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A procedure for choosing a realization of a digital compensator of known 
transfer function is described, which ensures that the errors introduced into 
a sampled-data closed loop by using jinite-word-length arithmetic in the 

compensator operation are minimized. 
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Abstract-The problem of an optimal finite-word-length 
state-space realization of a digital controller is investigated. 
The closed loop to be considered consists of a 
continuous-time plant, a discrete-time controller, a sampler, 
a zero-order hold and an antialiasing filter. An effective 
algorithm is proposed to find the optimal sampled-data 
controller realization minimizing the sensitivity of the 
closed-loop performance with respect to coefficient errors in 
the state variable matrices of the controller realization. In 
order to get a tractable problem, a two-step procedure is to 
be used: very fast sampling at a multiple of the sampling 
frequency followed by ‘blocking’ or ‘lifting’ to obtain a 
single-rate system. The procedure allows consideration of the 
system’s intersample behaviour. 

1. INTRODUCTION 

In order to achieve the desired characteristics of 
a closed-loop system, a controller is to be used. 
It is well-known that a desired controller’s 
transfer function can be implemented by any one 
of an infinite set of realizations of the controller. 
Though all these realizations are in principle 
equivalent, since they yield the same transfer 
function, they have different numerical pro- 
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perties due to finite-word-length effects when 
they are implemented by a digital device. Such 
factors as sensitivity and error propagation 
strongly affect closed-loop performance, and are 
responsible for differences between desired ideal 
closed-loop characteristics and those actually 
obtained. A problem of great importance is to 
find the realization of the controller that 
achieves the best performance of the closed-loop 
system, i.e. that gives the best approximation of 
the ideal closed-loop behaviour. 

Results on optimal realizations of filters (or 
‘open-loop systems’) minimizing some measure 
of performance degradation due to FWL errors 
date back to the late 1970s. The first results were 
on realizations that minimize roundoff error 
propagation (Hwang, 1977; Mullis and Roberts, 
1976). Realizations minimizing some measure of 
the transfer function sensitivity to coefficient 
errors took much longer to emerge (Thiele, 
1986). 

It was not until the late 1980s that the problem 
of optimal controller realization minimizing 
closed-loop performance degradation due to 
numerical errors was addressed. Solutions were 
proposed first for specific control schemes 
(LQG, pole placement), and more recently for 
general two-degree-of-freedom controllers (Li 
and Gevers, 199Oa, b, 1991; Liu and Skelton, 
1990; Liu et al., 1992; Williamson and Kadiman, 
1989). The last three references provide an 
optimal FWL-LQG design (which includes an 
optimal realization in the design process). Liu 
and Skelton (1990) and Liu et al. (1992) provide 
an optimal approach, while Williamson and 
Kadiman (1989) provide a suboptimal approach. 

A survey of these results can be found in 
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Gevers and Li (1993). The methods essentially 
differ in the choice of performance measure 
(either roundoff error propagation or transfer 
function sensitivity) and in the norms used to 
evaluate this performance degradation. In 
Gevers and Li (1993) a synthetic measure of 
performance degradation of a closed-loop 
system, incorporating both roundoff errors and 
coefficient errors, was minimized with respect to 
all compensator realizations. The results on 
closed-loop sensitivity minimization in the above 
references all pertain to sensitivity measures of 
the closed-loop transfer function with respect to 
controller parameter errors. In Li and Gevers 
(1993) a weighted sensitivity measure of the 
closed-loop poles with respect to controller 
parameter errors is minimized. 

The common feature of all these optimal 
controller realization results is that the system to 
be controller is assumed to be described by a 
discrete-time transfer function H(z). In most 
practical applications a digital controller is used 
to control a continuous-time plant, using both a 
sampler and a hold device. 

Any optimization using solely a discrete-time 
transfer function of the closed loop neglects the 
intersample system behaviour and particularly 
intersample ripple. The novel contribution of 
this paper is to pose and solve a discrete-time 
compensator realization problem for a 
continuous-discrete closed-loop system, in which 
the digital controller acts on the continuous-time 
plant via a zero-order hold device, and in which 
the tracking error of the continuous system is 
passed through an antialiasing filter and then 
sampled. With this continuous-discrete set-up, 
the performance measure involves, of necessity, 
a hybrid operator: it is a measure of the 
sensitivity of the closed-loop input-output 
operator to the parameters of the compensator 
realization. 

The outline of this paper is as follows: in 
Section 2 we establish the definitions of 
sensitivity ‘functions’ (operators) and the 2. 
sensitivity measure of a closed-loop system. In 
Section 3 we study the finite-word-length optimal 
realization minimizing a measure of the sen- 
sitivity of the closed-loop operation with respect 
to controller coefficient errors. (No claim is 
made about FWL roundoff noise effects.) The 
existence and uniqueness of an optimal solution 
are established. A recursive algorithm for 
obtaining the optimal solution is given. A 
two-step procedure (fast sampling followed by 
blocking) that allows consideration of inter- 
sample behaviour of a closed-loop system is 
described and studied in Section 4. Two 
numerical examples to confirm theoretical results 

are given in Section 5, followed by some 
concluding remarks in Section 6. 

2. SENSITIVITY MEASURE OF A REALIZATION 

First consider a discrete linear time-invariant 
multi-input, multi-ouput controller having a 
transfer function K(z) that can be expressed in 
terms of matrices A, B, C and D of a minimal 
state-space realization as follows: 

K(z) = C(& - A)-‘B + D, (1) 

where A E [WRxR, B E [WRxL, C E IWMxR, D E 
IWMx’. and K E CMxL. Clearly, if the matrices A, 
B, C and D satisfy (1) then, for any similarity 
transformation T, the matrices T-‘AT, T-‘B, 
CT and D also satisfy (1). This means that there 
exist an infinite number of representations of the 
system. All these representations are equivalent 
insofar as they yield the same transfer function. 
However, different realizations have different 
numerical properties such as sensitivity to 
coefficient errors and propagation of signal 
roundoff errors. This means that in the 
finite-precision case all these realizations are no 
longer equivalent. In practice it is impossible to 
realize the matrices A, B, C and D exactly owing 
to finite-word-length (FWL) constraints. As a 
result, the transfer function given by (1) and the 
transfer function with the matrices A, B, C and 
D replaced by their FWL versions are different. 
Since different FWL realizations have different 
sensitivities, our task is to search for those 
realizations that minimize the sensitivity in some 
appropriate measure reflecting the overall 
control objective. 

In order to define such a measure, we shall use 
the derivatives of elements of the controller 
transfer function matrix at an arbitrary but fixed 
value of z with respect to the elements of the 
matrices A, B and C of the realization: 

where a, b, c, k, g and f are elements of the 
matrices A, B, C, K, G and F, respectively, with 

C = C(& -A)-’ E cMxR, (34 

F = (& - A)-‘B E cRxL, (3b) 

1, i = 1,2, . . , L, m,j=l,2 ,..., M, r, 9 = 
1, 2,. , R and 6 is the Kronecker delta. Note 
that the matrix D is coordinate-independent and 
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has nothing to do with the optimal realization time-varying operator 2 with associated causal 
problem. impulse response 2?(t, s), such that 

Our major goal is to find the optimal 
implementation of the controller for achieving 
the best performance of the closed-loop system 
where the controller is implemented with FWL. 
‘Best performance’ can mean many things. As 
made more precise below, we shall consider the 
accuracy of implementing the input-output 
operator for the closed loop. 

I 
I 

Y(t) = gtt, s&(s) b, (4) 
--z 

2?(t + z, s + z) = qt, s). (5) 

The stability condition is expressed by 

Consider a hybrid closed loop where the plant 
is continuous-time and the controller is discrete- 
time (such a configuration represents the usual 
situation). This closed loop is drawn in Fig. 1, 
where II stands for the L X M continuous-time 
plant, K for the M X L discrete controller, @ for 
the strictly proper stable antialiasing filter, C for 
the sampler with the sampling period r and H 
for the hold element, here assumed to be a 
zero-order hold. (In the multivariable situation 
Q’, Z and H are diagonal operators.) 

(6) 

for some a > 0 and p > 0, with the subscript F 
denoting the Frobenius norm, i.e. 

[IA IIF = [tr (AYrA)]“2. 

A composition of two stable operators is stable. 
Formally, with minimal abuse of notation, we 

can write 

2? = rlHKCaqZ + IIHKm--‘, (7) 

First of all, we need to define a sensitivity 
measure of the closed-loop operator with respect 
to errors in the realization A, B and C of the 
controller. Then the problem of minimizing of 
this measure will arise. 

Earlier works (Gevers and Li, 1993; Li and 
Gevers, 1990a, b, 1991, 1993; Liu and Skelton, 
1990; Liu et al., 1992; Williamson and Kadiman, 
1989) looked at purely discrete-time problems, 
and it was possible (and easier) to deal just with 
frequency-domain quantities. However, in order 
to take into consideration intersample behaviour 
of the hybrid closed loop, we need to work in the 
time domain. 

where II, H, K, C, and @ are the operators 
corresponding to the blocks shown in Fig. 1, and 
then the derivative of Z with respect to an 
element in a realization of K can be formally 
written as 

(84 

where 

(8b) 

(8c) 

Because of the stability of the closed loop, 7 and 
W map 1r(Z+) into 5$[0, m) and .Zk[O, ~0) into 
I#?+), respectively, for all p E [l, cc], including 
of course p = 2. Moreover, the mappings are 
causal. 

2.1. Closed-loop operator and sensitivity with 
respect to a controller parameter 

We shall assume that the sampling interval is 
such that no unstabilizable or undetectable 
modes are introduced by the sampling operator 
and that the closed loop is stable. Unstabilizable 
or undetectable modes can only occur for 
nongeneric II(s), and, even then, only for 
isolated choices of sampling interval (Francis and 
Georgiou, 1988). Stability of the closed-loop 
system means that with zero input, any nonzero 
initial state decays to zero exponentially fast, and 
U(G) E L,L[O, w) implies y (*) E L,L[O, w) for all 
p E [l, WI] (see Francis and Georgiou, 1988). The 
closed loop is defined by a linear periodically 

antiahasinp 

Fig. 1. The closed-loop system. 

The derivative (Sa) of the closed-loop 
operator 2 can be represented as in Fig. 2. 

The representation of Fig. 2 has a deficiency 
that should be remedied. If K(z) is open-loop 
unstable then it is aK(z)/aa (see (2) and (3)); yet 
if the closed loop is stable, one would expect that 
the operator aa”laa should also have this 
property. This is in fact so. The representation of 
Fig. 2 can be replaced by one (with lower overall 
state dimension) that is stable. This is done as 
follows. 

aK(z)/aa 

Fig. 2. Representation of the derivative of the closed-loop 
operator with respect to the parameter a of the controller. 
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Fig. 3. Modification of the operators ‘L‘ and %” used in the 
alternative construction of the derivatives of the closed-loop 

operator. 

We note that if a = a,,, then (with some minor 
abuse of notation) 

where ‘& and Wi (depicted in Fig. 3) are stable 
operators differing marginally from w‘ and W in 
terms of the points where the loop input is 
introduced or the loop output is taken from. 
Also, the range of W’, and the domain of VA are 
discrete-time signals: WA and V’A are bounded 
operators from Lk[O, m) to I:(Z+) and I;(??+) to 
L,L[O, co) Vp E [ 1, x]. Similarly 

(9b) 

Since ‘V, W, YA and WA are all stable operators. 
the operators on the right in (9) are all stable. 

In formulating a sensitivity ‘function’ (here, 
more properly, an operator) associated with the 
realization of a system, it is conventional to 
organize the matrix calculations slightly 
differently; one picks a particular entry of 2, ZJ,, 
say, and constructs the matrices dS&/dA. 
&S$llaB and &&laC, where the (i, j) entry of 
&QldA is aZk,,/da,,j. In the light of (9), it is 
clear that 

(loa) 

(lob) 

(1Oc) 

Here VT is not the adjoint operator of V’; rather, 

V” is defined by the condition e’VTei = eT”u; = 
(j, i) component of 2’; thus ‘VT is “Ir with 
elements reorganized. 

Let us sum up our results to this point. 

Theorem 2.1. Consider the closed-loop system 
depicted in Fig. 1, comprising a strictly proper 
(nonzero) stable antialiasing filter Q(s), a sample 
C with sampling interval z, a (nonzero) 
discrete-time controller K(z), a zero-order hold 
H and a (nonzero) plant II(s). Suppose that 7 is 
such that no unstabilizable or undetectable 
modes are introduced by the sampling operator, 
and the closed loop, defined by a periodically 
time-varying impulse response Z?(t, s), is stable. 
Let the controller have a minimal state-variable 
realization C(rl - A)-‘B + D, and let stable 
closed-loop operators ‘V, W, Y* and WA be 
defined as depicted in Figs 2 and 3. Then the 
sensitivity functions of Z4? with respect to the 
elements of A, B, C in the controller realization 
are given by (10) for k, 1 = 1, 2, . . , L. 

2.2. A numerical sensitivity measure 
In order to determine a single numerical 

measure of sensitivity, we shall use a norm 
associated with the sensitivity ‘functions’. This is 
not an induced norm, but rather a norm 
associated with the impulse response representa- 
tion of a stable operator, viewing it simply as a 
function of time in two variables. We confine 
attention to a matrix impulse response %(t, s) 
defined in the half-plane s 5 t, with the 
periodicity property %(t + 7, s + 7) = %(t, s) and 
with the (exponential) stability property 

II%6 s)/IF1= a exp [-P(t - s)l 

for some positive, (Y, p. (We remark that in 
Francis and Georgiou (1988) there is also a 
departure from the case of induced norms in 
defining norms for a stable, periodically time- 
varying linear system.) The norm is 

II ‘Wz = [l,‘dtj- --cc II”u(t, md.y2. (11) 

Notice that, in view of the periodicity property, 
the norm reflects all values assumed by %(t, s) in 
-r: < s I t < m, even though the integration with 
respect to t only extends over [0, 73. Note also 
the alternative expression obtained by changing 
the order of integration: 

llQII2 = [6’+ IlQW,l:dt]“2. (12) 
* 

Now we can define the sensitivity measures of 
the closed-loop operator with respect to the 
realization A, B, and C of the controller. 
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Definition 2.1. The sensitivity measure ikf2 of the 
closed-loop operator with respect to the 
realization of the controller is the sum of the 
squares of the Y2 norms of sensitivity operators 
of the closed loop with respect to the matrices A, 
B and C of the realization of the controller: 

It is worth noting how the measure differs from 
those employed in earlier optimum realization 
problems. First, the measure is intrinsically a 
time-domain rather than a frequency-domain 
one. Secondly, for reasons of mainly analytic 
convenience, in most earlier optimum realization 
work frequency-domain Z2 norms of sensitivity 
functions related to B and C were used, while a 
frequency-domain 5?i norm was used for the 
sensitivity function related to A. The frequency- 
domain 2” norms have some parallel (through 
Parseval’s Theorem) with our time-domain 2” 
norms. Frequency-domain Z1 norms of course 
are virtually unrelatable to a time-domain norm. 
Gevers and Li (1993) and Li and Gevers (1991) 
use a frequency-domain .& norm for the 
sensitivity function related to A, and are closest 
in spirit to the present work, even though those 
authors use a discrete-time model for the system. 
Perkins et al. (1990) also uses an Z2 norm in an 
optimal filter realization problem. 

3. OPTIMAL FWL REALIZATIONS 

The numerical measures of sensitivity defined 
above depend on the particular realization of the 
controller. We shall now clarify the nature of the 
dependence. 

A coordinate-basis transformation T 
transforms (A, B, C) into (T-‘AT, T-‘B, CT) 
and (F, G) into (T-‘F, CT). The operators Y 
and ?V are unaltered, while (VA, ‘&)+ 
(Yr, T, T-l?&). Noting (lo), we conclude that 
the sensitivity operators transform according to 

(14b) 

(14c) 

Parenthetically, one can note that the corres- 
ponding formulae associated with (9) are not so 
attractive. 

Let us make the definitions 

Evidently, under the coordinate-basis change, 

Wa) 

(16b) 

We make the further definitions 

JB = c J&l 

Jc= ; J&. 
k.1 

(1% 

(17b) 

Then, the second and third terms of the measure 
M2 are precisely tr JB and tr Jc. Further, denoting 
the value of the measure M2 after the 
coordinate-basis transformation by M,(T), we 
see that 

M,(T) = g (T7% T-f + tr (J,P) + tr (J&l), 

where 

P = TTT. 

(18) 

(19) 

It remains to consider in more detail how the 
first term in M2 transforms when there is a 
coordinate-basis change. Notice that 

CII ~‘2 T-T 2 W II 2 

x 7.T.r a2k& ‘) T-T -- 

=ztr[d; 

1 
& 

’ af6k,dt7 d T_TT_, 

i [a%,. ij 

aA 

T 

TTT ds 



372 A. G. Madievski et at. 

Hence we can regard I& as a function of P: 

M,(P) = tr (J,P) + tr (J,P-‘) 

The optimal FWL compensator design can thus 
be formulated as follows: 

Pc,pt = arg min M,(P). 
PHI 

(22) 

If a solution exists then any square root Tort such 
that PO,, = r,,,T&, defines an optimal coordinate 
basis for the controller. We have an expression 
for the gradient of P: 

a&(p) 
------=.I8 - P ‘JcP ’ 

dP 

(23) 

For evaluation purposes, the following formula is 
valuable; it is derived using standard properties 
of the Kronecker product and the function vet 
defined by Neudecker (1960) and proved in a 
number of textbooks and papers (e.g. Brewer. 
1978): 

aMdf’) 
~=.lH-P-IJcP~‘+CCvec ’ 

aP h I 

X 
a&&, S) ~ a&,([, S) 

dA dA 
ds vecP_’ 

1 I 

a%~&, s)* a%,& S) 
aA 

. 

(24) 

In the absence of an analytically computable 
value of P producing a zero value of the 
gradient, a value Popt of P minimizing M2 could 
be sought by an iterative algorithm 

where I_L is a small positive number. The utility 
of the gradient algorithm is partly justified by the 
following theorem. 

Theorem 3.1. Adopt the same hypothesis as in 
Theorem 2.1, and let (A, B, C, D) be an initial 
realization of the controller K(z). Let JB and Jc 
be defined by (15)-(17), and let M,(P) define the 
sensitivity measure (21) of a controller realiza- 
tion obtained by transforming the initial 
realization through a nonsingular T, with 
P = TTT. Then there exists a unique Popt > 0 that 
minimizes M,(P), and which accordingly can be 
found via an iterative gradient descent algo- 
rithm. (There always exists such small positive 
values of p that guarantee the convergence.) 

Proof: See the Appendix. 

Once P,,, has been found, any square T 
satisfying TTT = Popt can be selected. This 
defines T to within right multiplication by an 
orthogonal matrix, and this additional freedom, 
present also in an all earlier optimal realization 
problems, can be exploited to force zero or unity 
entries into parts of A, B or C (see e.g. Li et al., 
1992); this has a beneficial practical effect, since 
obviously a zero or unity multiplication is 
realizable with no error. 

4. EVALUATION OF THE SENSITIVITY MEASURE 
AND ITS GRADIENT 

Now, in order to implement the iterative 
algorithm (25) we need to calculate the value of 
the gradient dM,(P)/dP at every iteration step. 
The problem is to calculate the values of 

The prime concern of this section is to obtain a 
numerical procedure for calculating the three 
values above using standard techniques, i.e. 
standard software. 

Figure 4 depicts the operators a~,Jaa,,,, 
aZtk,,/ab,,j and Z?&/ac,,,. To understand these 
figures, recognize from (9) that 

5 = (e~VAei)(ef‘WAel), 
131 

$f+ = (e~YAe,)(e~We,), 
hi 

a,%, 
A = (efY”ei)(efWe,). 
aci,, 

(274 

Wb) 

(27~) 

The structure of this hybrid feedback loop is 
illustrated in Fig. 5, where the form of A,(r) 
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Fig. 4. The operator z&/acu for various a. 
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depends on the particular a. Note the implicit 
definitions of Ada(z) and Q(s). 

Because of the mixture of continuous- and 
discrete-time entities, some of the mappings in 
the hybrid system are operators that have no 
transfer function representation, and thus the 
operators VA and ‘J& do not have transfer 
function representations. In order to facilitate 
the calculations of the ZZ norms, the continuous- 
time part of the hybrid system is approximated 
by a discrete-time system with arbitrarily fast 
sampling. This can be done in a chosen 
(sensible) frequency range system replaced by an 
N-periodic discrete-time system, with the small 
(fast) sampling time chosen to be a submultipole 
r/N of the controller sampling time r. By lifting 
the N-periodic control system, a time-invariant 
discrete-time transfer function representation is 
obtained. A similar approach has been used for a 
controller discretization problem by Keller and 
Anderson (1992), for which it becomes easy to 
evaluate the norms. 

This technique of fast sampling will allow us to 
approximate the integrals of (26) taken over one 
(slow) sampling period r, by the average of their 
N sampled values over the period 7 for N 
sufficiently large. To establish the validity of this 
procedure, we shall show that these sums 
converge, as N + cQ, to the integrals (26) using 
the definition of the Riemann integral. This 
proof of convergence, in turn, requires that the 
impulse responses of the operators defined in 
(27) be continuous and exponentially stable. The 
following lemma establishes this result. The 
proof is straightforward and is omitted. 

Lemma 4.1. Under the hypotheses of Theorem 
2.1, and the assumption that a(m) = 0 and that 
the closed loops depicted in Figs 1 and 5 are 
exponentially stable (stability of the closed loop 
in Fig. 1 implies stability of the closed loop in 
Fig. 5), the impulse response h(*, a) of the 
overall system in Fig. 5 is continuous for 

Fig. 5. Redrawing of Fig. 4. 

jz<s < (j + 1)7, t > s for every integer j, and 
satisfies Ih(t, s)l % a exp [-/3(t -s)] Vt >s, for 
some positive (Y and p. 

Now let h,(t, s) again denote the impulse 
response of any one of the operators &I$,/da for 
(Y = Uii, or b,, or cij, as depicted in Fig. 5. These 
operators are periodic with period 7. Consider 
now the system defined in Fig. 6, in which HsIN 
and XrlN are, respectively, a hold operator and a 
sampler operating at the fast rate 7/N. Thus the 
system of Fig. 6 has discrete-time inputs spaced 
7/N apart, and a similar output stream. The next 
lemma expresses its impulse response h&&j) as 
a function of h,(t, s) and shows that it is 
N-periodic. Again, the straightforward proof is 
omitted. 

Lemma 4.2. Let hda(i, j) denote the impulse 
response of the system of Fig. 6, formally 

&&(f, S)&N1 where h,(t, s) is identified with 
&Q/aa for same (Y. Then 

h&i, j) = (rIN)h,(irIN, Si,j) (28) 

for some Si,j E (jr/N, (j + 1)7/N) and 

h&i + N, j + N) = h&i, j). (29) 

Next, consider a system obtained from that of 
Fig. 6 by blocking N successive inputs and N 
successive outputs. Thus, if uo, ul,. . . and 

Yo, Yl, . . . denote the scalar input and output 
sequences of the system of Fig. 6, with rate N/7 

then 

[ucl u 1 . . * &WIT, 
[UN UN+1 *** UZN-1 3 I’ **- 

and 

[Yo Yl . . * YiwlT, 

[Y/v Y/v+1 .*. Y2N-IIT, *** 

denote the N-vector input and output sequences 
of the new system, with rate l/7, l/N times the 

uVN zrm t, 

Fig. 6. Replacement of a periodic continuous-time system by 
a periodic discrete-time system. 
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rate of the system of Fig. 6. Let &(i, j) denote 
the N X N impulse response of the new system. 
A moment’s thought shows that 

[&(i, i)l,,, = LdNi + (P - I), Ni + (4 - 1)). 
(30) 

An immediate consequence of the periodicity of 
hdrr established in Lemma 4.2 is the fact that the 
blocked system is stationary: 

h,(i, j) = &(i -j, 0). 

(Henceforth, we shall write R,(i -j) for 
h,(i -j, O).) We remark that, given a state- 
variable description of the various parts of 
h,(t, s), it is easy to get such descriptions for hda 
and then R,. This turns out to be important 
when it comes to evaluating norms. 

The above allows us to evaluate JB, at least 
approximately, using time-invariant quantities. 
We have the following lemma. 

Lemma 4.3. With notation as above, the (i, j) 
entry of 

is given by 

[J&li,j = lim i g tr [hBim(S)RTejm(S)], 
Iv--= m=, s=” 

where hBim(s) denotes R,(s) for (Y = bi,, the 
(i, m) entry of B. 

Proof. See the Appendix. 

Quantities such as (Jf,,);,j above are like 
Gramians, and are comparatively easy to 
evaluate. Astrom and Wittenmark (1990) and 
Jury (1958) discuss such quantitites, and offer 
several methods, especially when i = j. Let us 
point out that the identity (Y@ = $[(a + /I)’ - 
(a - /3)‘] offers one device to cope with i #j, if 
formulae are only available for evaluating sums 
of squares. Let us also note how simple it is to 
use linear matrix or Lyapunov equations for 
evaluation of infinite sums involving a product of 
two different stable impulse responses. Thus if 

(Y&C) = h:F:-‘g,, a,(k) = h:F:-‘gz 

then, assuming IAi( < 1 for all i and j = 1,2, 

2 a1(kh2(k) = h:Xh,, 
k=l 

where X solves 

X - F,XF; = g,g;. 

Similarly, it follows that the (i, j) entry of 

is given by 

[JkC,,];,j = lim i 2 tr [&&m(S)Rcmj(S)]. 
N-s= m-1 s=() 

The calculations are identical to those for JB. It 
remains to evaluate the first integral of (26). 

A typical entry of the matrix 

is given by 

and similar arguments show that this quantity is 
obtainable as 

lim C tr [fiA ,&)RAp&)]. 
P/--t- ,~=o 

It remains to explain how to evaluate i;, for 
cz = aij, or bij, or cij. For this purpose, Fig. 7(a-c) 
is helpful, and illustrates a certain computational 
simplification. Figure 7(a) is Fig. 6 redrawn, 
while in Fig. 7(b), which is equivalent to Fig. 
7(a), each sampler Z within the hybrid system 
(which selects a sample every time interval r) is 
replaced by a sample ZrlN, selecting a sample 
every r/N followed by a decimator, which passes 
through every Nth input. Each hold of duration 
z is replaced by a repeater (which repeats a 
signal presented at a given time with the same 
value r/N, 22/N,. . . , (N - l)z/N later) and 
hold of duration r/N. 

The dashed line encloses a fast discrete-time 
system (which can be lifted or blocked), and the 
decimator and repeater serve to connect the 
discrete-time blocks with different sampling 
rates. 

Lifting produces the arrangement of Fig. 7(c), 
where the input and output values of 6, and a 
are obtained by assembling into the one vector N 
successive values of the input and output of each 
of the blocks in dashed lines in the set-up of Fig. 

7(b). 
The listed set-up has E, = [I I . 3 . IIT and 

E, = [I 0 0 . . * 0) and is a single rate, with 
period r, and possesses a transfer function 
description. The impulse response is h,(i). Since 
it is the same set-up as Fig. 7(a) (apart from the 
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Fig. 7. (a) Redrawing of Fig. 6, (b) replacement of (a) and (c) development of the scheme of Fig. 6 and the 
lifted system. 

way in which inputs and outputs are presented), 
it is no surprise that norms of equivalent 
input-output entities are the same. (‘Equivalent’ 
means after allowing for the different assembling 
of inputs/outputs.) The structure of Fig. 7(c) 
demonstrates that a state-variable realization of 
ii, comes from assembling realizations of fir, & 
(which are independent of (Y) and Ada. 

Evidently, the problem of calculating 
M4,(P)/M is reduced to the problem of 
calculating infinite sums, which is much simpler, 
and involves standard computational techniques 
implemented on most software packages. That 
makes the iterative algorithm (25) easy to 
realize. 

To summarize, the main steps of the optimal 
controller realization procedure are as follows, 
assuming that K(z) is the ideal (infinite-word- 
length) controller. 

Step 1. Compute an arbitrary initial realization 
(A, B, C, D) of K(z) and initialize the iterative 
algorithm (25) with PO = I. 

Step 2. For k, 1= 1,2, . . . , L, approximate J& of 
(15) as described in Steps 2.1-2.3, with N 
sufficiently large and (JE,)ij denoting the (i, j) 
entry of Jt,. Note that J& E RRxR. 

Step 2.1. For each (Y = bi,,,, m = 1,2, . . . , L 
and each (Y = bjm, m = 1,2,. . . , L, let h,(t, s) be 
the impulse response defined by Fig. 4. Obtain a 
state-variable description of h,(f, s) using state- 
variable descriptions of the different blocks of 
Fig. 4. Compute the (fast-sampled) ZOH 
approximation of this system (see Fig. 6), whose 
impulse response h&i, j) is defined by (26): 

h&i, j) = (rlN)h,(irlN, jr/N), say. 

Compute the corresponding N X N blocked 
system of Fig. 7(c), whose impulse response is 
h,(i, j) = h(i - j), given by (28): 

[R,(i - j)],,, = h&M +p - 1, Nj + q - l), 

p, q = 1,2, . . . , N. 

Step 2.2. Approximate (Jg,), by 

[JEdi,j z i 2 tr [R,im(s)RT,jm(s)], 
m=l s=o 

where hsim(S) = R,(s) for (Y = bi,, using the 
Lyapunov equation procedure suggested in 
Section 4. 

Step 2.3. Compute JB = E J& 
k.1 

Step 3. Compute (or rather approximate) Jc 
using a procedure entirely dual to that for JB_ 

Step 4. Compute 

The approximation of this integral is performed 
as follows. 

Step 4.1. For each a = amn, m, n = 
1,2, . . . ) R, let h,(r, s) be the impulse response 
defined by Fig. 4. By fast sampling and blocking, 
compute a state-space realization of the discrete- 
time impulse response of the corresponding 
fast-sampled and blocked system as in Step 2.2. 
Denote by it, ,&) the N X N impulse response 
matrix of the corresponding blocked system. 

Step 4.2. The element of 

corresponding to the product of the (m, n) entry 
of the first matrix with the (p, q) entry of the 
second matrix is then approximated by 

5 tr [AA mn(s)hApq(~)l. 
s=o 

To compute this infinite sum, the state-space 
realizations of ii A ,,&) and i;,&) are used in 
combination with the Lyapunov equation tech- 
nique of Section 4. 

Step 5. Collect the results of Steps 2-4 in (24) to 
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compute the gradient &V,(P)/&’ and update Pi 
using the iterative algorithm (25). 

Step 6. Upon convergence of (25) to Pop,. 
compute any square root Top, such that 
P,,, = T,,,T$, and apply the similarity transfor- 
mation Tort to the initial realization (A, B, C, D) 
of the compensator K(z) to obtain an optimal 
realization (A,+ Bopt, Copt, D,,,). Optionally, 
introduce a further orthogonal transformation to 
force zero entries into Aopt, Bopt and/or Copt if 
desired (see e.g. Li et al., 1992). 

5. NUMERICAL EXAMPLES 

We now present two numerical examples to 
confirm our theoretical results. The first is a 
simple one with a one-state controller and has no 
applied interest, but allows us to get better 
understanding of the system’s properties and 
behaviour. The second example has been used in 
Ackermann (1985). 

5.1. Example 1. 
The plant to be controlled is given by its 

transfer function 

H(s) = 
S + 0.9531 

s - 0.0953 

The desirable control strategy is to control this 
plant in such a way that the closed loop has the 
following transfer function: 

X(s) = 
0.8318 

s + 0.6931’ 

The controller is to be used with a sampler and a 
zero-order hold with sampling period r = 1 has 
the following transfer function: 

K(z)=:. 

Let us consider two realizations of the controller 

K(z) = 
bc 

- + d. 
z-a 

The first is with a = d = 0, b = 0.006, c = 100 and 
the second is with a = d = 0, bopt = copt = V%%. 

The second realization is the optimal one. For 
this one-state controller both the ZZ measure 
minimization (using fast sampling and blocking) 
described in this paper and optimization without 
fast sampling give the same optimal realization. 
By optimization without fast sampling, we mean 
optimization using a discrete-time representation 
of the plant obtained with the same sampling 
interval as for the controller. (Equivalently, it is 
like fast sampling and blocking with N = l!) 

When we implement our two realizations of 
the controller with FWL giving roundoff with 
two decimal places after the decimal point, we 
obtain K(z) = l/z for the first realization and 
K,,,(z) = 0.59/z. These controllers give the 
closed loops 

X(z)=-&, xoptw = s. 
The frequency responses of these closed loops 
together with the frequency response of the ideal 
(realized with infinite precision) closed loop are 
depicted in Fig. 8. Here, by frequency response 
of a sampled system we understand the 
frequency response of the discrete system 
obtained by interconnecting the discrete con- 
troller and a discrete model of the plant, 
obtained from the zero-order hold equivalent of 
the continuous model. Though it is not plotted, 
the closed-loop response of X(s) and II(s) is 
very close to the ‘ideal frequency response’ of 
Fig. 8. 

Obviously, the optimal FWL realization gives 
incomparably better approximation of the 
desired ideal loop. 

5.2. Example 2. (Ackermann, 1985, p. 239.) 
The plant to be controlled is given by its 

transfer function 

n(s) =-&. 

The controller whose output is the input of a 
zero-order hold and whose input is sampled with 
period r = 2 has the following transfer function: 

1 
K(z) = (z _ l>z. 

Consider the realization of the controller given 

by 

A= 
4.5105 

15.918 1:::::1’ B = [2::;3 
C = [ -0.8688 0.24211, D = 0 

8- 

dB optimal FWL. realization 

Fig. 8. Closed-loop frequency responses (Example 1). 
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as an initial one. FWL optimization, not 
employing fast-sampling/blocking (or, equiv- 
alently, employing them for N = l), but using 
simply a discrete-time representation of the plant 
and the closed loop, thus neglecting intersample 
behaviour, gives the following realization: 

C = [-0.9031 0.72311, D = 0. 

Minimization of the M2 measure for the 
pre-fast-sampled and then blocked system gives 
the optimal realization of the controller given by 

C = [-0.624 0.76681, D = 0. 

By using an orthogonal transformation of the 
state basis, we do not change the formally 
defined sensitivity and thus optimality. However, 
by bringing A to Schur form (Li et al., 1992), we 
can incorporate a zero into the matrix to make 
computations even more precise, since zero has 
an infinitely precise computer representation. 

The frequency responses of the closed loops 
corresponding to these two optimal realizations 
of the closed loop (obtained by different 
procedures) and the frequency response of the 
closed loop with the controller given by an initial 
nonoptimal realization implemented with one 
decimal place after the decimal point roundoff 
and the frequency response of the ideal (realized 
with infinite precision) closed loop are rep- 
resented in Fig. 9. 

The superiority within the passband of the 
closed-loop system is clearly seen in the optimal 
sensitivity realization, obtained by fast sampling 
and blocking of the system, over the optimal 
sensitivity realization neglecting intersample 

Fig. 9. Closed-loop frequency responses (Example 2). 

behaviour of the system. Also, both 
sensitivity realizations are incomparably 
to the initial nonoptimal realization. 

6. CONCLUSIONS 

377 

optimal 
superior 

The proposed method obtains the FWL 
realization of a discrete-time controller, which is 
used in a closed loop with a continuous-time 
plant, a sampler, a zero-order hold and an 
antialiasing filter and which minimizes a 
sensitivity index. This optimal realization is 
based on complete information describing the 
closed-loop system’s behaviour, not only at the 
sampling instances but in intersample periods as 
well. The existence and uniqueness of this 
optimal realization (to within an orthogonal 
coordinate-basis transformation) have been es- 
tablished, and a recursive algorithm converging 
to the realization has been given. 

The theoretical results have been confirmed by 
two numerical examples, which illustrate the 
feasibility and efficiency of the proposed method 
and the advantage of taking into account 
intersample behaviour of a closed-loop system. 
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APPENDIX-PROOFS 

Proof of Theorem 3.1 
The proof of the theorem can be obtained analogously to a 

proof of a similar result in Gevers and Li (1993) and Helmke 
and Moore (1991), but requires certain preliminaries. The 
first lemma is a variation on a standard result for systems 
with continuous-time inputs and outputs. 

Lemma A.l. Consider a periodically time-varying causal 
linear system S, with continuous-time input (of arbitrary 
dimension) and scalar discrete-time output with sampling 
interval T, the underlying period of S,, and a periodically 
time-varying causal linear system S, with scalar discrete-time 
input with the same sampling interval and period, and with 
continuous-time output (of arbitrary dimension). Denote the 
impulse response values of S, and S, by the row vector 
a,(kT,s) and column vector a2(t, kT), with k E Z, and 
s, I E R. Let S, denote S, followed by &, and have impulse 
response 

(A.11 

Then a3 is the zero impulse response if and only if at least 
one of Q,, L-Q has this property. 

Proof. Suppose neither of a, or a> is the zero-impulse 
response. Choose s so that for some k, a,(kT, s) # 0. Let k, 
be the least such k. Because az is not a zero-impulse 
response, and is periodically time-varying, a2(t, k, T) is not 
identically zero as a function of 1. Choose I E [(m - l)T, mT] 
for which a& k, T) is nonzero and m is minimal. Then 

aj(t, s) = aZ(t, k, T)a,(k, T, s) # 0. (A.2) 

This lemma is used solely to establish the next lemma; it will 
assure us that there is no infimum for M,(P) involving a 
singular P, or singular Pm’. 

Fig. A.l. 

Lemma A.2. Under the hypotheses 
J, are positive definite matrices. 

of Theorem 3.1, Je and 

Proof We shall focus on Jc only, the proof for Ja being 
comparable. By (15) and (17), Jc is nonnegative definite and 
is singular if and only if for some nonzero control vector 
a = [a, (12 “. cl/J: 

(A.3) 

for all t, s, k and 1. By (lo), this means that 

Ve,eTwr,‘U = 0 (A.4) 

for all t, s, k, and 1. The operator V is depicted in Fig. 2. It is 
evident that V is not identically zero, so that for some choice 
of j and k, Vk,, = efVe, = eTve, is not a zero impulse 
response. If (A.4) holds then left multiplication by e: yields 

(A.5) 

and, by Lemma A.1 we must have 

erw;cr = 0 (A.6) 
for all 1 or 

aTW^,e, = 0 (A.7) 

for all 1. This means that the impulse response of the system 
cy’W;, is zero (see Fig. 3), where (Y is a nonzero constant R 
vector. The set-up is redrawn in Fig. 10. 

For all u(.) in Fig. A.l, r =O. Consider u(.) in Fig. A.1 
generated by the arrangement in Fig. A.2. It follows that for 
all U in Fie. A.2. r ~0. This is eauivalent to havine all ii 
in Fig. A:3 produce r -0. Thi’s can only happen if 
cyT(zI - A)-‘B = 0. But since (A, I?) is controllable (by the 
minimality assumption, which is included in the hypothesis of 
Theorem 3.1), and (Y #O. by assumption above, a 
contradiction results. 

The proof then follows by an application of Theorem 5.1 
of Gevers and Li (1993). Alternatively, following ideas of 
Helmke and Moore (1991), one can obtain a proof as 
follows. We use the following idea. 

Definition A.l. Let J(P) be an n X n matrix J. Then the 
linearization of J(.) at a value of the argument P is that 
matrix L for which, as ilAP(I +O 

vet [J(P + AP) -J(P)] = L vet AP + o IIAPII. (A.8) 

We shall identify J(P) with aM,(P)/aP in (24). It is then 
possible to show that for every positive-definite P, for which 
J(P,) = 0, the linearization L is positive definite, i.e. every 
extreme point of M,(P) is a minimum. The properties of JB 
and Jc ensure that M2( P) assumes its global minimum. Morse 
theory (see e.g. Milnor, 1%3), as explained in Helmke and 
Moore (1991), ensures that there exists a single local 
minimum, namely the global minimum, of M,(P). (Consider 
a smooth real function m of real argument p, such that 
lim m(p)= +m and lim m(p) = fm. If all the extremal 
0-1 _= 
points of m(p) are’ &ima then m(p) has a unique 
minimum. Morse theory is a natural extension of this idea to 
the multidimensional case.) 

Fig. A.2. 
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Proof of Lemma 4.3 
By definition 

Hence 

and 

[J~li., = i: [‘dt [ hs,& s)b,m(~, s) d.T. 

Now let W be a large positive scalar. We shall work 
temporarily with the following approximation to (J8),,,: 

~J&VI,., = g, [dj-;wrbin,(t. Sh,m(t. 3) d. 

The exponent stability of h ensures that [Js( W)],,, + (JB)r,j as 
W-+m. Now 

h,,(r, S)hS,& s) d.Y 1 
By the continuity properties of h,(r, s) 

(by Lemma 4.2) 

= $, lim Y y $j hdR,&, -Ns +2) 
N-= u=0 ,=I) r=o 

xh d R,mh -IQ + t) 

= “T, p_ c c c [~,,m(s, Wb, rr=o r=o s-0 

x Ih^B,m(% O)l,d, 

= j, lim 5 tr [RB,m(s)G,m(s)l N-= s=o 

Fig. A.3. The lemma now follows immediately. 


