technically speaking,
the Gramian matrix of an inner-product. In the classical
CRLB one computes J−1. Naturally one would expect that
in a coordinate free framework this must correspond to
the inversion of an inner-product. However, given an inner-
product 〈·, ·〉 : U×U → K it is not really clear what it should
mean to invert it. In the next section we shall see that we
can view an inner-product as a map from the space U into
its conjugate-dual space U∗. From this perspective, inversion
is conceptually straightforward and yields and inner-product
on U∗. We also show that the computation of reproducing
kernels can be seen as a special case of this procedure.

A. Setup and Notation

To simplify notation introduce the conventions:

1) U is a linear space :⇔ finite dimensional and closed
under linear combinations with scalars in K.

2) T is a linear map :⇔ it is additive and commutes with
multiplication by scalars in K.

3) 〈·, ·〉 is an inner-product on U :⇔ K-valued, positive-
definite and satisfies 〈ku, v〉 = k 〈u, v〉 = 〈u, k∗v〉.

B. Inner-products and their associated operators

By property 3) above, i.e., by conjugate symmetry, fixing
the first component of the inner-product yields a conjugate-
linear functional on U . This makes Definition 1 natural.

Definition 1 The space of all conjugate-linear functionals
on U is denoted by U∗. The linear map

G : U → U∗ with (Gu)(v) = 〈u, v〉 ∀u, v ∈ U, (5)

is called the associated operator of the inner-product.



Every inner-product 〈·, ·〉 corresponds to a unique operator
G : U → U∗. The converse is true if and only G is positive-
definite in the sense of Definition 2.

Definition 2 The adjoint of linear map G : U → U∗ is again
a map from U to U∗ and defined by (G̃u)(v) := (Gv)(u)∗

for all u, v ∈ U . An operator with G = G̃ is called self-
adjoint. If in addition (Gu)(u) ≥ 0 holds for all u ∈ U one
calls G positive-semidefinite which is denoted by G ≥ 0. A
non-singular G ≥ 0 is denoted by G > 0 and called positive-
definite. Similarly one writes G ≥ H or H ≤ G for two self-
adjoint operators G, H : U → U∗ satisfying G−H ≥ 0.

These definitions ensure, in a coordinate-free manner, a
bijective correspondence, which relates inner-products to the
cone of positive-definite operators in the space of self-adjoint
operators. We therefore shall, for the rest of this paper,
treat the term inner-product as a synonym for the associated
positive definite operator.

C. Duality and Reproducing Kernels

In Theorem 4 we shall see that an inner-product on a linear
space induces an inner-product on its dual. In Theorem 10
we shall see that if the original space is a function space the
induced inner-product on the dual admits an interpretation
as a reproducing kernel. Before we can state these theorems
we need to define the notion of a dual map.

Definition 3 The dual map of a map T : U → V is

T ∗ : V ∗ → U∗ with (T ∗`)(u) = `(Tu) (6)

for all ` ∈ V ∗ and u ∈ U .

Theorem 4 Let U denote a linear space with an inner-
product G : U → U∗. For G−∗ := (G−1)∗ we obtain

(G−∗`)(`) = sup{|`(u)|2 | (Gu)(u) = 1}, (7)

for all ` ∈ U∗. In particular G−∗ : U∗ → U∗∗ corresponds
to an inner-product on U∗.

Proof: Since G is non-singular for every ` ∈ U∗ there
exists a unique v ∈ U such that Gv = `. We can thus express
the left-hand side of (7) by

(G−∗`)(`) = `(G−1`) = (Gv)(G−1Gv) = (Gv)(v).

Since G corresponds to an inner-product we can apply the
Cauchy-Bunyakovsky-Schwarz inequality (CBS) to check
that

|`(u)|2 = |(Gv)(u)|2 ≤ (Gv)(v), (8)

holds for all u ∈ U with (Gu)(u) = 1.
Moreover the CBS (8) becomes an equality for u = v.

This proves that the right hand side of (7) equals the left
hand side. It remains to check that G−∗ is positive-definite.
To check that G̃−∗ = G−∗, (i.e., G−∗ is self-adjoint) let
`, η ∈ U∗ with ` = Gu and η = Gv and calculate

(G−∗η)(`) = (Gv)(u) = (Gu)(v)∗ = (G−∗`)(η)∗,

where we used G = G̃. Positive-definiteness follows from
(7) and the fact that G is non-singular. This proves that G−∗

corresponds to an inner-product on U∗.

Remark 5 In the proof of Theorem 4 we showed that

(G−∗`)(`) = (Gv)(v),

if v ∈ V is such that ` = Gv. This fact is useful because it
relates properties of G−∗ to properties of G.

Definition 6 For G : U → U∗ self-adjoint we define the
induced quadratic forms via

GQ(u) := (Gu)(u) and G−∗
Q (`) := (G−∗`)(`), (9)

for all u ∈ U and ` ∈ U∗ respectively.

Remark 7 It is an important fact that any self-adjoint oper-
ator is uniquely determined by the quadratic form which it
induces. For inner-product spaces this result is referred to as
polarization identity [4].

Definition 8 Let U denote a linear space. Given a function
η : U → K we define η̄ via η̄(u) = η(u)∗. We call

ev|Ω := {evz : U → K | z ∈ Ω}, (10)

an evaluation structure on U if evz ∈ U∗ for all z ∈ Ω.
One says that the pair (U, ev|Ω) forms a linear function

space if, given that evz(u) vanishes for all points z in Ω,
one can conclude that u = 0.

Definition 9 Let (U, ev|Ω) denote a linear function space
and G denote an inner-product on U . The function:

K : Ω×Ω → K with K(z, w) = (G−∗evw)(evz), (11)

is called the reproducing kernel of (U, ev|Ω) w.r.t. G. This
agrees with the classical definitions in analysis [14].

In linear function spaces it is common to identify vectors
u ∈ U with functions Ω → K, z 7→ evz(u) if the evaluation
structure is clear. In particular one writes u(z) instead of
evz(u). We follow this tradition in Theorem 10.

Theorem 10 Let (U, ev|Ω) denote a linear function space
and G denote an inner-product on U . For all w ∈ Ω we
define Kw = G̃−1evw. Then:

1) Kw ∈ U with Kw(z) = K(z, w) for all z, w ∈ Ω,
2) (Gu)(Kw) = u(w) for all w ∈ Ω and u ∈ U ,

where K denotes the reproducing kernel (U, ev|Ω) w.r.t. G.
Proof: For any two points z, w ∈ Ω we have

K(z, w) = (G−∗evw)(evz)

= evw(G−1evz)

= evz(G̃−1evw)∗ = Kw(z),

which proves property 1). For all w ∈ Ω and u ∈ U we have

(Gu)(Kw) = (Gu)(G̃−1evw)

= (GG−1evw)(u)∗

= evw(u)∗ = u(w),

and hence property 2) is verified.



Finally we note that, just like systems can be described by
different parameter vectors, systems can also be described
using different functions. In order to allow this type of
flexibility we derived our results in an abstract framework
where the function space structure enters via evaluations.

Example 1 Let f ∈ R(z) denote a Schur-stable strictly
proper rational function. We can evaluate f in the frequency
domain, by defining ev|(−π,π] via

evω(f) := f(eω) for all ω ∈ (−π, π], (12)

or in the time domain N = {1, 2, . . . }, by defining ev|N via

evt(f) :=
1
2π

∫ π

−π

f(eω)e−tω dω for all t ∈ N. (13)

IV. COMPRESSION OF INNER-PRODUCTS

In order to state the information inequality given a possibly
singular information metric, we put forward the concept
of compressing an inner-product by a linear map. Those
interested only in the application of the results to information
geometry can skip to Section V after reading Theorem 11
and Definition 12.

Theorem 11 Let U be a linear space and G : U → U∗

positive-semidefinite. For any subjective linear map T : U →
V there exists a unique Fmax ≥ 0 corresponding to an inner-
product on V such that for all F : V → V ∗ the following
equivalence holds

T ∗FT ≤ G if and only if F ≤ Fmax. (14)

Moreover a necessary and sufficient condition for Fmax to
be non-singular is that T vanishes where G vanishes, i.e.,
that Ker G is contained in Ker T .

Proof: See Section IV-B.

Definition 12 The unique Fmax with the properties of The-
orem 11 is a positive-semidefinite V → V ∗ which we refer
to as the compression of G via T denote by T\\G := Fmax.

The rest of this section is divided into two subsections. In
subsection IV-A we state the Albert Condition for positivity
[1] in the context of inner-products. This condition is used
in subsection IV-B for the proof of Theorem 11.

A. The Albert Condition for Positivity

We shall first state an elementary fact which states that
the inversion of inner-products is order reversing. A natural
consequence of this, together with Theorem 23 of Section V-
A, is that an increase of information results in a decrease of
variance.

Lemma 13 Let U denote a linear space equipped with two
inner-products G and H . Then for all ` ∈ U∗ there holds

H−∗
Q (`) = sup

u∈U

{
|`(u)|2

HQ(u)
: GQ(u) = 1

}
. (15)

In particular H ≤ G is a necessary and sufficient condition
for the inequality G−∗ ≤ H−∗.

Proof: To see that (7) and (15) are equivalent note that
the normalization function ν : u 7→ u/

√
HQ(u) defines a

bijection

ν : {u |GQ(u) = 1} → {u |HQ(u) = 1},

i.e., a correspondence between the unit circle of GQ and the
unit circle of HQ. The “sufficiency”-part is clear from (15).
To check necessity assume that H 6≤ G, i.e., there exists
v ∈ U such that GQ(v) < HQ(v). Without loss of generality
we may assume that GQ(v) = 1 and apply (15) to obtain

H−∗
Q (Gv) = sup

u∈U

{
|(Gv)(u)|2

HQ(u)
: GQ(u) = 1

}
=

GQ(v)2

HQ(v)
< GQ(v) = G−∗

Q (Gv)

where the last equality follows by Remark 5. This proves that
G−∗ 6≤ H−∗ and hence the “necessity”-part of the claim.

In Theorem 14 we formulate Albert’s positivity condition
[1], [6] in the context of inner-products.

Theorem 14 Let U and V denote two linear spaces
equipped with inner-products given by

G : U → U∗ and F : V → V ∗,

respectively. For any surjective linear map T : U → V the
following statements are equivalent:

1) T ∗FT ≤ G.
2) T ∗∗G−∗T ∗ ≤ F−∗.
3) F ≤ (TG−1T ∗)−1.

Proof: We first check that 1) is sufficient for 2) to hold.
For this let ` ∈ V ∗. By Theorem 4 we can conclude that 2)
holds via

F−∗
Q (`) = sup

v∈V
{|`(v)|2 : FQ(v) = 1}

= sup
u∈U

{|`(Tu)|2 : FQ(Tu) = 1}

= sup
u∈U

{
|(T ∗`)(u)|2

(T ∗FT )Q(u)
: GQ(u) = 1

}
≥ G−∗

Q (T ∗`) = (T ∗∗G−∗T ∗)Q(`).

It remains to check that 1) is also necessary for 2) to hold. For
this assume that 1) does not hold, i.e., GQ(u0) < FQ(Tu0)
for some u0 ∈ U . Let `0 ∈ V ∗ be the unique solution of
T ∗`0 = Gu0. Without loss of generality we may assume that
GQ(u0) = 1. By (15) and Remark 5 it follows that, indeed

F−∗
Q (`0) = sup

u∈U

{
|`(Tu)|2

FQ(Tu)
: GQ(u) = 1

}
=
|(Gu0)(u0)|2

FQ(Tu0)
< GQ(u0) = G−∗

Q (T ∗`0),

i.e., T ∗∗G−∗T ∗ 6≤ F−∗. It remains to check that 2) and
3) are equivalent. Since T is surjective, its adjoint T ∗

is injective. Hence TG−1T ∗ is indeed nonsingular. The
equivalence of 2) and 3) then follows directly by applying
Lemma 13.



Remark 15 If T , the linear map defined in Theorem 14, is
not surjective the condition T ∗FT ≤ G remains sufficient
for T ∗∗G−∗T ∗ ≤ F−∗. However for this condition to
become necessary T must be surjective.

B. Existence and Uniqueness of the Compression

What now follows is a Proof of Theorem 11. It is worth-
while noting, that the proof is based on Albert’s positivity
condition for inner-products, i.e., on Theorem 14.

Proof: Let N = KerG and Ū = U/N := {[u] |u ∈ U}
denote the quotient space where the residue class [u] ⊆ U
of u ∈ U modulo N is given by

[u] := u + N := {u + n |n ∈ N}, (16)

Moreover let P : U → Ū , u 7→ [u] denote the natural
projection. Since G is self-adjoint there exists a unique self-
adjoint Ḡ : Ū → Ū∗ such that G = P ∗ḠP . Moreover
by construction Ḡ ≥ 0 is non-singular. Assume first that T
vanishes on N . Then T̄ : Ū → V given by T̄ [u] = Tu is
well defined. Moreover by construction

T̄ ∗FT̄ ≤ Ḡ ⇔ T ∗FT ≤ G. (17)

The equivalence of statement 1) and 3) in Theorem 14
applied to the left hand side of (17) shows that the condition

F ≤ Fmax with Fmax := (T̄ Ḡ−1T̄ ∗)−1, (18)

is necessary and sufficient for TFT ∗ ≤ G.
We now drop the assumption that T vanishes where G

vanishes, i.e., we assume Ker T 6⊇ N . A necessary condition
for T ∗FT ≤ G is that F vanishes on TN ⊆ V . For each
such F there exists a unique F̄ : V̄ → V̄ ∗ such that

F = Q∗F̄Q where Q : V → V̄ , (19)

denotes the natural projection onto V̄ := V/TN which
denotes the quotient space. By construction we have that

T ∗FT ≤ G ⇔ (QT )∗F̄ (QT ) ≤ G.

Since QT vanishes on N it follows, by the first part of the
proof, that there exists a unique inner-product F̄max on V̄
such that the following equivalence

(QT )∗F̄ (QT ) ≤ G ⇔ F̄ ≤ F̄max, (20)

holds. Since for all Fi : V̄ → V̄ ∗ there holds that

F̄1 ≤ F̄2 ⇔ Q∗F̄1Q ≤ Q∗F̄2Q, (21)

we can conclude that Fmax = Q∗F̄maxQ is the unique
positive-semi-definite operator on V such that F ≤ Fmax

is equivalent to T ∗FT ≤ G. It is clear that

Ker Fmax = KerQ = TN, (22)

and hence the pseudo inner-product Fmax is non-singular if
and only if T vanishes on N = KerG.

C. The Lifting Property

We conclude this section with a lifting Theorem which
relates the compressed inner-product to the original one.

Theorem 16 (Lifting Theorem) Let U and V denote linear
spaces, G : U → U∗ and T : U → V , with G ≥ 0, and
T : U → V surjective. If T vanishes where G vanishes, then

(T\\G)−∗Q (`) = sup{(T ∗`)(u) |GQ(u) = 1}. (23)

holds for all ` ∈ V ∗.

Proof: In the proof of Theorem 11 we saw that T\\G
is given by (T̄ Ḡ−1T̄ ∗)−1, i.e.,

(T\\G)−∗ = T̄ ∗∗Ḡ−∗T̄ ∗.

This together with Theorem 4 implies that

(T̄ ∗∗Ḡ−∗T̄ ∗)Q(`) = sup{|(T̄ ∗`)([u])|2 : ḠQ([u]) = 1}.

By Definition of the equivalence class [u] we have

GQ(u) = ḠQ([u]), |(T ∗`)(u)|2 = |(T̄ ∗`)([u])|2,

and thus (23) indeed holds.

V. MODEL SPACES WITH STATISTICAL STRUCTURE

An estimation problem is a special type of modeling
problem where one observes random samples and seeks
to estimate a model which explain the samples and yields
structural insight into the random mechanism generating
them.

In order to be able to find an estimate via optimization
the set of possible estimates is constrained to a set P called
model space. The model structure is determined before the
estimation is performed but can be refined as more samples
become available. The random samples are assumed to define
elements in a measurable space X called sample space which
is linked with the model space via a map

E : P → E(X∞), P 7→ EP , (24)

which assign to a model P ∈ P a probability measure EP

on the sequence space

X∞ = {(x1, x2, . . . ) | ∀t ∈ N : xt ∈ X}. (25)

Definition 17 Given a model space P , a pair (X, E) which
satisfies (24) is said to define a statistical structure on P
with samples in X .

Remark 18 Let P ∈ E(X∞) denote a probability measure
on X∞ and E the corresponding expectation operator. Then
for all events F ⊆ X∞ the probability P(F ) is given by
E[1F ] where 1F is the indicator function of F which equals
1 on F and 0 elsewhere. It is therefore possible to identify
probability measures with the corresponding expectation
operators which we shall do from now on. Note that the
notation EP already suggests that we think of EP as an
expectation operator.

Definition 19 A model space is called regular if it forms a
finite dimensional manifold over the real numbers. We then



refer to n = dim(P) as the model order and denote by TPP
the tangent space of P at P . A pair (k, γ) with k ∈ K and
a curve γ : (−ε, ε) → P such that

∆(α) := k∗ · d

dt
α(γ(t))∗

∣∣
t=0

∀α ∈ C∞(P, K), (26)

is said to represent the tangent-vector ∆ ∈ TPP with

∆ : C∞(P, K) → K. (27)

By virtue of these definitions the tangent-space TPP is an
n-dimensional linear space over K.

For all smooth functions α ∈ C∞(P, K) we define the
conjugate differential of α at P ∈ P , denoted by D̄α(P ), as

(D̄α(P ))(∆) := ∆(α) for all ∆ ∈ TPP. (28)

These definitions ensure that D̄α(P ) is a conjugate linear
functional, i.e., D̄α(P ) ∈ (TPP)∗.

Finally if ρ : P → R is a smooth map between two regular
model spaces we define via

(Dρ(P ))(∆) : C∞(R, K) → K, β 7→ ∆(β ◦ ρ), (29)

for all ∆ ∈ TPP and call Dρ(P ) : TPP → Tρ(P )R the
differential of ρ at P .

Definition 20 Given a model space P which consists of
functions P : Ω → K we call it a function model space.
To emphasize that P is a function model space on Ω we
write (P, ev|Ω) where

evz : P → K with evz(P ) := P (z), (30)

denotes the evaluation at z ∈ Ω. In a function model
space (P, ev|Ω), where P is a regular model space, and all
evaluations are smooth, we define evP,z := D evz(P ) for all
z ∈ Ω, i.e., evP,z denotes the differential of evz at P . We call
(P, ev|Ω) a regular function model space if (TPP, evP |Ω) is
a linear function space for all P ∈ P .

In Section V-A we state the generalized information in-
equality given a possibly singular Fisher-information matrix
based on C.R. Rao’s observation. This matrix endows the
model space with a Riemannian-metric [9], [8]. To treat the
case where the Fisher-information matrix is singular we shall
use the compression introduced in Section IV.

In Section V-B we specialize from regular model spaces
to regular function model spaces. We use E.H. Moore’s
notion of positive kernels [7] to define the autocovariance
function of a random function in a way which generalizes
the definition of the covariance matrix of a random vector.
The connection between variability and reproducing kernels
in the context of system identification was first noted in [15].

A. The Generalized Information Inequality

Definition 21 Let P denote a regular model space with
statistical structure (X, E). An estimator for P given (X, E)
is a sequence P̂ := (P̂N )N≥1, where for all N :

P̂N : X∞ → P only depends on x1, . . . , xN . (31)

We refer to P̂N as the estimator P̂ given sample size N .

Definition 22 For P ∈ P the Fisher-information metric
(FIM) given sample size N is an inner-product on the tangent
space TPP denoted by GN (P ) and defined as

GN (P )Q(∆) := EP

∣∣∣∣k∗ · d
dt

log fN (x, γ(t))
∣∣
t=0

∣∣∣∣2 , (32)

for ∆ ∈ TPP realized by γ : (−ε, ε) → P with γ(0) = P
and k ∈ K, where fN (x) denotes the probability density
function of (x1, . . . , xN ) ∈ XN . Moreover, one defines the
asymptotic FIM per sample (AFIM), denoted by G∞(P ), as
the limit of N−1GN (P ) as the sample size N →∞.

The classical information inequality becomes a special
case of our main result in Theorem 23 if one specializes to
R = P and ρ(P ) = P . In this special case the compression
of the FIM as defined in (34) is simply the FIM itself.

Theorem 23 Let P̂ = (P̂N )N≥1 denote an estimator for a
regular model space P given a statistical structure (X, E).
Moreover assume that R is a regular model space which
denotes the image of a smooth map

ρ : P → R, P 7→ R, (33)

with surjective derivative. Let β : R → K denote a smooth
function and let α(P ) := β(ρ(P )), i.e., α = β ◦ ρ, such
that P → K. We denote the FIM given N samples and the
asymptotic average FIM compressed by Dρ(P ) as

Gρ\\N (P ) := Dρ(P )\\GN (P ), (34a)
Gρ\\∞(P ) := Dρ(P )\\G∞(P ), (34b)

respectively. For all N where the compressed FIM given N
samples is positive definite, and α(P̂N ) is unbiased, i.e.,

EP [α(P̂N )] = α(P ) for all P ∈ P, (35)

the information inequality is given by:

EP |β(R̂N )− β(R)|2 ≤ Gρ\\N (P )−∗Q (D̄β(R)), (36)

where R̂N = ρ(P̂N ) and R = ρ(P ).

Proof: Let fN (x, P ) denote the probability density
function of (x1, . . . , xN ) ∈ XN when the law of x is EP

and α̂N := α ◦ P̂N . Since α̂N is an unbiased estimator of α
for any ∆ ∈ TPP realized by γ : (−ε, ε) → P , k ∈ K we
have

(D̄α(P ))(∆) = d

dt
Eγ(t)[k∗α̂N ]

∣∣
t=0

, (37)

which by “differentiation under the integral” becomes

EP

[
α̂N (x) · k∗ d

dt
log fN (x, γ(t))

∣∣
t=0

]
. (38)

From this one deduces that (D̄α(P ))(∆) equals

EP

[
(α̂N (x)− α(P )) · k∗ d

dt
log fN (x, γ(t))

∣∣
t=0

]
. (39)

It now follows from (32) and the Cauchy-Bunyakovsky-
Schwarz-inequality that

|(D̄α(P ))(∆)|2 ≤ GN (P )Q(∆) · EP |α̂N − α(P )|2. (40)



In other words the expression

sup{|(D̄α(P ))(∆)|2 : GN (P )Q(∆) = 1}, (41)

yields a lower bound for EP |α̂N −α(P )|2. By the chain rule
for differentiation we have

D̄α(P ) = D̄β(ρ(P )) ◦Dρ(P ), (42)

which by the lifting Theorem 16 implies (36).

B. Information Inequality on Function Spaces

Definition 24 A positive kernel on a set Ω is a two variable
function Φ : Ω×Ω → K, which is conjugate symmetric, i.e.,
satisfies Φ(z, w) = Φ(w, z)∗, such that the inequality∑J

i,j=1
Φ(zi, zj) ξjξ

∗
i ≥ 0 where zi ∈ Ω, ξi ∈ K, (43)

is satisfied for all integers J . One writes Φ ≥ 0 to denote
that Φ is a positive kernel. If Ψ is another positive kernel
one writes Φ ≤ Ψ or Ψ ≥ Φ for Ψ− Φ ≥ 0.

Corollary 25 Let (R, ev|Ω) denote a regular function model
space which satisfies the assumptions of Theorem 23. Define
R̂N := ρ ◦ P̂N and CovP (R̂N ) : Ω× Ω → K via

CovP (R̂N )(z, w) := EP [∆(z)∆(w)∗], (44a)

where ∆(z) := evz(R̂N )− EP [evz(ρ(P ))], (44b)

for all z, w ∈ Ω. Let N be such that

Gρ\\N (P ) > 0 and EP [evz(R̂N )] = evz(R), (45)

with R = ρ(P ), i.e., the compressed FIM is positive definite
and R̂N is unbiased. The information inequality is given by

CovP (R̂N ) ≥ Kρ\\N (P ), (46)

where Kρ\\N (P ) is the reproducing kernel of (TRR, evR|Ω)
with respect to Gρ\\N (P ).

Proof: Let J ∈ N, ξ1, . . . , ξJ ∈ K and z1, . . . , zJ ∈ Ω
be arbitrary. Moreover let

β : R→ K with β =
∑J

j=1
ξj · evzj .

Then there holds that∑J

i,j=1
Cov(R̂N )(zi, zj)ξjξ

∗
i = EP |β(R̂N )− β(R)|2.

By Theorem 23 there holds that

EP |β(R̂N )− β(R)|2 ≤ Gρ\\N (P )−∗Q (D̄β(R)).

By definition evR,z = D̄ evz(P ) for all z ∈ Ω which implies

D̄β(R) =
∑J

j=1
ξ∗j · evR,zj

,

and thus Gρ\\N (P )−∗Q (D̄β(R)) equals∑J

i,j=1
Gρ\\N (P )−∗Q (evR,zi , evR,zj )ξjξ

∗
i .

This proves that indeed CovP (R̂N ) ≥ Kρ\\N (P ) in the
sense of E.H. Moore.

Corollary 25 gives a list of the ingredients which shape
the autocovariance function of a reduced order estimator.
The information metric GN (P ) influences the autocovari-
ance function modulo the kernel of the differential of the
model reduction map. The precise influence is captured in
the compressed information Gρ\\N . The model structure R
influences the autocovarinace function by the shape of its
tangent-space. Given a desired autocovariance function it is
therefore of interest to find a model-reduction map onto a
reduced order model structure with a suitable tangent-space.
In order to render this strategy sucessful one must avoid
adding too much bias. For this to be possible one has to
collect a priori information about the true system.

VI. CONCLUSIONS

In this paper we have established that the auto-covariance
of an unbiased function estimator is a positive kernel which
can be bounded from below by the reproducing kernel of the
tangent space of the function manifold in a general statistical
space framework. This bound becomes asymptotically tight
if the function estimator is asymptotically efficient. The
consequence of these results for system identification is that
the problem of quantifying the auto-covariance of a transfer
function estimator splits into two subproblems: determining
the tangent space of the model manifold at the system which
generated the data, and computing its reproducing kernel
with respect to the Fisher-information metric. Using the
novel concept of compression for inner-products we were
able to treat the general case where the system need is
not necessarily an element in the model set and the Fisher-
information matrix is allowed to be singular.

This work can be easily extended to the multiple-input
multiple-output case by replacing the scalar valued evalu-
ation functionals by vector valued ones. In the future we
plan to exploit the connection to geometric results, like [10],
which give concrete functional models for tangent spaces of
transfer function manifolds for SISO and MIMO systems.
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