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Compensating for sensorimotor noise and for temporal delays has been
identified as a major function of the nervous system. Although these as-
pects have often been described separately in the frameworks of opti-
mal cue combination or motor prediction during movement planning,
control-theoretic models suggest that these two operations are performed
simultaneously, and mounting evidence supports that motor commands
are based on sensory predictions rather than sensory states. In this letter,
we study the benefit of state estimation for predictive sensorimotor con-
trol. More precisely, we combine explicit compensation for sensorimotor
delays and optimal estimation derived in the context of Kalman filtering.
We show, based on simulations of human-inspired eye and arm move-
ments, that filtering sensory predictions improves the stability margin of
the system against prediction errors due to low-dimensional predictions
or to errors in the delay estimate. These simulations also highlight that
prediction errors qualitatively account for a broad variety of movement
disorders typically associated with cerebellar dysfunctions. We suggest
that adaptive filtering in cerebellum, instead of often-assumed feedfor-
ward predictions, may achieve simple compensation for sensorimotor de-
lays and support stable closed-loop control of movements.

1 Introduction

The apparent ease with which we perform most daily tasks masks the diffi-
culties of movement control. Even simple tasks such as reaching to grasp an
object or performing a saccade toward a visual stimulus are supported by
efficient closed-loop neural control. Several challenges arise for the brain,
of which the following two have been the focus of much research effort:

Neural Computation 31, 738–764 (2019) © 2019 Massachusetts Institute of Technology
doi:10.1162/neco_a_01170



Filtering for Compensation of Prediction Errors 739

the compensation for sensorimotor delays and the filtering of sensorimotor
noise. Although these two functions have often been dissociated experi-
mentally, theoretical considerations and recent results indicate that estima-
tion and prediction are performed simultaneously in the brain.

On the one hand, sensorimotor delays are too long to explain skillful mo-
tor behavior based on delayed-feedback control only (Crevecoeur & Scott,
2014; Kawato, 1999), which suggests that the brain uses internal models
and predictions (Miall & Wolpert, 1996; Wolpert & Ghahramani, 2000). One
proposed mechanism for predictive control was the Smith predictor (Mi-
all, Weir, Wolpert, & Stein, 1993). In this framework, a model of the biome-
chanical system is used to predict the consequences of motor commands
ahead of sensory feedback. Movements are then controlled based on inter-
nal estimates, which removes the delay from the feedback loop provided
that the internal model is correct (Zhong, 2010). One difficulty with this ap-
proach, and with other prediction techniques, is that they are excessively
sensitive to model errors, such that an arbitrarily small mismatch in model
parameters can lead to unstable closed-loop control (Michiels & Niculescu,
2007; Mondié & Michiels, 2003). Clearly, assuming that the brain has perfect
knowledge of the peripheral motor system is not realistic. Thus, although
the Smith predictor captures the principles of predictive neural control,
it is unlikely to be implemented in neural circuits as such. Another com-
pensatory mechanism must be at play to mitigate the impact of prediction
errors.

On the other hand, with regard to sensorimotor noise, a wealth of re-
search has shown that the brain uses near-optimal estimates of variables
such as hand location or of forces applied to the limb, obtained by combin-
ing prior knowledge with available sensory information in a statistically
efficient manner (Angelaki, Gu, & DeAngelis, 2009; Koerding, 2007). This
function has been described in the framework of Bayesian statistics in nu-
merous studies on perceptual or motor decisions (Wolpert & Landy, 2012),
but also, and importantly, during online control (Izawa & Shadmehr, 2008;
Kording & Wolpert, 2004; Wolpert, Ghahramani, & Jordan, 1995). While
these previous studies highlighted an efficient handling of uncertainty in
the environment and in the nervous system, it is still critical to take senso-
rimotor delays into account to avoid unstable closed-loop control (Creve-
coeur & Scott, 2013). Consistent with this hypothesis, recent results have
shown that the combination of internal priors with sensory feedback de-
pends not only on the variance of the feedback signals but also on their
temporal delays (Crevecoeur, Munoz, & Scott, 2016).

Thus, predictive control requires compensation for prediction errors, and
optimal estimation must include a compensation for temporal delays. In
theory, an optimal (Bayesian) integration of prior and delayed feedback
is achieved by estimating the present and past states, which for discrete
time systems can be achieved in an augmented system (Challa, Evans, &
Wang, 2003). The integration of multiple, delayed measurements can also be
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optimally integrated using the same approach. However, system augmen-
tation is suitable for digital control, and it is difficult to translate it to con-
tinuous time systems or to systems for which present and past estimates
may not be jointly available, as in the sensorimotor system. In such a case,
when optimal delay compensation cannot be achieved, prediction errors
unavoidably occur, and the question arises as to whether closed-loop con-
trol remains feasible. Here we investigate this question in theory by analyz-
ing the impact of approximate delay compensation in closed-loop control
models of eye and arm movements subject to multiplicative noise in the
command (Jones, Hamilton, & Wolpert, 2002) and affected by temporal de-
lays compatible with each motor system.

A seminal study by Miall and colleagues (1993) addressed how a mis-
match between the controller and plant delays affected the behavior of sim-
ple systems, such as low-pass filters and integrators combined with single
gain control. This study also considered relatively long delays (≥150 ms)
in comparison with visual (∼100 ms) or somatosensory delays (∼50 ms in
the upper limb) (Scott, 2016). In addition, this formalism did not include
stochastic disturbances or uncertainty in the process, which is known to
affect planning and control (Harris & Wolpert, 1998; Todorov & Jordan,
2002). To address these limitations, we revisit the problem of predictive con-
trol subject to prediction errors in stochastic control models of eye and arm
movements. Our approach to this problem is based on finite spectrum as-
signment (FSA) (Michiels & Niculescu, 2007; Niculescu & Gu, 2004), which
in the context of linear and deterministic systems can be stabilized by us-
ing a low-pass filter (Mondié & Michiels, 2003). Following the approach
of Mondié and Michiels (2003), we show that probabilistic filtering of the
predicted state can compensate for prediction errors, including errors that
result from a low-dimensional approximation of the system dynamics or
from a delay mismatch between the observer and the true system.

Our analyses of the interplay between filtering and prediction errors
provide insights into biologically plausible control mechanisms. Indeed,
we show that delay compensation may be performed by low-pass filter-
ing of motor commands over the delay interval (such as a moving average),
which is easy to link to adaptive filtering in neural circuits. Furthermore, we
illustrate how combining priors and predictions improves the stability
margin of predictive control and how errors in the delay generate over- or
undershoots qualitatively comparable to human movements. Thus, approx-
imate delay compensation can still generate efficient movements in human-
inspired models. In addition, this approach captures explicitly the influence
of both uncertainty and time in state estimation, which represents a use-
ful framework for modeling the impact of these variables during sensori-
motor control. Finally, we found that prediction errors generated a wide
spectrum of movement dysmetria that typically characterize disorders ob-
served in disease and, in particular, in cerebellar ataxia and essential tremor.
In this regard, adaptive filtering for stable closed-loop control may describe
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the function of cerebellum more accurately than the often-assumed feedfor-
ward predictions.

We first present the problem definition and provide the derivation of
the control algorithm. The section continues with an illustration based on
a Langevin process, which shows analytically how the model captures the
dependency of the optimal filter on both signal variances and temporal de-
lays. We then illustrate the performance of the algorithm on bio-inspired
models of eye and upper limb movements to investigate the robustness of
this control algorithm against prediction errors.

2 Model

2.1 Definitions and Assumptions. We consider a class of linear-time-
invariant stochastic processes suitable for modeling simple systems such
as the control of a single joint or the control of eye movements. Let W (t)
represent a p-dimensional Wiener process with unit variance. The class of
systems considered is as follows:

dx(t) = (Ax(t) + Bu(t))dt + α(t)dW, (2.1)

y(t) = x(t − δt) + σ (t), (2.2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and the
matrices A and B are known, constant, and of appropriate dimension. The
function α(t) is an n × p-dimensional, real-valued function multiplying the
instantaneous variation of W (t). We assume that α(t) behaves sufficiently
well that the noise disturbances exist for all sample paths and have finite
variance over δt. The derivation that follows is valid for any such function
α(t). In particular, we will allow α(t) to depend on the control function,
u(t), in order to capture the property of sensorimotor systems that the inten-
sity of motor noise increases with the motor commands (Harris & Wolpert,
1998; Jones et al., 2002) (i.e., signal-dependent noise; for more details, see
section 5, equation 5.3).

The variable σ (t) represents an n-dimensional zero-mean gaussian ran-
dom variable with covariance $. Thus equation 2.2 expresses that the cur-
rent sensory feedback and the delayed state (y(t) and x(t − δt), respectively)
have joint gaussian distribution. Finally, we assume without loss of gener-
ality that $ is positive definite.

The problem consists in deriving a feedback controller that minimizes a
quadratic cost function. This problem can be solved using linear quadratic
gaussian control (LQG) (Astrom, 1970; Phillis, 1985; Todorov, 2005), which
gives a control law of the form u(t) = L(t)x̂(t), where x̂(t) is an estimate of
the present state of the system. The challenge is to derive the optimal esti-
mate in the presence of noise and measurement delays.
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2.2 Optimal Solution Based on System Augmentation. System aug-
mentation reduces the delayed system to the nondelayed case and allows a
standard solution derived in the context of stochastic optimal control (Frid-
man, 2014). In practice, the system is discretized, and a novel state vector is
defined as follows (Crevecoeur & Scott, 2013):

zt = [xT
t , xT

t−1, . . . , xT
t−h]T

, (2.3)

with the subscript t representing the time step. Each time step corresponds
to a discretization interval of dt, and the parameter h represents the delay
expressed in number of time steps, that is, hdt = δt. Thus, the size of the
augmented state corresponds to the size of the state multiplied by the num-
ber of discrete steps in the delay interval.

This approach allows optimal compensation for temporal delays; how-
ever, it is clearly an artificial technique that is suitable for digital applica-
tions. First, it is based on the key assumption that the delay is fixed and
known, which is not desirable in this context, as we are interested in how
the nervous system can handle errors in the prediction or in the estimate
of the delay. In addition, the delay compensation is performed by updating
the time series included in zt through the block structure of the state esti-
mator, which requires storing present and past estimates. In this study, we
investigate the impact of prediction error that may arise from approximate
representation of the dynamics during the delay interval or from errors in
the estimate of the delay. Thus, we derive a near-optimal closed-loop con-
troller, that allows manipulating the delay compensation directly. It is built
on the insight that system augmentation by design achieves extrapolation
of delayed sensory information to the present. Our proposed approach is
thus based on an explicit extrapolation of the state measurements.

2.3 Filtering over Predictions. Here we derive an estimator that extrap-
olates the current sensory feedback explicitly, prior to performing optimal
state estimation. Our approach is based on the premise that for determin-
istic systems, low-pass filtering of the predicted state is known to stabi-
lize predictive control against prediction errors (Mondié & Michiels, 2003;
Niculescu & Gu, 2004). We thus derive a similar estimate in the context of
stochastic processes and use the statistics of the predicted state to design an
optimal filter (Kalman filter) and mitigate the impact of prediction errors.

The current state measurement must first be extrapolated, which is ob-
tained by solving a boundary value problem with uncertainty in the initial
condition. Defining M(t) = etA, the unknown solution of equation 2.1 over
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the delay interval with initial condition x(t − δt) is given by

x(t) = M(δt)x(t − δt) +
∫ t

t−δt
M(t − s)Bu(s)ds

+
∫ t

t−δt
M(t − s)α(s)dW . (2.4)

The extrapolation of the delayed state measurement computed by the con-
troller is given by the following expression, which takes into account that
the third term in equation 2.4 is zero on average:

x̂(t|y) := M(δt)y(t) +
∫ t

t−δt
M(t − s)Bu(s)ds. (2.5)

It is easy to rewrite the extrapolation as a function of the true state, which
directly gives the extrapolation error, e(t):

x̂(t|y) = x(t) + e(t), (2.6)

e(t) = M(δt)σ (t) −
∫ t

t−δt
M(t − s)α(s)dW. (2.7)

Thus, the extrapolation error is gaussian with zero mean and variance
V (e(t)) given by

V (e(t)) = M(δt)$M(δt)T +
∫ t

t−δt
M(t − s)α(s)α(s)TM(t − s)Tds. (2.8)

Note that the cross products of σ (t) and dW are zero on average, and the
expected value of dW2 is by definition equal to dt. The variance of e(t) has
two terms. The first term captures the uncertainty associated with the mea-
surement used as an initial condition. Indeed, it expresses how the measure-
ment noise σ (t) propagates through the systems’ unforced dynamics over
δt. It is worth mentioning that the uncertainty associated with σ (t) decays
exponentially, remains constant, or increases in the dimensions in which
the matrix A has negative, zero, or positive eigenvalues, respectively. The
second term is the variance induced by the process noise, and thus it is a
function of the system dynamics captured in M(.), and dependent on α(t).

We can now derive a minimum-variance linear estimate, by using x̂(t|y)
as measurement instead of y(t) and applying the following well-known re-
sult (Anderson & Moore, 1979): let X and Y have joint gaussian distribution,
defined as

[
X
Y

]
∼ N

([
µX
µY

]
,

[
$XX $XY
$YX $YY

])
.
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Then the conditional distribution of X given Y is gaussian and is given by

X|Y ∼ N
(
µX|Y,$X|Y

)
,

µX|Y = µX + $T
XY$−1

YY (Y − µY ),

$X|Y = $XX − $XY$−1
YY$YX .

The optimal filter over the predicted state is thus obtained by applying
this result to calculate the posterior distribution of the next estimate given
the current estimate and the extrapolated measurement (see equations 2.6
and 2.7). The whole estimation algorithm is as follows:

1. The initial state estimate is assumed to have known gaussian distri-
bution:

x̂(0) ∼ N (x0,$0).

2. The true state trajectory over a small discretization interval of dt is

x(t + dt) = Adx(t) + Bdu(t) + ξt, (2.9)

where Ad := M(dt), Bd :=
( ∫ dt

0 M(s)ds
)
B, and ξt = α(t)dW . With this

definition, we have that ξt ∼ N(0,α(t)α(t)Tdt).
3. The one-step prediction of the state at the next time step is computed

by simulating the system dynamics over one time interval of dt:

x̂P(t + dt) = Adx̂(t) + Bdu(t).

4. The extrapolation of sensory signals x̂(t|y) and its covariance matrix
V (e(t)) are computed through equations 2.5 and 2.8.

5. Finally, we use the expression of the conditional distribution of gaus-
sian random variables given above to combine the one-step predic-
tion (x̂P(t + dt)) with the extrapolated state (x̂(t|y)), which gives the
following recurrence and completes the definition of the estimation
algorithm:

$x(0) = $0, (2.10)

K(t) = Ad$x(t)[$x(t) + V (e(t))]−1, (2.11)

x̂(t + dt) = x̂P(t + dt) + K(t)[x̂(t|y) − x̂(t)], (2.12)

$x(t + dt) = Ad$x(t)AT
d + E(ξtξ

T
t ) − K(t)$x(t)AT

d . (2.13)

Observe that the filter is well defined because $ is positive definite
from assumptions and $x(t) is nonnegative; hence, V (e(t)) is also posi-
tive definite. This can be verified by expanding equation 2.13 and using
the identity that $x + V (e) > $x in the sense of Loewner ordering. Thus
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the matrix inverted in equation 2.11 is positive definite. Observe also that
this filter is equivalent to a standard Kalman filter when there is no de-
lay, as equation 2.5 computed when δt = 0 gives x̂(t|y) = y(t). It is thus a
natural extension of the Kalman filter to systems subject to measurement
delays.

The filter defined above is based on a prediction of the state for simplicity
(FSA), as we consider a state-feedback controller. The difference between
FSA and the Smith predictor is that FSA predicts the state of the system,
whereas the Smith predictor predicts the output signal, which can be a lin-
ear function of the state. With the output signal of equation 2.2, these two
approaches are identical in the context of this letter. When a more general
output equation of the form y′(t) = Hx(t − δt) + σ (t) is considered, it is nec-
essary to reconstruct the state vector at t − δt with an observer prior to the
extrapolation step (see equation 2.5). Note that such an observer need not
be optimal to derive the filter above, provided that its output corresponds
to equation 2.2 as is the case for general observers.

2.4 Optimal Control. Thus far, we have derived an optimal filter for
the predicted state, assuming that the control function u(t), was known.
We now derive the optimal controller separately assuming that an optimal
estimate of the state is available through the recurrence above (see equa-
tions 2.10 to 2.13). It is important to emphasize that this approach is based
on a heuristic assumption that the separation principle applied, allowing
us to solve the estimation and control problems independently. However,
this assumption is not true in general. For instance, when considering mul-
tiplicative noise as in sensorimotor systems (e.g., α(t) ∝ u(t)), the optimal
control and optimal filter depend on each other. In the linear case, the esti-
mator and controller can numerically be approximated by iterating the se-
quence of nonadaptive Kalman gains and control gains until convergence
(Phillis, 1985; Todorov, 2005). Our approach is based on first deriving the
control gains as if the separation principle applied, and then optimizing
the Kalman gains relative to the ongoing control function in each simula-
tion run through the time-varying V (e(t)). Thus, our approach is globally
suboptimal for linear systems, but we show in the next section that the loss
is not substantial. The advantages are that it allows adapting the estimate
online following modeled but unexpected disturbances without recalculat-
ing the control and estimation gains. It also handles general noise functions
captured in α(t).

We consider a finite-horizon control problem that consists in minimizing
a cost function of the following form (expressed here in discrete time):

J(x, u) = E

[

xT
NQNxN +

N−1∑

t=1

xT
t Qtxt + uT

t Rtut

]

, (2.14)
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where N is the time horizon in number of time steps; Qt and Rt are nonneg-
ative and positive-definite cost matrices, respectively; and E[.] denotes the
expected value of the argument. Assuming additive noise, an optimal con-
troller that minimizes J(x, u) can be obtained in the framework of stochastic
optimal control as follows (Astrom, 1970; Todorov, 2005):

u(t) = −(R + BdS(t + dt)BT
d )−1BT

d S(t + dt)Ax̂(t). (2.15)

The matrices S(t) are computed offline through a backward-time recurrence
starting with S(Ndt) = QN (see Todorov, 2005, for details).

2.5 Low-Dimensional Approximation and Implementation. The ada-
ptive filter defined in equations 2.10 to 2.13 is infinite dimensional because
in the estimate x̂(t|y) defined by equation 2.5, u(t) is integrated over δt,
and the infinite-dimensional property of the integral comes from the fact
that it is defined on a space of continuous functions. In order to handle a
low-dimensional estimator design, the extrapolation must be replaced by a
finite-dimensional approximation of the integral, or quadrature rule. One
such rule can be obtained by dividing the delay interval of δt into h subin-
tervals of dt and by summing over each time step of dt used in the computer
simulation. This approach corresponds to the following quadrature rule:

x̂(t|y) = M(δt)y(t) +
h∑

k=1

M(t − kdt)Bu(kdt)dt, (2.16)

using h = δt/dt (see section 5 for numerical values). Observe that in princi-
ple, this quadrature rule has the same dimension as the system augmenta-
tion technique (see equation 2.3) because we used the same discretization
step, and the number of steps in the quadrature rule corresponds to the
number of states used in the augmentation technique. Thus, both the num-
ber of operations in equation 2.16 and the number of operations involved
in the augmentation technique scale with the dimension of the state and the
number of time steps during the delay interval.

We may reduce the dimension of the approximation by considering that
the motor command is constant over δt and define Bδ :=

∑h
k=1 M(t − kdt)B.

This yields the following one-step approximation of x̂(t|y):

x̂(t|y) ∼= M(δt)y(t) + Bδūs. (2.17)

The variable ūs is a constant approximating the control function u(s) for
t − δt ≤ s ≤ t. We use the average of the control function, that is, ūs =
(δt)−1 ∫ t

t−δt u(s)ds, which is also infinite-dimensional in principle for contin-
uous time models but easier to approximate than equation 2.5 in neural
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Figure 1: Model pathway for delay compensation in sensorimotor control
based on the algebraic operation associated with state estimation. The blue sym-
bols refer to the variables and matrices as defined in the text. The explicit depen-
dencies of M on δt and of K on t were omitted for clarity. The rectangle represents
a low-pass filter, or leaky integrator, which approximates u(s) for t − δt ≤ s ≤ t.

circuits through low-pass filtering or leaky integrators with appropriate
time constants.

Thus far, our developments consisted in replacing the augmentation
technique by an explicit extrapolation of the state measurement. The dimen-
sionality of the augmentation corresponds to the number of time steps in
the quadrature rule presented in equation 2.16 when the same discretization
step is used. Importantly, this dimension can be reduced by approximating
the sum in equation 2.16 in one step, which can be done in theory, and ap-
proximated in practice with a summary version of u(s), for t − δt ≤ s ≤ t s.
These expressions will allow us to investigate the robustness of the closed-
loop controller against extrapolation errors. In addition, we will also inves-
tigate the robustness against an error in the internal estimate of the delay
by assuming that the controller uses δ̂t ̸= δt, which has an impact on the
estimate in equation 2.17 through the matrices M(δ̂t) and Bδ .

We will show that the state estimator defined in equations 2.10 to 2.13,
combined with the low-dimensional quadrature rule given in equation 2.17,
constitutes a good candidate model of neural compensation for sensori-
motor delays. Indeed, this algorithm involves only multiplications of ma-
trices and vectors, along with an operation that approximates u(s) over
t − δt ≤ s ≤ t. Aschematic block representation of this estimator is shown in
Figure 1. The inputs to this pathway consist of the motor command, avail-
able through the corollary discharge, the state estimate, and the sensory
feedback, which are all available in the brain (Shadmehr, Smith, & Krakauer,
2010; Wolpert, Diedrichsen, & Flanagan, 2011; Wurtz, 2008). The opera-
tions are matrix-vector multiplications and additions, plus the averaging, or
low-pass filtering, represented by the rectangular box. The remaining com-
putational operations consist in adjusting K over time as a function of u(t)
according to equations 2.11 and 2.13. In order to validate this schematic
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pathway for studying the impact of prediction errors during motor con-
trol, we must show that it generates behaviors compatible with biological
movements. This is done in the next section.

3 Applications

3.1 Langevin Process. To provide intuition about how dynamics, vari-
ance, and delays affect the uncertainty about the prediction (see equa-
tion 2.5), we begin this section with a scalar example for which an analytical
expression can be derived, showing in a simple formula how delay compen-
sation affects state estimation when uncertainty about the delay interval is
considered. Langevin’s equation describes the velocity of a particle subject
to random disturbing forces and against a frictional damping force. The
scalar stochastic differential equation for the one-dimensional velocity is

dx = −Gxdt + αdW, (3.1)

where G > 0 represents the viscous constant and α is the intensity of the
process noise capturing the random perturbations. The state measurement
is defined as in equation 2.2. Because α and $ are constant in this example,
the variance of the extrapolation error is also constant. We call it Ve. This
variance can be written, after rearranging terms, as follows:

Ve = α2

2G
+ ($ − α2

2G
)e−2Gδt . (3.2)

It can be observed that Ve is equal to $ when δt = 0, and it is asymptot-
ically equal to α2/2G as δt → +∞. Thus, Ve increases, remains constant, or
decreases with the delay, dependent on whether $ is smaller than, equal
to, or greater than α2/2G. The fact that the extrapolation variance decreases
over time when $ >α2/2G is counterintuitive, as it suggests that the extrap-
olation becomes more reliable with longer delays. This is true in principle;
however, the reason the extrapolation becomes more reliable is simply that
it tends to zero due to the stable dynamics. As a consequence, the true state
and the estimate converge to zero. In any case, even when $ >α2/2G, it is
always useful to integrate measurements of the state in the state estimator
because x(t|y) and x(t) are correlated (see equation 2.6), and thus the pro-
jection of x(t) onto the linear space generated by x(t|y) will always decrease
the estimation error.

3.2 Simulation of Human Movements. We now present simulations of
saccadic eye movements and single joint reaching of the upper limb with
mechanical perturbations. These examples were chosen because the biome-
chanical plant can be approximated in a linear model and thus correspond
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Figure 2: (a) Simulated eye trajectories with the extended LQG based on sys-
tem augmentation (black) or with the proposed adaptive filter with high- (blue)
or low-dimensional (red) quadrature rules (see equations 2.16 and 2.17, respec-
tively). The cost function consisted of two fixation intervals separated by a 50 ms
window for movement without any penalty on the state (see section 5 for de-
tails about the simulations). (b) Positional variance as a function of time for the
three control models with the same color code as in panel a. All traces were nor-
malized to the peak positional variance of the blue trace. (c) Expected cost from
the extended LQG control model, and distribution of cost calculated for 500
simulation runs. Observe that the low-dimensional quadrature rule generates
inaccurate movements with higher cost but lower positional variance.

to the class of stochastic processes defined in equation 2.1. The extrapola-
tion was based on the two rules given in equations 2.16 and 2.17. We then
varied the delay parameters used in the estimation (δ̂t), without varying
the true delay, in order to investigate numerically the sensitivity of these
control models to this parameter.

Eye movements are of particular interest as the visual system is affected
by relatively long delays and the eyeball has low inertia. Thus, close-loop
control of the oculomotor plant is challenging and likely more sensitive to
model errors than other motor systems. The simulations shown below use
δt = 100 ms for the oculomotor system and δt = 50 ms for the upper limb.
For the visual system, this delay is based on the latency of reflexive sac-
cades (Munoz & Everling, 2004). For the upper limb, the delay of 50 ms cor-
responds to long-latency feedback supported by a pathway through cortex
(Scott, 2016). Details about the models and parameters can be found in the
section 5.

We first evaluate the performance of the algorithm derived above by
comparing the results with those obtained in the extended LQG frame-
work with system augmentation (Todorov, 2005) in order to quantify how
it departs from the augmentation technique (see equation 2.3). When the
prediction is performed with the high-dimensional quadrature rule, which
corresponds to the dimension of an estimator obtained with state augmen-
tation (see equation 2.16), the average behaviors of the two control algo-
rithms are almost indistinguishable (see Figure 2a, black and blue traces).
The difference can be observed in the peak positional variance, where an
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increase of about 10% can be noticed. The positional variance then recov-
ered similar values as in the case of extended LQG near the end of the sim-
ulation (see Figure 2b). We also measured the cost for each trajectory and
found an average increase of less than 10% in comparison with the mea-
sured and predicted expected costs from extended LQG. This result is ex-
pected because our controller uses slightly greater control signals, which in
turn induces more variability across simulations due to signal-dependent
noise.

Comparing the two techniques, the augmentation reduces the system to
the nondelayed case, but in this context, the presence of signal-dependent
noise requires approximate solutions. In contrast to the explicit delay, com-
pensation provides an exact filtering solution to a modified problem and
for a given control law. In particular, the analyses in Figure 2 show that for
behaviors considered in this study, the simulations obtained for both con-
trollers are very close, and thus the filter developed in equations 2.10 to
2.13 is valid and suitable for studying approximate delay compensation in
biological control.

The impact of the low-dimensional quadrature rule is also shown in Fig-
ure 2. The main effect is a reduction in the control gain, followed by larger
target overshoot for the eye trajectory (see Figure 2a, red). The consequence
is that the traces become less variable across trials due to reduced signal-
dependent noise, whereas the average cost displays approximately a three-
fold increase. We verified that the results were similar for the reaching task
(simulations not shown). Note that our goal is not to establish a novel con-
trol model for which solutions are available (Bar-Shalom, Huimin, & Ma-
hendra, 2004; Challa et al., 2003; Choi, Choi, & Chung, 2012; Todorov, 2005)
but to investigate the impact of extrapolation errors, as well as of errors in
the estimate of the delay. To this aim, below we use the low-dimensional
quadrature rule (see equation 2.17) and modify the delay parameter used
by the controller to compute the extrapolation.

Figure 3a illustrates the impact of an error in the internal estimate of the
delay. The different traces were averaged across 50 simulation runs with
an estimate of the delay (δ̂t) that was −30% or +50% of the true delay cho-
sen for illustration (left and right, respectively). Simulations are shown with
the closed-loop controller using sensory predictions only (gray, x̂t = x(t|y)),
and sensory predictions with filtering (black, x̂t from equation 2.12) to high-
light how filtering reduces the impact of prediction errors. It is noticeable
that varying this single parameter generates different behaviors dependent
on whether the delay is over- or underestimated. In the case of underesti-
mation (left), the true trajectory is ahead of the estimated trajectory, leading
to overshoots and oscillations in the eye angle. In contrast, when the delay
is overestimated (right), the controller generates trajectories that fall short
of the target and gradually catch up over time. Qualitatively, the simulation
of a pursuit movement displays similar properties, although the impact of
errors is not as important as during saccades because the pursuit task uses
lower control gains than saccadic movements.
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Figure 3: (a) Simulation of saccadic eye movements with delay under- (left) or
overestimation (right). The curves represent the eye position and the black/gray
display refers to the estimation algorithm that was used. The estimation was ei-
ther the predicted state (x̂(t|y), gray) or the filtered prediction (black). Observe
that oscillation amplitude and frequency increase without filtering. (b). Quan-
tification of oscillation amplitudes with or without filtering based on the simu-
lated eye velocity.

To quantify the oscillatory behavior in the simulations, we extracted the
ratio between the first and second peak velocity based on the fact that the
eye plant was a second-order model (see Figure 3b). It can be observed that
the filtering limits the amplitude of the oscillations, which reproduces the
results previously established by Mondié and Michiels (2003) in the context
of stochastic control. These authors showed that filtering mitigates the im-
pact of prediction errors induced by a quadrature. Here we directly apply
this result to stochastic processes and show that prediction errors induced
by an approximated extrapolation can also be stabilized. In principle, it is
clear that filtering can only improve the controller; thus, the important and
novel observation is that closed-loop control can be stabilized for a rela-
tively broad range of delay errors in human-inspired models of eye and
arm movements.

We also observed that the main frequency of the oscillations was lower
when the filter was applied, and the difference was consistent across over-
or underestimation of the delay (average reduction oscillation frequency of
25%). It is also noticeable that it is possible to minimize the amplitude of the
oscillations by using an approximation of the delay (see the black arrow,
Figure 3b); thus, the delay estimate and the low-dimensional approxima-
tion can be tuned together to achieve efficient closed-loop control. Together,
these results highlight that applying the filter on approximate predictions
improves the stability margin of the closed-loop controller.

In theory, equation 3.2 captures analytically (in the simplest case) the
interplay between the noise properties of the process and the delay for es-
timating its state. In the simulation presented, we concentrated on predic-
tion errors induced by the delay while assuming that the noise parameters
were fixed. Interestingly the noise properties have different effects on the
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Figure 4: (a) Same as Figure 3 for simulated reaching control of upper limb. A
perturbation load (force pulse: −2 Nm applied for 100 ms) was applied to the
limb at the moment indicated by the black arrow to highlight closed-loop con-
trol properties. (b) Quantification of the oscillation amplitude based on the joint
torque. Delay overestimation generated slower movements with shallower ve-
locity peaks, and oscillatory behaviors were observed again for large estimation
errors (δ̂t ∼ 2.5 δt, simulations not shown).

simulations. To observe this, we scaled the motor and sensory noise ma-
trices by a factor of 0.5 and 2 for the saccade task, with a delay error of
δ̂t/δt = 0.6. In this range, changes in motor noise affected the variability of
trajectories and estimates without affecting the closed-loop dynamics sub-
stantially. In contrast, increasing the sensory noise reduced the gain of the
prediction error in the Kalman filter, which tended to reduce the oscilla-
tions induced by the prediction error (simulations not shown). A theoreti-
cal account of the impact of errors in the noise covariance matrices on state
estimation can be found elsewhere (Heffes, 1966; Nishimura, 1966).

Simulations of upper limb control are shown in Figure 4 and emphasize
similar results. Because the delay is shorter and the limb has higher inertia,
the impact of using a low-dimensional quadrature rule was hardly visible
(see equation 2.16). Figure 4 illustrates the effect of filtering by comparing
trajectories with or without filtering for 20 degree reaching movements with
a perturbation pulse applied during movement (−1 Nm applied for 100 ms;
the onset time is represented with the black arrow). The simulations were
generated with varying levels of delay error. When the delay is overesti-
mated (δ̂t > δt), the extrapolation is larger than the true state, and the over-
estimation in turn reduces the control gain. This effect results in shallower
movements with slow corrections that do not oscillate until large errors are
considered (simulations not shown). Thus, the analysis in Figure 4 concen-
trated on delay underestimation, which has more impact on control.

In this situation, when the true delay is underestimated (δ̂t < δt), the sys-
tem starts oscillating because the extrapolated state is behind the true state
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Figure 5: (a) Simulations of movement oscillations in three distinct loading
conditions following pulses of 0.5 Nm applied at the beginning of the simu-
lated task. The cost function penalized deviation from the origin angle through-
out the time horizon. The limb inertia was I = 0.08 (black), I = 0.1 (blue), and
I = 0.12 (red) [Kgm2]. The simulations were generated with a delay error of 20%:
δ̂t = 0.8 δt. (b) Power spectral density of the acceleration signals in each loading
condition with similar color code as in panel a. The traces peaked on average
at 4.3 Hz, and the gray rectangle highlights that there is less than 1 Hz change
across conditions for the peak frequency. The vertical arrow is aligned with the
average main frequency. (c) Power spectral density of the acceleration traces for
a fixed loading condition (I = 0.1 [Kgm2]) across distinct values of delay error:
δ̂t/δt took values 0.6 (solid black), 0.7 (solid gray), 0.8 (dashed black), and 0.9
(dashed gray).

and the controller erroneously increases the control gain. An example is
given in Figure 4a for a value of the delay estimate chosen such that the
control based on the predicted state only is unstable, whereas the filtered
prediction with the same delay error is still stable due to a larger stability
margin. The amplitude of the oscillations with or without filtering for delay
underestimation is shown in Figure 4b.

To investigate the model properties in more detail, we sought to charac-
terize the oscillations across a range of loading conditions. This simulation
was clearly motivated by the variety of tremor types across clinical condi-
tions (e.g., physiologic, essential), and we were interested to see if the model
could provide insight into the origin of any kind of tremor. We simulated a
posture task in which the controller had to maintain the limb at the origin
angle (θ = 0) and applied a small pulse at the beginning of the simulation
(see Figure 5a). We focused again on delay underestimation as it evoked
clearer oscillations and had more impact on control, but in biological con-
trol, it is clear that both over- and underestimation may occur. These simu-
lations were computed with a relative delay error of 20%, in three distinct
conditions of limb inertia (I = 0.1 Kgm2, and ±20%). For a limb of 2.5 Kg
such as the wrist and hand, a change of 20% corresponds to a loading of
500 g, as used in previous reports on tremor (Elble, 1986). Interestingly,
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we found that the peak in the power spectral density was relatively invari-
ant (less than 1 Hz difference) across the three loading conditions (see Fig-
ure 5b). The peaks occurred also at the same frequency when we varied the
delay error (see Figure 5c). This is due to the fact that the system remains a
delayed system with a term corresponding to the true delay for any (includ-
ing arbitrarily small) delay error (Michiels & Niculescu, 2007). Qualitative
similarities with essential tremor are discussed below.

Importantly, we found that for all simulated tasks, the compensation for
sensorimotor delays was necessary. Indeed, using δ̂t = 0 corresponds to a
situation in which the sensory feedback (see Figure 1; y(t)) is directly com-
pared to the one step prediction of the next state (x̂P(t + dt)) without any
delay compensation (see the red box in Figure 1). In this case, all simula-
tions displayed unstable oscillations that increased in amplitude over time
and eventually diverged toward infinity. This was observed even for simu-
lations of reaching movements, despite the fact that the upper limb is less
prone to instability due to shorter delays and higher inertia. These results
suggest that it is necessary to compensate for delays when combining pri-
ors and feedback. Alternative control models are thus constrained by the
fact that combining priors and feedback without delay compensation may
lead to unstable closed-loop control. Previous work shows that it is possible
to use delayed state–feedback control to model human motor corrections
(Crevecoeur & Scott, 2014). However, since there is evidence of continuous
state feedback control and of the existence of internal priors supporting mo-
tor responses (Crevecoeur & Scott, 2013; Crevecoeur & Kurtzer, 2018), these
control models are not suitable to describe the neural mechanisms under-
lying long-latency responses to mechanical perturbations.

Finally, we observed that the approach presented could provide a heuris-
tic for combining asynchronous and delayed measurements of the process,
such as when vision and proprioception must be combined (Crevecoeur
et al., 2016). This problem can in principle be solved based on system aug-
mentation (Challa et al., 2003), which allows updating the posterior distri-
bution of the present and previous states when a novel but delayed mea-
surement becomes available. Here we sought to test whether independent
extrapolations of two measurements could be combined with the filter al-
ready defined. Such independent extrapolation is suboptimal in theory be-
cause it does not correct simultaneously the present and previous estimates.
However, it is relevant in the context of sensorimotor control because it re-
mains unclear when or how sensory information from distinct modalities is
combined in the neural feedback controller (Oostwoud Wijdenes & Meden-
dorp, 2017). Thus it is interesting to ask whether suboptimal delay compen-
sation may approach the optimal solution.

More precisely, we consider that the measurement vector is

y(t) =
[

x(t − δt1)
x(t − δt2)

]
+

[
σ1(t)
σ2(t)

]
, (3.3)
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which, after extrapolation of each measurement and considering equations
2.7 and 2.8, gives the following measurement signal (In is the identity matrix
of size n):

x̂(t|y1, y2) =
[

In
In

]
x(t) +

[
e1(t)
e2(t)

]
, (3.4)

with e1 and e2 corresponding to each measurement, and the filtering can be
performed following standard procedures. It should be emphasized that the
noise terms are not independent, because assuming that δt2 > δt1, the two
extrapolations are performed over a common interval from t − δt1 to t, dur-
ing which the same process noises affect the dynamics. Using equation 2.8,
we have

E[[e1, e2]T [e1, e2]]

=
[

M1$1MT
1 + I(t − δt1, t) I(t − δt1, t)

I(t − δt1, t) M2$2MT
2 + I(t − δt2, t)

]

, (3.5)

where Mi := M(δti) and

I(u, v ) :=
∫ v

u
M(t − s)α(s)α(s)T M(t − s)Tds. (3.6)

Using the measurement signal from equation 3.4 captures the fact that
the latency and gain of feedback responses to perturbations are similar with
or without the most delayed measurement, whereas the positional variance
across simulations is reduced in the case of combined measurements. Such
behavior was observed when participants were instructed to track visu-
ally the motion of their hand while their arm was mechanically perturbed
(Crevecoeur et al., 2016). This latter study reported similar response latency
but reduced estimation variance, which cannot be captured if the different
sensor signals are linearly combined without taking their respective delays
into account. However, we observed that this independent extrapolation
process was numerically fragile and, with a low quadrature rule and the
parameters considered, occasionally yielded unstable trajectories. The con-
ditions under which approximate predictions in the form of equation 2.17
can stabilize control with multiple measurements delays should provide in-
formative constraints on the accuracy of neural representations associated
with eye-hand coordination.

To summarize, we have shown that combining prediction with optimal
filtering can capture closed-loop control of human-inspired models of eye
and upper limb movements. In this context, we have highlighted that sen-
sory prediction errors arising when the process integral is approximated
over the delay interval, or when the delay is not known exactly, generated
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movement over- or undershoots that can be partially mitigated by the ap-
plication of a filter that considers the noise properties of the extrapolation
and the process dynamics. Thus, combining priors with predictions about
movement outcome improves the stability margin of the closed-loop con-
troller.

4 Discussion

We have studied the interplay between sensory prediction and state estima-
tion in human-inspired models of the eye and upper limb movements. The
presence of sensorimotor delays motivated the hypothesis that the nervous
system uses predictions (Miall et al., 1993), often expressed as feedforward
control (Kawato, 1999). However, even with predicted feedback in the case
of the Smith predictor or with predicted state in the case of FSA, the sys-
tem remains a closed-loop system, and delays remain problematic when
the prediction is not perfect. The delay compensation involves two filter-
ing operations. The first operation is the weighting of one-step predictions
with the extrapolated state measurement, which takes the form of a stan-
dard Kalman filter (see equation 2.12). The second filtering operation is the
computation of the extrapolated state measurement x̂(t|y), which in theory
requires integrating the system dynamics over the delay interval (see equa-
tion 2.5), but can be approximated with a moving average of the control
function as in equation 2.17, or other classes of filters. We have illustrated
based on simulations that an approximate extrapolation can still generate
movements compatible with human movements, and we have highlighted
how the Kalman filter reduces the impact of prediction errors by improv-
ing the stability margin. Thus, in addition to reducing uncertainty for per-
ception, optimal estimation also critically improves the stability margin of
predictive neural control.

Our approach was mainly motivated by evidence that the nervous sys-
tem extrapolates sensory signals to adjust motor commands to the ex-
pected instantaneous state of the body or environment. Evidence for in-
ternal predictions during visual tracking is widespread. Indeed, previous
studies showed that both sensory and extraretinal information about the
eye and target trajectories are used during online tracking (Bennett, de
Xivry, Barnes, & Lefevre, 2007; Blohm, Missal, & Lefevre, 2005; de Brouwer,
Yuksel, Blohm, Missal, & Lefevre, 2002), or when anticipating future events
such as trajectories following collisions (Badler, Lefevre, & Missal, 2010).
This hypothesis also accounts for the perceptual loss that occurs around
the time of saccades, suggesting that sensory extrapolation is an important
component of visual processing (Crevecoeur & Kording, 2017). Regarding
upper limb motor control, the same hypothesis accounted for the use of pri-
ors in motor responses to perturbations of distinct profiles (Crevecoeur &
Scott, 2013). In this reference, long-latency responses (approximately 50 ms
in the upper limb) depended on the expected profile, which is compatible
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with an extrapolation of the sensed perturbation-related motion. Thus, we
included the extrapolation of sensory information explicitly in the model to
account for this function of the nervous system (see equation 2.5).

A clear limitation of our developments is that we focused on linear sys-
tems. Of course, the neuromusculoskeletal system is nonlinear. Mathemat-
ical challenges aside, the algorithm proposed above is in principle also
applicable to nonlinear models of the sensorimotor system. An interesting
question for future studies is to investigate whether or how much filtering
tolerates prediction errors that arise when one ignores the nonlinearities of
the biomechanical plant.

In spite of its simplicity, a compelling aspect of the model is that it cap-
tured a broad spectrum of motor disorders by varying a single parameter.
Indeed, assuming that the delay compensation mechanisms are similar for
eye and limb movements, then movement dysmetria, including hyper- and
hypometria, nystagmus, oscillations, and limb tremor, can be explained by
assuming that the estimated delay is not equal to the true delay. In practice,
such error simply comes down to an inaccurate calibration of the averaging
or filtering operation that extrapolates the sensory feedback (see Figure 1,
red box).

Regarding the neural basis of the delay compensation, cerebellum has
often been associated with motor predictions and state estimation (Bastian,
2011; Kawato, 1999; Miall, Christensen, Cain, & Stanley, 2007; Miall et al.,
1993; Wolpert, Miall, & Kawato, 1998). What reminds one of cerebellum
again in the context of this letter is that, qualitatively, the dysmetria ob-
tained by varying the internal estimate of the delay has been associated
with cerebellar ataxia in clinical populations or following inactivation
through cooling experiments performed with nonhuman primates (NHPs)
(Bodranghien et al., 2016; Diedrichsen & Bastian, 2014; Mackay & Murphy,
1979). Regarding the control of eye movements, saccadic dysmetria as well
as nystagmus were reported in cerebellar ataxia (Gomez et al., 1997; Leech,
Gresty, Hess, & Rudge, 1977; Zee, Yee, Cogan, Robinson, & Engel, 1976).
This is consistent with the idea that a wrong estimate of the delay in cerebel-
lum alters saccade amplitudes through its involvement in the online control
of saccades (Kheradmand & Zee, 2011), which in turn generates movement
errors and oscillations.

Turning to the control of the upper limb movements, oscillations were
observed in cerebellar patients following reaching movements (Diener,
Hore, Ivry, & Dichgans, 1993), similar to those reproduced in Figure 4. Qual-
itatively, similar oscillations were documented in NHPs following inactiva-
tion of cerebellum (Flament, Vilis, & Hore, 1984; Hore & Flament, 1988; Hore
& Vilis, 1984). As well, a range of deficits including hyper- and hypometria
characterized goal-directed reaching in cerebellar patients (Bhanpuri, Oka-
mura, & Bastian, 2014), a deficit that could be reproduced here by varying
the estimated delay.
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Of course, other parameters may generate undershoots or oscillations in
movements such as errors in the parameters of the internal models (e.g., eye
or limb inertia, viscous forces), and it is difficult to derive predictions that
are specific to the compensation of sensorimotor delays, and not to other
sources of errors. We focused here on approximate delay compensation and
thus highlighted that errors in this parameter can also potentially generate
movement disorders.

To investigate further the nature of oscillations induced in this model, we
simulated a posture task and extracted the main frequency following small
perturbation pulses (see Figure 5). Interestingly, we found a main frequency
of approximately 4 Hz, which was invariant across loading conditions and
errors in the delay. This result bears a striking similarity to previously doc-
umented cases of essential tremor, associated with main frequencies in the
range 4–8 Hz, and independent of loading (Elble, 2003, 2013). These obser-
vations pointed to a neurogenic source of essential tremor that involves a
cortico-cerebellar loop (Muthuraman et al., 2018). Thus, poor delay com-
pensation captures oscillations of the closed-loop system at a frequency de-
termined by the fixed and true delay and relatively insensitive to loading
or internal errors. In this view, it is not clear that any brain region could be
unambiguously identified as the source of oscillations in essential tremor,
because the error can be small, but the details of processing can make the
closed-loop system oscillate.

This framework is also consistent with the role of cerebellum in coor-
dinating multiple effectors (Bastian, Martin, Keating, & Thach, 1996; Bo,
Block, Clark, & Bastian, 2008; Diedrichsen, Criscimagna-Hemminger, &
Shadmehr, 2007), as uncoordinated movements can also arise from errors
in the estimated delay. Assuming that cerebellum hosts a pathway similar
to that of Figure 1, then all of these motor dysfunctions can be explained by
inaccurate tuning of the sensory extrapolation, corresponding in principle
to an error in the estimate of the delay or, equivalently, an estimate that is
not adjusted to the true difference between the sensory feedback and the
current state of the body.

Finally, a strength of the model is that the low-pass or averaging opera-
tion that is required to compensate for the delay may be directly linked to
the adaptive filtering performed in cerebellar microcircuits (Dean, Porrill,
Ekerot, & Jorntell, 2010). Thus adaptive filtering of sensory extrapolations
may achieve delay compensation and support predictive motor control. The
model also suggests that the time constants of the adaptive filters in cere-
bellum should be related to the temporal delay and to the mechanical prop-
erties of the associated motor systems (see equation 2.17). To conclude, we
suggest that errors in the estimated delays, or a poor tuning of the filtering
operation required in the extrapolation of sensory feedback, may constitute
the underlying cause of the wide variety of movement disorders generally
associated with cerebellar dysfunctions.
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5 Methods

5.1 Continuous-Time Models. The continuous-time state-space repre-
sentation of the eye dynamics was a second-order model defined as follows:

[
ẋ1
ẋ2

]
=

[
0 1

−1/(τ1τ2) −(τ1 + τ2)/(τ1τ2)

] [
x1
x2

]
+

[
0

1/(τ1τ2)

]
u. (5.1)

The state variables x1 and x2 represent the eye angle and velocity, respec-
tively; u is the motor command; and the dot operator represents the time
derivative. The time constants used in the model were based on previous
modeling work (Robinson, Gordon, & Gordon, 1986): we used τ1 = 224 ms
and τ2 = 13 ms. The explicit dependency of x and u on time was omitted
for clarity.

For the upper limb, the continuous-time differential equation was

⎡

⎣
θ̇

θ̈

Ṫ

⎤

⎦ =

⎡

⎣
0 1 0
0 −G/I 1/I
0 0 −1/τ

⎤

⎦

⎡

⎣
θ

θ̇

T

⎤

⎦ +

⎡

⎣
0
0

1/τ

⎤

⎦ u, (5.2)

with θ being the joint angle and T the muscle force. The parameters were
taken from previous experimental testing (Brown, Cheng, & Loeb, 1999;
Crevecoeur & Scott, 2014): G = 0.14 Nms (velocity-dependent term captur-
ing viscous forces in muscles); I = 0.1 Kgm2 (limb inertia); and τ = 60 ms
(muscle time constant).

The two models were augmented with the target location. The state vec-
tor for the upper limb was further augmented with an external torque (TE )
representing the perturbation applied to the limb. This external torque is
assumed to follow step functions, that is, ṪE = 0. This assumption is neces-
sary to reproduce responses to perturbations following a step function, as
it must be estimated to generate active compensation for the sustained load
applied to the limb. It is also compatible with the behavioral observations
that internal priors about the perturbation profile influence long-latency re-
sponses (Crevecoeur & Scott, 2013).

5.2 Delays and Noise Parameters. Each state-space representation was
transformed into a discrete time control system following equations 2.1, 2.2,
and 2.9, with discretization step of dt = 5 ms. Thus, for the model of the
eye plant, the delay of 100 ms corresponded to h = 20 time steps, whereas
the delay of 50 ms for the upper limb corresponded to h = 10 time steps.
We then considered the presence of signal-dependent noise as observed in
the sensorimotor system (Harris & Wolpert, 1998), such that the function
α(t) was proportional to the control input, ut . We used the following noise
expression,
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ξt = α1Bdu(t)ε1,t + α2Bdε2,t, (5.3)

with α1 = 0.08 or 0.006 for the oculomotor system or upper limb system,
respectively; α2 = 0.03 or 0.003; and εi,t are independent gaussian random
variables with zero mean and unit variance. For the sensory noise, we used
σ (t) ∼ N (0,$) at each time step with $ = 0.003 × In1 or 0.001 × In2 for the
oculomotor or upper limb system, respectively (Ini represents the identity
matrix of appropriate dimensions).

For the upper limb control system, we added a prediction noise that af-
fects the one-step prediction x̂P(t + dt), without affecting the process dy-
namics. This prediction noise is required by the presence of an external
torque (TE ) that is not controllable through the change in control ut . Since
there is no process noise affecting this variable and because it is not con-
trollable, it is necessary to consider that there is uncertainty about this vari-
able through the internal estimate to allow the estimator to track possible
changes in this variable due to external disturbances. This prediction noise
was assumed to follow a gaussian distribution with zero mean and covari-
ance matrix set to 0.001 times the identity matrix of the same dimension as
the state vector.

These parameters were adjusted manually so that the simulations were
numerically well conditioned. Indeed, numerical errors can propagate
through the recursions (see equations 2.10– 2.13), leading to bad condition-
ing of the matrix being inverted even if it is mathematically well defined.
These noise parameters have an impact on the variability of the trajecto-
ries. In principle, the stability margin may depend on the noise parameters,
but the improvement obtained with filtering should not depend on these
values. A thorough characterization of the relationship between the noise
parameters and the stability radius relative to the estimated delay is an in-
teresting question for prospective work.

5.3 Cost Functions. The cost function for all simulations corresponded
to equation 2.14. We used R = 10−2 and R = 10−4 for the oculomotor and
upper limb systems, respectively. For the simulations of the oculomotor
system, the cost function always consisted in penalizing deviation from the
target,

x(t)TQx(t) = c(x1(t) − x∗
1 )2, (5.4)

where x∗
1 is the target angle and c is a parameter equal to 100 during fixa-

tion and 0 otherwise. Saccades were simulated by considering two fixation
periods separated by an interval of 50 ms without any penalty on the state
(c = 0). The pursuit task was simulated as a fixation task with a sudden
jump in the target position and velocity occurring during the simulation
run.
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For the reaching task (see Figure 4), we considered a cost function similar
to equation 5.4 with c = 1 for 300 ms following the movement time, during
which c was set to 0. The movement times for the reaching movements rep-
resented in Figure 4 was set to 500 ms. The posture task (see Figure 5) was
simulated with a target angle of zero for 800 ms, and no movement time.
The external perturbation was generated during each simulation run as a
force pulse. The pulse amplitude was −2 Nm for the reaching task and and
−0.5N for the posture task. In each case, the force pulse was applied for
100 ms.
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