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Identifiability of Linear Stochastic Systems 
Operating Under Linear Feedback* 

B. D. O. ANDERSON* and M. R. GEVERS:I: 

New results on the identification of plants, including those having nonminimum 
phase operating with closed-loop controllers, rely on unravelling spectral data. 
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Abstract--The identifmbility of multiple input-multiple out- 
put stochastic systems operating in closed loop is considered 
for the case where the plant and the regulator are both linear 
and time-invariant. Two basic identification methods have 
been proposed for such systems: the joint input-output 
method, in which the input and output processes are 
modelled jointly as the output of a white noise driven 
system; and the direct method, in which a prediction error 
method is used on the input--output data as if the system 
were in open loop. Previously obtained identifiability results 
for the joint input-output method are extended to a number of 
new situations, including but extending beyond the 
identifiability results obtained with the direct method. 

1. INTRODUCTION 
THE IDENTIFIABILITY of mul t ip le  i n p u t - m u l t i p l e  
output (MIMO) linear dynamic systems operat- 
ing in closed loop has been the subject of much 
research in recent years. See Gustavsson, Ljung 
and S6derstr6m (1977) for an excellent survey 
on this subject and also Akaike (1968); Bohlin 
(1971); Vorchik, Fetisov and Shteinberg (1973); 
Phadke (1973); Phadke and Wu (1974); Ljung, 
Gustavsson and S6derstr6m (1974); Vorchik 
(1975); Wellstead and Edmunds (1975); Caines 
and Chan (1975); Gevers (1976); S6derstr6m, 
Ljung and Gustavsson (1976); Ng, Goodwin and 
Anderson (1977); Anderson and Gevers (1979). 
The question at hand is whether the forward 
path dynamics (i.e. the plant or process 

*Received 9 September 1980; revised 24 June 1981. The 
original version of this paper was presented at the 5th IFAC 
Symposium on Identification and System Parameter Estima- 
tion which was held in Darmstadt, Federal Republic Germany 
during September 1979. The published proceedings of this 
IFAC meeting may be ordered from Pergamon Press Ltd., 
Headington Hill Hall, Oxford OX3 0BW, U.K. This paper was 
recommended for publication in revised form by editor H. 
Kwakernuak. 

This work was supported by the Australian Research Grants 
Committee. 

i'Formerly with Department of Electrical and Computer 
Engineering, University of Newcastle, NSW 2308, Australia. 
Now with the Department of Systems Engineering, Institute 
of Advanced Studies, Australian National University, Can- 
berra, ACT 2600, Australia. 

*Department of Electrical Engineering, Louvain Uni- 
versity, 1348 Louvain la Neuve, Belgium. 

dynamics) can be identified from input and 
output measurements despite the presence of 
feedback whilst the measurements are taken. 
We shall restrict our attention here to the case 
where the feedback dynamics are unknown (e.g. 
the feedback is a manual operator), and where 
no measurable external input perturbation signal 
can be applied for identification purposes. 

For such a case two major identification 
methods have been proposed: 

(I) The direct identification method 11: an 
open loop model is identified using a prediction 
error method on the plant input-output data just 
as if the system were in open loop. This method 
has been proposed and extensively studied in 
Ljung, Gustavsson and S~derstr6m (1974), and 
also in Vorchik (1975). It is based on the fact 
that under suitable conditions, the predicted 
plant model output is independent of the white 
noise generating the process noise, despite the 
presence of the feedback path. 

(2) The joint input-output identification 
method 12: the input-output process is first 
modelled jointly as the output of a system 
driven by white noise. The plant dynamics are 
subsequently derived from the joint model by 
matrix operations. The method has been pro- 
posed by Phadke (1973, 1974) and independently 
by Caines and Chan (1975). It is based on the 
fact that, under suitable conditions, the forward 
path and the feedback path can be obtained 
from a factorization of the joint (input-output) 
spectral density matrix &y~(z). 

The method Ii has the major advantage over 
12 that it allows for a wider variety of possible 
structures for the unknown regulator (namely 
the regulator can be time varying), whereas the 
application of 12 is limited to systems with a 
linear and time-invariant regulator corrupted by 
noise. Actually, the feedback dynamics are not 
even identified with Ira, whereas 12 identifies 
both the plant and the feedback dynamics, even 
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though this is in most practical cases un- 
necessary. On the other hand, when no a priori 
knowledge is available about the structure of 
the system, 12 has the advantage that it allows 
the use of nonparametric methods, such as 
spectral or covariance factorization methods, 
whereas /1 requires that a parametric structure 
be chosen a priori. 

The most general identifiability conditions for 
closed-loop systems have been obtained for the 
direct method by Stderstr6m, Ljung and Gus- 
tavsson (1976) and for the joint input-output 
method by Ng, Goodwin and Anderson (1977). 
It turns out that, in the case of a time-invariant 
linear system with a time-invariant linear feed- 
back (i.e. the only case where It and /2 can be 
compared), the sufficient conditions for 
identifiability derived in the above references 
were different. For this case the plant and the 
regulator can be described by (see Fig. 1) 

Yi = F(z)ui + mi, mi = G(z)wl  (la) 

ui = H(z)yi + ni (Ib) 

ut E R q and y~ E R p are, respectively, the input 
and the output of the process, F(z), G(z) and 
H(z) are causal real transfer function matrices, 
m~ and ni are the forward path noise and the 
feedback path noise, respectively. Various 
assumptions can be made about the relations 
between n~ and m~ In all cases these noises will 
be assumed stationary.* 

We shall use the standard definitions for 
causal, stable, minimum phase and strictly mini- 
mum phase transfer function matrices: G(z) is 
causal if G(oo)< oo, stable if all entries have 
poles inside Izl < 1, minimum phase if G(z) is 
square and G-l(z) is causal and analytic in tz[ > 
1, strictly minimum phase if in addition G-I(z) is 
analytic in Iz[ > 1. 

For this set-up the identifiability conditions 
using 12, derived in Ng, Goodwin and Anderson 
(1977), require that there be no correlation at 
all between the noise processes {mi} and {n~}, 
whereas for /i a one-sided correlation is al- 
lowed, see Stderstr6m, Ljung and Gustavsson 
(1976), namely a model of the form 

ni = L(z)w~ + K(z)vi (2) 

where L(z) and K(z) are causal stable filters, 
and {v~} is orthogonal to {wi}. On the other hand, 
G(z) is restricted to being minimum phase, a 
nontrivial restriction when L(z) is nonzero. 

*Since the entire theory is a second-order theory, wide 
sense stationarity is actually sufficient. 

V¢ 

Fig. I. Closed-loop system to which identification 
methods/i and/2 may be applied. 

In this paper we study the identitiability of 
MIMO systems using method 12, motivated by 
the discrepancy between the results of Ng, 
Goodwin and Anderson 0977) and the con- 
ditions obtained fo r / i  in StderstrOm, Ljung and 
Gustavsson (1976). We extend the results of Ng, 
Goodwin and Anderson (1977) in two directions. 
First we show that the unique stable minimum 
phase spectral factor of the joint spectrum 
d~y,(z) used in Ng, Goodwin and Anderson 
(1977) may not be consistent with the a priori 
knowledge on the delay structure of the system. 
We therefore introduce the notion of an ad- 
missible spectral factor, namely one that is 
consistent with a priori knowledge of the delay 
structure. This enables us to extend the 
sufficient conditions obtained in Ng, Goodwin 
and Anderson (1977) to a broader class of situa- 
tions in the case where {mi} and {ni} a r e  uncor- 
related [i.e. when L(z )~O in (2)]. Next we 
observe that, if only a model of the plant is 
required and not of the regulator (as is most 
often the case), identification method Is can 
often still be used in the case where there is a 
one-sided correlation between n~ and m~ [i.e. 
when L ( z ) ~  0 in (2)]. We shall show that there 
is an equivalence class of spectral factors of 
d,y,(z) that is uniquely related to the same for- 
ward path dynamics [i.e. F(z) and G(z) in Fig. 
1], but that produces different feedback 
dynamics. We shall derive conditions under 
which F and G can be uniquely identified from 
the joint spectrum of the (y, u) process. 

In extending the results of Ng, Goodwin and 
Anderson (1977) we show that a linear system 
with a linear feedback is identLlh, b_ le with /2 
whenever it is identifiable wi th/ i  [i.e. whenever 
the conditions derived in Stderstr6m, Ljung and 
Gustavsson (1976) are satisfied]. But in addition 
we extend the applicability of method /2 to a 
case where G is nonminimum phase with 
L ( z ) -  0, a situation that was not considered in 
S6derstr6m, Ljung and Gustavsson (1976) and 
for which /i would apparently not work; we 
shall explain why systems with nonminimum 
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phase G cannot be ruled out in the case of 
correlated noise sources. 

In Section 2 we shall summarize the major 
results of Gevers and Anderson (1981) that will 
be needed in this paper. In Section 3 we present 
new identifiability results for the case where 
there is no correlation between the forward path 
and the feedback noises. In Section ,1 we con- 
sider closed-loop systems with one-sided cor- 
relation between the regulator noise n~ and the 
process noise m~. We derive conditions under 
which F and G can be identified for this case 
using /2. In Section 5 we compare the 
identifiability results obtained with/ i  and/2. The 
identifiability using /2 is based on obtaining a 
uniquely defined spectral factor W(z)  from the 
joint spectrum 6y,(z). In any practical 
identification experiment only estimates of 
6y,(z) are available. It is important to know, 
therefore, whether estimates 4~y,(z) that are 
close to the true 4,,,(z) will yield estimates ff'(z) 
that are close to the true W(z).  We show in 
Section 6 that the estimates l~v'(z) are a con- 
tinuous function of 4~y~(z). As a consequence, 
W(z)  can be estimated from measured data, and 
so can the transfer functions of the closed-loop 
system in all cases where the identifiability 
conditions are satisfied. 

where (7, J. L. K are causal real rational trans- 
fer function matrices, dim w - d i m  m =p ,  
dim v---dim n = q, and (w, v) is a white noise 
process with a nonnegative definite covariance 
matrix Q 

ro,, Q,:-i E{[Wi]v, [wrv r i }  = QS,~, with Q -- tO21 0,2] 

-> 0. (5) 

We shall often consider the case where dim w = 
p and dim v = q, in which case Q is positive 
definite by the full rank assumption on (m, n). 

From the 6-block model (3) and (4) we can 
derive a matrix transfer function model for the 
joint process (y, u) 

u, t W2,(z) We2(z)l v+ 

This model will be called a joint model for 
(y, u). Clearly the 4 blocks W 0 can be uniquely 
computed from the 6 blocks F, G, J, H, K, L, 
but the forward path model F, G, J, and a 
/ortiori F, G, J, H, K, L, cannot be recovered 
from the W~is. Therefore we shall in the follow- 
ing assume that J(z) , ,  O. Then~t 

2. STATEMENT OF THE PROBLEM 
We shall consider (y, u) processes, y E R ~, 

u E R a, generated by a linear closed-loop system 

y~ = F(z)ui + mi (3a) 

ui = H(z)yi + ni (3b) 

WH = (I - FH)-'(G + FL) 

W2, = (I - HF)-'(HG + L) 

WI: = ( I -  FH)-I FK 

Wn = (I - HF)-I K. 
(7) 

The joint spectral density matrix 6y,(Z) of (y, u) 
is 

where F(z)  and H(z)  are causal real rational 
transfer function matrices, and (m, n) is a sta- 
tionary noise process. Here (3a) represents the 
forward path and (3b) the feedback path of the 
closed-loop system. The following two assump- 
tions will be made throughout 

A.I: There exists a delay somewhere in the 
loop, i.e. F(~)H(~)  = 0, where F(oo) = lira F(z). 

2.-~¢¢ 

A.2: The joint process (y, u) is a stationary, 
full rank, mean square bounded stochastic 
process with rational spectrum.t 

By assumption A.2 (m, n) is also a full rank 
process. Without 
represented as 

loss of generality it can be 

Wi 

tMany of the results will turn out to be valid without the 
restriction of rationality of the spectrum. 

~tThe argument z in the transfer function matrices will 
most often be omitted in the sequel. 

4,yu(z) = W ( z ) O W * ( z )  (8) 

where W*(z )=  w r ( z - 5 .  
For future reference we rewrite the equations 

of the closed-loop system (Fig. 2). 

Yl = F(z)ui + G(z)wi 

ul = H(z)yi + L(z)wi + K(z)v~ 

(9a) 

(9b) 

We shall frequently need the inverses of Wli 
and Wu, defined by (7). If W(z) is not square 
these will be understood to be fight inverses. In 
a first lemma we examine when these inverses 
exist. 

Lemma 2.1. If L = 0, W[II and W~ I exist by 
assumptions A.1 and A.2. If L ~  0, W~ exists if 
any one of the following conditions holds: 
(1) W(z) is square, (2) K(®) has full row rank, 
(3) L ( z ) =  Lo(z)O(z). 

Proof: See Appendix A. 
In addition to the standing assumptions A.1 
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W 

÷ 

Iv 
Fig. 2. More detail of closed-loop system considered; w 

and v are independent. 

and A.2 we shall often need to make the follow- 
ing assumption for which sufficient conditions 
have just been given. 

A.3: W2: has full normal row rank. 

Lemma 2.2. Consider the closed-loop system 
(9) with assumptions A.1-A.3, and the cor- 
responding W(z) given by (7). The transfer 
function matrices F and G are uniquely 
expressible in terms of W as follows: 

F= WI,.W~,~ G= Wll-  W~2W~W21. 
(10a) 

Furthermore, if L = 0, then H and K are also 
uniquely expressed in terms of W 

H = W:I Wil' K = We: - W21 W?, l Wle. 
(10b) 

The proof is trivial, using Lemma 2.1. 
Comment: Lemma 2.2 is an extension of 

Lemma 3.1 in Ng, Goodwin and Anderson 
(1977) where only the case L = 0  was con- 
sidered and where W(z) was assumed square. 

Since there is a one-to-one relation from 
W(z) to {F, G} [and to {F, G,/4, K} when L(z) = 
0], the investigation of whether a closed-loop 
system is identifiable must center on an analysis 
of the spectral factorization of 4~(z) into W(z) 
and Q [see (I0)]. Therefore we briefly recall 
some important facts from spectral factorization 
theory. These are discrete-time extensions of 
continuous-time results of Youla (1961). 

Spectral f actorization theorem 
Let O(z) be a n × n real rational full rank 

spectral density matrix. 

(a) There exists a unique factorization of the 
form ~b(z)= ff'(z)t~ff'*(z), in which ff'(z) is 
n x n real, rational, stable, minimum phase and 
such that ff ' (~)= L with t~ positive definite 
symmetric. 

(b) Any other factorization of the form 
~b(z)= W(z)QW*(z) in which W(z) is real 
rational, and Q is nonnegative definite sym- 
metric, is such that W(z)= ff,'(z)V(z), where 
V(z) is a real rational scaled paraunitary matrix, 
i.e. V(z)QV*(z)= Q. Moreover V(z) is stable if 
and only if W(z) is stable. 

(c) Any other factorization of the form 
4J(z) = W(z)QW*(z) in which W(o0) is finite and 
nonsingular, W(z) is n × n real rational, stable 
and minimum phase, and Q is positive definite 
symmetric is such that W(z)= ff,'(z)T, where T 
is a real nonsingular constant matrix, with 
TQT r= Q. 

From the spectral factorization theorem it 
follows that the spectral factors {W(z),Q} 
obtained from factoring the spectrum 4~y,(z) of a 
closed-loop process are highly nonunique. They 
are all related by scaled paraunitary transfor- 
mations, i.e. if {W l, Q1} and {W2, Q2} are two 
spectral factors of ~by,(z), then W2(z)= 
W,(z) V(z) and V(z)Q: V*(z) = Q1. Different 
spectral factors will normally lead to different F 
and G matrices via (10a), which is precisely why 
there is an identifiability p_roblem. 

Definition 1. We call W(z), defined in part Ca) 
of the spectral factorization theorem, the nor- 
malized minimum phase spectral factor (NMSF) 
of 4~(z). 

Notice that the NMSF is canonical, i.e. 
uniquely defined by ~b(z). However there are 
other ways of defining canonical spectral fac- 
tors (Phadke, 1973). Now the delay structure of 
the closed-loop system and the nature of the 
correlation between the forward path noise and 
the feedback path noise imposes certain con- 
straints on the corresponding W(z) [computed 
from (7)1 and Q. For example, if there is a delay 
in F, H and L, then (7) shows that W(~) is 
block-diagonal. If only F has a delay, then 
W(~) is lower block-triangular. If {w} and {v} 
are uncorrelated, then Q is block-diagonal. A 
priori knowledge about the delay structure or 
the correlation between the noises is captured in 
the notion of admissible spectral factors of 
4~,~(z). 

Definition 2. Given the spectrum ~by,(z) of a 
joint process (y, u) generated by the closed-loop 
system (9) we shall say that the spectral fac- 
torization d,y,(z)= W(z)QW*(z) is admissible if 
W(z) and Q are consistent with the a priori 
knowledge on the delay structure and the noise 
correlation of the closed-loop system. 
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To any set of a priori conditions on the 
closed-loop system there shall correspond a 
class of admissible spectral factorizations 
{W(z), Q}. It is always possible to define a 
canonical (i.e. uniquely defined) element in this 
class. This element will be square and will 
normally be minimum phase and nonsingular at 
z = oc. For example, if it is known that F(oo)= 
H(o0) = L(0o) = 0, then the NMSF will be chosen 
because it is consistent with this a priori know- 
ledge [see (7)]. But if only F has a delay, then a 
canonical factorization Tv~'(z), (~ is obtained 
from the NMSF l~'(z), ¢~ by choosing I7¢'(z)= 
W(z)L,  O. = I, where L is a lower triangular 
matrix with positive diagonal elements, uniquely 
defined by O. = L L  ~. In the sequel we shall 
denote canonical admissible spectral factors by 
{TTV(z), Q}. The identifiability of a closed-loop 
system can now be defined precisely as follows. 

Definition 3. Given the closed loop system (9) 
and (5), and the joint spectrum ~byu(z) generated 
by (y,u), let {IYe'(z),(~} be a canonical ad- 
missible spectral factor of #yu(z), and let ~" and 

be obtained from W by (10a). 
(a) We shall say that the forward path is 

identifiable if 

F =/~, G ffi GVI and V,(z)QH V~(z) = O.H 
(11) 

where 0t, is the (1, 1)-block of 0 and Vl(z) is a 
scaled paraunitary matrix. 

(b) In the case where it is known that L(z)'= 
0, we shall say that iF, G, H, K} are identifiable 
if (11) holds and if 

H = f~, K = I?,V,, V,(z)O~ V~(z)= 0,, ,  
(12) 

where /~ , /~ ,  ¢~2 and V~(z) are similarly defined. 
Definition 3 is a precise statement for the 

identifiability of a closed-loop system (the for- 
ward path, or the global model) using the joint 
input--output identification method 12. We have 
considered that the matrices G and /~ may 
differ from the true values by right multi- 
plication by a scaled paraunitary matrix. This 
ambiguity occurs even in the identification of 
open-loop systems (cf. the spectral factorization 
theorem) and does not influence t h e  input-out- 
put characteristics of the model. 

Comments 
(1) It might happen that the class of ad- 

missible spectral factors contains only one 
element, or that the pairs iF, G} obtained from 
all admissible spectral factors are all related by 
(11), in which case the system is obviously 
identifiable. 

(2) In Ng, Goodwin and Anderson (1977), 
where only the case L m 0 was considered, a 
closed-loop system was called identifiable if (11) 
and (12) hold with F, G,/-~,/~ obtained from the 
NMSF, rather than from an admissible canoni- 
cal factorization. This definition was unduly 
restrictive, since a system that has no delay in 
either F or H would never be identifiable under 
this definition; this follows from the following 
trivial result. 

Lemma 2.3. Consider the closed-loop system 
described by Fig. 3 and let W(z) be the cor- 
responding joint process transfer function 
model defined by (7) with L = 0. There is a 
delay in F and H if and only if W(oo) is block- 
diagonal. 

Proof: Follows immediately from (7) (with 
L = 0) and (10) evaluated at z = o~. 

Since the NMSF has ~ ' (~) - - I ,  it follows 
immediately that the corresponding 4-block real- 
ization F, G, H, K, which we shall call the 
normalized minimum-phase realization (NMR), 
has a delay in P and/~.  With our definition the 
NMSF is not an admissible factorization if 
either F or H had no delay. 

In Section 4 we shall present identifiability 
conditions for 4-block models {F, G,/-/, K} (for 
the case where L = 0), and in Section 5 for the 
forward path model {F, G} in the case where a 
one-sided correlation is allowed between the 
feedback noise nl and the generating noise of 
the forward path wl [i.e. L(z) ~ 0]. 

3. SOME FACTS ABOUT CLOSED-LOOP 
STOCHASTIC SYSTEMS 

In this section we summarize without proof a 
number of results about closed-loop stochastic 
systems described by (9) and their relation to 
the transfer function matrix W(z) of the joint 

W 

v 

Fig. 3. Specialized version of Fig. 2 arrangement; m and 
n are now independent. 
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(y, u) process. These results have all been 
established in Gevers and Anderson (1981) 
where the proofs can be found. 

We first introduce some notations and 
definitions. 

Definition 4. Let H(z) be a proper rational 
transfer function matrix. The unstable part of 
H(z), written H.(z), is the sum of those terms in 
a partial fraction expansion of H(z) that have 
poles in Izl > 1. The stable part of H(z) is then 
H_(z)A_ H(z) - H+(z). 

We denote by 8[H] the McMillan degree of 
H(z); see (McMillan, 1952; Kalman, 1965). 
Since H+ and H_ have no common poles it is 
clear that 8[/-/] = 8[//+] + (~[/-/_]. We shall also 
use the following definition. 

Definition 5. (Anderson and Gevers, 1981). 
Let F and H be two proper transfer function 
matrices. There is no unstable pole-zero cancel- 
lation in the product FH if 6[(FH)÷]= 
8{F.] + 8[n+]. 

We shall frequently make use of left or right 
polynomial matrix fraction descriptions of 
transfer function matrices (Rosenbrock, 1970; 
Wolovich, 1974; Kailath, 1980). If A- 'B  is a left 
coprime polynomial matrix fraction description 
of H (i.e. H = A-tB), we shall refer to it simply 
as a coprime MFD. We shall also consider that 
the transfer function matrices G, K and L in (9) 
may have been obtained by referring to the 
outputs of the plant and/or the regulator, re- 
spectively, noise sources that enter the plant 
and/or the regulator at some internal part. For 
example; the actual physical system may be as in 
Fig. 4; then in (9) F = F,. Ft, G = F2G1, H = H,.Ht, 
K = H 2 g t .  

After these preliminaries we now give alter- 
nate sets of necessary and sufficient conditions 
for stability of closed-loop systems. Theorem 
3.1 is a collection of results established in 
Gevers and Anderson (1981) (with very minor 
extension) and results in Anderson and Gevers 
(1981). 

Theorem 3.1. Consider the joint process 
(y, u) generated by the closed-loop system (9). 
Let A-t[B i C] be a coprime MFD of [F i G], 
and D - I [ M ~ N ~ R ]  be a coprime MFD of 
[11 ~ K ~ L]. Then the joint process (y, u) is sta- 
tionary if and only if either one of the following 
two conditions hold 

(i) d e t [ :  M D B ] ~ 0 f o r  ,zl---l. (13) 

(ii) 8[Fi G]+ = 8[/:+], 8[H i K ~ L]+ = 8[H÷] 
(14) 

?By [F  ~ G]+ we denote [F. ~ Od, and similarly for other 
matrices. 

and the closed loop is stable.t 
The closed loop is stable if and only if either 

(a) ( I -  FH) -I, (I - FH)-IF, (I - HF) ~ and 
(I - HF)-~H have all their poles in lzl < 1; 
or (15) 

(b) ( I - F H )  -~ has all its poles in Iz i< l  and 
there is no unstable pole-zero cancellation 
in FH. (16) 

Theorem 3.2. Consider the closed-loop sys- 
tem (9) with assumptions A.1 and A.2, and the 
corresponding W(z) defined by (7). Assume that 
W(z) is square and 

(i) 8[F~G]+ =a[G÷] and 8[H ~ K i L]+ 
= 8[Ki L]+ (17) 

(ii) G and K are minimum phase (18) 

Then W(z) is minimum phase. 

Proof: From the sufficiency part of the proof 
of Theorem 5 in Gevers and Anderson (1981) it 
follows that there exist proper transfer function 
matrices Fi, F2, Gt, Hi, H,, KI and LI such that 

F = F:F), O = F2G,, H = H2H,, 
K = H, KI, L = H2LI (19) 

8(Fd÷ = a [ O t ] .  = 8 [H i ]+  = 8 [ K d +  = a [ L , ] .  = 0 
(20) 

8[F~]+ = 8IF,] = 8[F~ G]÷, 8[H,]÷ = 8[H2] 
= 8[H~ K i L]. (21) 

with no unstable zero cancellations in the 
products appoaring in (19). Now from (7) it 
follows that W(z) can be written 

W(z) is stable by the stationarity of (y, u). 
Evidently W-l(z) exists precisely when G -I and 
K -~ exist. From (22) and (19) it follows that 

W - I ( z )  = 

G-l  
- K?t(LIG -I 

- G?IFI ] 
+ ttl) K?ILIG(tF1 + K-t]" 

(23) 

The result follows from (18) and (22). 
Corollary 3.1. Under assumptions A.1 and 

A.2, W(z) defined by (7) is minimum phase if F 
and H are stable and G and K are minimum 
phase. 

Proof: If F and 11 are stable, condition (17) 
is satisfied. 
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The 'stability' assumption (17) is crucial, since 
otherwise minimum phase G(z), K(z)  can yield 
nonminimum phase W(z).  Consider, for exam- 
ple, F = ( l l z - 2 ) ,  G = 1, H = -  1.5, K = I, L = 0 
which yields the nonminimum phase 

Notice that assumption (17), together with the 
closed-loop stability of the system, correspond.s 
to a physical closed-loop system that has the 
form of Fig. 4, in which all the instabilities of 
the forward path are in F: and all the unstable 
poles of the feedback path are in H:, with F~, 
GI,/-/1 and K1 all stable. 

We shall also need the following result (Gevers 
and Anderson, 1981). 

Theorem 3.3. Consider the closed-loop sys- 
tem of Fig. 3 [i.e. L = 0  in (9)]. Let [ F i  G] = 
A-~[B ~ C] and [H i K]= D-~[M i N], left 
coprime factorizations, and let r = highest 
power of z -~ in det CC* and s = highest power 
of z -j in det NN*.  Let W(z)  be the associated 
joint model and let ~by~(z)= W(z)QW*(z) .  
Assume that 

(i) W(z)  has minimal degree, i.e. 8[W(z)] = 
la[~b,,(z)] (24) 
(ii) z r det C(z)C*(z)  and z s det N ( z ) N * ( z )  

have no common zeros (25) 
(iii) F(oo)= H(oo)=0, G(oo) and K(~) have 

full rank (26) 
(iv) Q, defined in (5), is block-diagonal, i.e. 

wi±v~ for all i, j. (27) 
Then any other square minimal degree spec- 

tral factor {T/e'(z), 0}, with I~'(~) block diagonal 
and nonsingular, ~by,(z) has the following proper- 
ties: 

(a) 0 is block-diagonal; 
(b) the scaled paraunitary transformation 

V(z) = l~'-~(z) W(z)  is block diagonal; 
(c) the 4-block realization ~, t~, /~, /~ cor- 

responding to l~(z) via (10) is such that 
= F, ~ = A- ' t~, /~ = H, • = D-'?~ with 

z' det ~ det ~* and z s det/Q det ~ *  having 
no common zeros. 

In Gevers and Anderson (1981) we have 
shown that almost all feedback systems satisfy 
the conditions (24) and (25), which were there- 
fore called generic. We shall state this as a 
definition for further use. 

Definition 6. Consider the closed loop system 
of Fig. 3. Let A, B, C, D, M, N, r, s, W(z)  and 
~byu(z) be defined as in Theorem 3.3. The system 

w 

V 

Fig. 4. Possible arrangement of noise inputs in actual 
physical system. 

{F, G, H, K} is called generic if conditions (24) 
and (25) hold. 

In Gevers and Anderson (1981) the conditions 
(24) and (25) have also been expressed in terms 
of the poles and zeros of F, G, H, K. 

4. IDENTIFIABILITY OF 4-BLOCK CLOSED-LOOP 
SYSTEMS 

In this Section we restrict our attention to 
closed-loop systems in which the forward path 
noise mi and the feedback path noise ni are 
generated by two separate white noise sources 
that can have only instantaneous correlation, i.e. 
L(z)  = J ( z )=  0 in (4). Such a 4-block model is 
now represented by (Fig. 3) 

Yl = F(z)ui + G(z)wi (28a) 

ui = H(z)yi + K(z)vi (28b) 

E [ wTvT ]  = Qc~ij, Q = LQ21 Q~J > O. 

(28c) 

The corresponding joint process representation 
is 

[ (I  - FH)-1G (I - FH)- IFK]  
W(z)  = L ( l -  HF)-~HG ( I -  HF)-~K J" 

(29) 

We consider here that the model (28) ori- 
ginates from a physical feedback system. In 
Gevers and Anderson (1981) we have also 
shown that almost all full rank stationary joint 
processes with a rational spectrum ~b,,(z) can be 
represented by a closed-loop model (28), a 
sufficient condition being that ~by,(z) is positive 
definite (rather than just nonnegative definite) 
o n  [zl = 1. 
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We recall from Lemma 2.2 that the relation- 
ship between {F, G, H, K} and {W/i} is one-to- 
one and onto. In this section we shall derive a 
number of conditions for the identifiability of 
the quadruple {F, G, H, K}; recall Definition 3 in 
Section 2. 

Lemma 4.1. Consider the closed-loop system 
(28) with assumptions A.I and A.2, and W(z) 
defined by (29). Let 4~y,(z) be the joint spectrum 
and let {ff'(z), 0} be a canonical admissible 
spectral factor of ~by,(z). Then {F,G} is 
identifiable if and only if the scaled paraunitary 
transformation V(z) from W(z)  to ff'(z) is 
lower block-triangular, i.e. 

V,(z) 0 ]=  ff'(z) V(z). W(z) = ff'(z) V~(z) V2(z) 
(30) 

The quadruple {F, (7, H, K} is identifiable if and 
only if V(z) is block-diagonal, i.e. 

W(z)= W ( z ) [ V ~  z) V20(z)] (31) 

/,toot 
(1) SuBiciency: By (30) W,2 = ff',2V2, W== 

ff'22Vv Since ff'(z) is admissible and square, 
i f ' .  is nonsingular by Lemma 2.1. Since L = 0, 
W22 has full row rank and so V, also has a right 
inverse. Therefore by (30) 

G = W . -  W, zW~W2, 
= ( ¢ ¢ , , -  ¢¢,~¢¢i~¢¢,,)v,  = d v , .  

Also by (8) V, QnVT = (~l. Similarly, by (31), 
H =lfI, K = I~V2, VzQn V~ = Q2. 

(2) Necessity: Assume first that {F, G} are 
identifiable. By the spectral factorization 
theorem W ( z ) =  ff ' (z)V(z).  Suppose V~2(z) is 
not zero. Then 

L W2, W~2J 

[a,,,- rv,, v,, 1 
VnJ" tv:,  

Consider the ( I -  2)-block terms on each side, 
and use the fact that ff'1~ff'~= F, W1:= 
(I  - FH)- tFK,  W= -- (I  - HF)-IK,  and (~ ffi 
i f ' u -  if',2 ff'i~ if'21. This term yields 

(I  - FH)- '  F K  - F ( I  - HF)-I K ffi dV,2. 

Using ( I - F H ) - ~ F f F ( I - H F )  -~, this gives 
(~V,2 = 0. Now (~ is nonsingular because if' is 

nonsingular by assumption A.2. (See the proof 
of Lemma 2.1.) Therefore V~z(z)= 0. Suppose 
now that {F, G, H, K} are identifiable. Then (31) 
follows immediately from (1 I), (12) and (29). 

The first part of Lemma 4.1 is new; the last 
part is a slight generalization of a result of Ng, 
Goodwin and Anderson (1977) where ff'(z) was 
restricted to being the NMSF of d~y~(z) (cf. the 
discussion at the end of Section 2). The follow- 
ing theorems gives alternative sets of sufficient 
conditions for identifiability of {F, G, H, K} un- 
der two different sets of assumptions on the 
structure of the closed loop system. 

Theorem 4.1. Consider the closed-loop sys- 
tem (28) with assumptions A.1 and A.2. Then 
{F, G, H, K} is identifiable if it is known a priori 
that either one of the following conditions hold: 

(i) w and v are uncorrelated i.e. Q is block- 
diagonal. (32) 

(ii) a[F i G]+ = 6[G+], 8[H ~ K]+ = 6[K+]; 
there is a delay in both F and H, G and K are 
minimum phase while G(=) and K(=) are non- 
singular. 

Proof: (i) By A.1 there is a delay in either F 
or H. We consider the case F ( ~ ) =  0 [The case 
H ( ~ ) = 0  proceeds similarly.] The proof pro- 
ceeds in three steps. First we construct a lower 
triangular canonical admissible spectral factor 
l$'(z). Then, with the true W(z), obtained from 
the physical {F, (5, H, K} by (29), we associate a 
minimum phase Ik'(z) such that the transfor- 
mation from W(z) to ff'(z) is block-diagonal. 
Then we show that ff ' (z)= ff'(z). The result 
will then follow from Lemma 4.1. 

(a) Construction of  a canonical admissible 
qg(z). Since F ( ~ ) = 0 ,  any admissible ff'(z) 
must be lower block-triangular at z = ~. We 
construct W(z) to be stable minimum phase 
with lower triangular ff'(m). Let {ff'(z), (~} be 
the NMSF of ~y,(Z), and let Q =  L L  r with L 
lower triangular with positive diagonal elements. 
This defines L uniquely. Define 

W(z) = lgZ(z)L, 0 = L (34) 

Then ff'(z) is stable, minimum phase and 
I,~'(o0)= L, nonsingular, (~ is diagonal, and 
cby,(z)= ff'(z)ff'*(z). Therefore {if', (~} is an 
admissible factorization, and since it is uniquely 
defined it is canonical. Notice that the NMSF is 
in general not admissible, because of the failure 
of (~ to be block-diagonal. 

(b)Construction of  Vq(z). We follow a con- 
struction similar to that used in Ng, Goodwin 
and Anderson (1977). Let [F ~ G] = A-J[B ~ C], 
a left coprime MFD, and similarly [ H ~ K ]  = 
D-t[M ~ N]. Then there exist square polynomial 
matrices V4 and VD such that det VA and det Vo 
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have all zeros at the origin, and that VAA and 
Vat) are polynomial matrices of the form z"AI + 
lower order terms and z~°l + lower order terms, 
respectively (Ng, Goodwin and Anderson, 
1977). Then 

Hence #(=)  is finite and lower triangular with 
positive diagonal elements. 

(4) With V~(z) = C-J VAC, V2(z) = 1Q -~ VaN, 
one has V~(z), V2(z) proper with 
Vl(z)Q, VT(z) = L V2(z)Q~: V~(z) = L and 

.(z,=[_a O"]' [0 
[ VAA - V A B ~ '  [V~C :aN]. 

= L -  VoM VoD (35) 

By Theorem 3.1 the denominator matrix in (35) 
has all zeros in Izl < 1, because 

[ VAA - v,B] 
detL_VDM VDD J 

= det VA det Vo det [_~d -DB]. 

Also lim( VAA)-I(VAC) = G(=) = lim z -'A VAC. 
Z - ~  ir-eao 

Hence Iim z-'AVAC is finite, and similarly 

lim z-'°VDN = K(oo) is finite. Furthermore V,~C 

and VaN have full row rank by Assumption 
A.2. Therefore [see Lemma 2 of Appendix in Ng, 
Goodwin and Anderson (1977)] there exist 
square matrix polynomials C and /V such that 

o o  

( V,C)Q.( VAC)* = CC*, ( Vdq)O=( VoN)* 
= N N *  (36) 

with det C det /~# 0 in Izl > 1, and lim Z-'AC and 
2 ~  

lira F'°/V lower triangular with positive diagonal 
2 . - ~ e  

elements. Now define 

ff'(z)~[L_voMVAA - v ~ B ] - '  [0 ~ O]  (37) 

ff'(z) has the following properties. 
(1) ff'(z) is square, stable, and is minimum 

phase by construction. 

(2) lY/(z)ff'*(z) = W(z)[Q0" 0022] W*(z) 

= ~ , , ( z ) .  

Recall that Q is block-diagonal by assumption. 

(3)  I~¢'(®) = lim 

D-1M ( VaD)-t/V] 

_[, 0 ]  
- H(~) 0 lira z-"D/Q " 

Vj(z) 0 ] 
W(z) = g,'(z) 0 V~(z) " (38) 

(c) fV(z) = lYe(z). By the spectral factorization 
theorem, since gZ(z) is square, stable, minimum 
phase, K'(=) is finite and nonsingular and 0 = I, 
there exists a constant nonsingular T such that 

V¢(z) = rff(z)T, TTr = 0. (39) 

Now since gt(=)= L T = W(oo) and hence T is 
lower triangular with positive diagonal ele- 
ments; since TT r =  (~, therefore T=  L [see 
part (b) above], because this factorization is 
unique. Hence li/(z)= l~(z) by (34) and (39). 
The result then follows by (38) and Lemma 4.1. 

(ii) By Theorem 3.2, W(z) is minimum phase. 
By (29) and the assumptions, W(oo) is finite and 
nonsingular 

(40) 

Therefore, by the spectral factorization 
theorem, there exists a constant nonsingular T 
such that W(z)= lg'(z)T. By (40) T is block- 
diagonal. Hence by Lemma 4.1 {F, G, H, K} are 
identifiable. 

Comment: For the construction of W(z) it is 
clear that one must know whether the delay is in 
F or in H (cf. Assumption A.1). 

Corollary 4.1. Consider the closed-loop sys- 
tem (28) with assumption A.2. Then {F, G} is 
identifiable if it is known a priori that 
8[F i G]. = 8[G.], 8[H ~ K]+ = 8[H+], G and K 
are minimum phase with G(=) and K(=) non- 
singular and there is a delay in F. 

Proof: Same proof as part (ii) of Theorem 
3.2, save that 

[ G(=) 0 1 
W(=) = LH(®)G(=) r.~jj"'='/" 

Therefore T is lower block-triangular, and the 
result follows from (30) in Lemma 4.1. 

Comment: Part (i) of Theorem 4.1 represents 
a strict improvement over the results of Ng, 
Goodwin and Anderson (1977) where a delay 
was required in both F and H, rather than in 
one of both. Part (ii) and Corollary 4.1 are new 
results. It could be argued that the absence of 
correlation between the process noise and the 
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regulator noise [i.e. condition (32)] is difficult to 
check a priori. The following theorem shows 
that, under certain conditions, the absence of 
correlation can be checked from the spectral 
density itself. 

Theorem 4.1. Consider the closed-loop sys- 
tem (28) with assumption A.2. Assume also that 
F(~) = H ( ~ ) =  0, G(0o) and K(~) are nonsin- 
gular, and that the associated W ( z )  has minimal 
degree, i.e. 8[ W] = ~8[~by,], a generic situation. 
Let IL~'(z), () be the NMSF of Sy,(z), and_ F,_ G, 
/4, K the corresponding NMR. Let [ F I G ]  = 
*-~[B ! C] and [/~ i/~] = L3-1[A4 ~ N], coprime 
factorizations, and let r=degJC(z) l  and s = 
deg IIQ(z)[. If 

(i) (~ is block-diagonal (41) 
(ii) zrIC(z)C*(z)l and z'12q(z)/V*(z)[ have no 

common zeros. (42) 

then Q is block-diagonal, { F , G , H , K }  is 
identifiable and is generic. (See Definition 6.) 

Proof: The NMSF has W(~)= I. Therefore 
by Lemma 2.2 p(oo)= ~(~)= 0, and ¢~(oo)= 
/~(oo)= 1. By the assumptions W(~) is block 
diagonal and nonsingular. Since W is also of 
minimal degree, the result follows from 
Theorem 3.3 and Lemma 4.1. 

C o m m e n t s  
(1) A result similar t.o Theorem 4.2 was first 

obtained by Sin and Goodwin (1980). However, 
they implicitly assume that W ( z )  has minimal 
degree, and the genericity condition (42) (see 
also the comment at the end of Section 3) is not 
explicitly stated. Instead it is assumed that a 
state-variable representation, obtained by com- 
bining a minimal state-variable model of the 
forward path and a minimal state-variable model 
of the feedback path, is itself minimal. Con- 
dition (42) is the required condition that will 
guarantee this. 

(2) An important consequence of Theorem 
4.2 is that the absence of correlation between 
the process noise mr and the regulator noise n~ 
(or equivalently the block-diagonality of Q) can 
be checked a posteriori  from the computed fac- 
torization { lff(z), Q} of Sy,(z) provided G and K 
are square, hence the term "checkable con- 
dition" used by Sin and Goodwin (1980). 
However, one should bear in mind that the 
theorem imposes other conditions which are not 
checkable from the data, most importantly the 
presence of a delay in F and H. 

(3) In any real-life identification context, 
where Sy.(z) is not known but estimated from 
the (y, u) data, the question arises as to whether 
the NMSF { W ( z ) , Q } ,  computed from the 
estimated Sy,(z), will have the desired property 

that t~ is almost block-diagonal when n; and m~ 
are uncorrelated. We shall show in Section 4 
that this is in fact so, because W, Q are con- 
tinuous functions of &,,(z); hence if ~ , (z )  is 
close to the true #y~z),  then {W, Q} will be 
close to the true { W, Q}. 

5. IDENTIFIABILITY OF CLOSED-LOOP SYSTEMS 
WITH ONE-SIDED NOISE CORRELATION 

We now examine closed-loop systems with a 
one-sided correlation between the regulator 
noise n and the process driving noise w. i.e. 

ni = L(z)w¿ + K( z ) v i  (43) 

where L and K are causal, and wi and v~ are 
uncorrelated, except possibly for i = j. 

The closed-loop system is then given by (9). 
To every such 5-block model there corresponds 
a unique W ( z )  through (7), and therefore a 
unique 4},.(z) by (8). By Lemma 2.2, to a given 
W ( z )  there corresponds a unique pair {F, G}. 
The question we examine in this section is what 
a priori  knowledge on the structure of the sys- 
tem is required to guarantee that l~:(z), t) will 
be such that F, G and QI~ can be identified [cf. 
(11)]. 

One might think that the easy way of solving 
this problem is to transform the 5-block model 
of Fig. 2 into an equivalent 4-block model like 
Fig. 3 and to apply the results of Section 4 to 
this ,l-block model. By applying (10) to the 
expression (7) of W ( z )  we obtain the following 
equivalent 4-block model 

,g" = F, G = G (44a) 

121 = ( I  + L G - I F ) - I ( H  + LG-I ) ,  Ill 

= ( I  + L G - I F ) - I K .  (44b) 

However, the 4-block model {F, t~, H,/~} may 
not be stable even though the corresponding 
5-block model {F, G, H, K, L} is stable. 

E x a m p l e  5.1 

0.9 - 2 
F= H = ~  G = ~  

z - 2 '  z+0.5 '  
K =  z L =  1 

z +0.5' z+0.5" 

z -0.5' 

The 5-block model is stable because G, K, L, 
( I  - F H )  -I, ( I  - FH)-Z F and ( I  - HF)-m H are all 
stable (see Theorem 3.1). 

The equivalent 4-block models has F = F, 
tS=G 

/~ = (z - 2)(z + 0.5) t (  = z"(z - 2) 
d(z )  ' d (z )  
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with d(z) = z 3 -  1 .5z : -0 .1z -0 .45 .  Now 

(I - f 'H)- ' /~ = 0.9d(z) 
z(z  - 2)(z ~ - 1.5z + 0.8)" 

It has an unstable pole at z = 2. Therefore the 
closed-loop system is unstable by Theorem 3.1. 

Example 5.1 shows that 5-block closed-loop 
systems require a separate treatment. For such 
systems, S6derstr6m, Ljung and Gustavsson 
(1976) have obtained the following identifiability 
conditions using I,. 

Theorem 5.1. Consider the closed-loop sys- 
tem (9) with the assumptions A.1 to A.3. The 
forward path {F, G} is identifiable using a pre- 
diction error method (11) if 

(1) L is stable. (45a) 
(2) Q is block-diagonal, i.e. wi 2. vi. (45b) 
(3) G(z) is square, strictly minimum phase 

and G(oo) is nonsingular. (45c) 
(4) There is a delay either in F or in H and 

L. (450) 
(5) G-~F is stable. (45e) 
(6) The parameterized model Fe(z), Ge(z) used 

in the prediction error method contains the true 
F(z),  G(z) for at least one value of the parameter 
vector 0. (45f) 

Comments 
(I) Theorem 5.1 is a special case of the result 

proved in S6derstr6m, Ljung and Gustavsson 
(1976) which applies also to the case of time- 
varying regulators. 

(2) Assumption (6) applies also to all the 
results obtained for method /2 insofar as a 
parametric .method is used. It has not been 
explicitly stated because I: can also be used 
with correlation methods which do not require 
an a priori parameterization. 

(3) Assumption (5) was not explicitly stated 
in S6derstr6m, Ljung and Gustavsson (1976), 
but as confirmed in an exchange of letters with 
S6derstr6m (personal communication) the con- 
dition is actually used in the proof of the 
theorem. This assumption is necessary for the 
stability of the predictor: ~ =  G-~y~ - G-~Fu~. 
The important point is that the product G-~F is 
stable, but unstable pole-zero cancellations in 
G-]F are acceptable. This allows for situations 
as in Fig. 4 where F~ and G~ are stable, and all 
instabilities are in F:: see the comment  after 
Corollary 3.1. Consider, for example the model 
A ( z ) y i  = B ( z ) u i +  wi, in which A(z),  B(z)  are 

polynomials and where IA(z)l has an unstable 
zero (S6derstr6m, personal communication). 

(4) The assumption that G(z) is minimum 
phase is a restrictive one in the case where 
L(z)  ~ O. It might be argued that if the physical 

G(z) is nonminimum phase, one can replace it 
by the equivalent minimum phase G(z) produc- 
ing the same spectrum. However consider that 
the physical noises mj, n~ have the following 
structure with stable G, L, K and nonminimum 
phase G 

n~ LL(z) K(z)  vi ' 

Let <b,,,(z) be the spectrum of the joint process 
(m, n). We show that, in general, one cannot 
find a stable triple {G, L, K} producing the same 
¢m,(z) with t~ minimum phase 

[ GG* GL* 1 
4~,,,, = LLG* LL* + KK*J 

- _I 
[LG* LL* + KKJ" 

(47) 

By (47) GG* = t~{7*. Hence O = GV for some 
paraunitary V(z). Since G and G are stable, and 

is minimum phase, V has all its poles in 
Izl-<l. Again by (47) GE,* = GL*= GVL*. 
Therefore L =  LV*.  Since V has all its poles in 
]zl-< 1, V* has all its poles in Iz l -  1, and hence 
L is unstable if L is arbitrary. 

This shows that, when L ¢ 0  but otherwise 
arbitrary, a nonminimum phase G(z) in the phy- 
sical plant noise cannot be replaced by its 
minimum phase counterpart. Such a physical 
nonminimum phase G(z) could arise, for 
example, if the process noise enters the plant in 
front of some nonminimum phase part. Con- 
sider Fig. 4 when F: is nonminimum phase. 

Lemma 5.1. Consider the closed-loop system 
(9) with the assumptions A.1-A.3, and W(z) 
defined by (7). Let ¢~,(z) be the joint spectrum 
and let {iP(z), 0} be a canonical admissible 
spectral factor of ~by,(z). Then {F,G} is 
identifiable if and only if the scaled paraunitary 
transformation V(z) from W(z)  to g'(z) is 
lower-triangular, i.e. 

. r  V~(z) 0 
W(z) = W(z~[ V~(z) V2(z)]" (48) 

Proof: By assumption A.3 W:2 has a right 
inverse, and therefore V,,(z) has a right inverse. 
The remainder of the proof is identical to that of 
Lemma 4.1, this proof being unaffected by the 
presence of L(z). 

The next Theorem gives a first set of 
sufficient conditions for identifiability of {F, G}. 

Theorem 5.2. Consider the closed-loop sys- 
tem (9) with assumptions A.1 and A.2. The 
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forward path {F, G} is identifiable using/2 if 

(1) L(z) = Lo(z)G(z), i.e. n~ = Lo(z)mi + 
K(z)v, with L0 causal. (49a) 

(2) Q is block-diagonal, i.e. wi ± v i for all i, ]. 
(49b) 

(3) 8[H~ K ~  Lo]. = 811-1+]. (49c) 
(4) There is a delay either in F or in H and 

L0. (49d) 
(5) F is stable. 
Note: Equation (49(:) is implied by assump- 

tion A.2; it has been included here only for 
comparison purposes [el. (45a) in Theorem 5.1]. 

Proo[: First notice that by Theorem 3.1,  
stability of F implies that of G. The proof 
follows a line similar to that of Theorem 4. I. 

Let A-t[BiC] and D-~[M~N!R] be left 
coprime MFDs of [ F ~ G ]  and [ H ! K ! L 0 ] ,  
respectively. Let VA(z) and Vo(z) be square 
polynomial matrices with all determinantal 
zeros at the origin, and such that VAA= 
z'AI + lower order terms, and VoD = 
Z ' ° I+ lower  order terms. Let W(z) be asso- 
ciated with F, G, H, K, L through (7). Then 

f VAA vAc o 
W(z) = l -  VoM [ VoRG VDN]" 

(50) 

( a ) Construction of a minimum phase 
V¢(z). By the same argument as in the proof of 
Theorem 4.1 there exist square polynomial 

matrices t~ and /q with lira z-'AC and lira z-"OlV 

finite and nonsingular, with det C det N #  0 in 
[z[ > 1, and such that 

v~co, , (  v~c)*  = c c * ,  VoN~2( V~_ )* 
= N N * .  (51) 

Now define 

I'~'(z) = I.- VoAt VoR(VaA)-'C O] 
(52) 

ff'(z) has the following properties, as arguments 
similar to those used in earlier theorems show. 

(i) f t (z)  is square, stable and minimum 
phase 

(ii) f t (z ) f t* (z )  = W(z)[Q0 ~' ~22] W*(z) 

= ,/,,.(z). (53) 

did If F (=)=  H ( ~ ) =  Lo(oo)=0, ft(o~) is 
block-diagonal. It is lower block-triangular if 
F(oo) = 0, and upper block-triangular if H ( ~ ) =  
Lo(oe) = 0. In all cases it is finite and nonsingular. 

(iv) With V,(z) = C-' VAC, V (z) = N - I  VDN. 
one has V,(z), V_,(z) proper with 
Vl(z)QIl V?(z) = L V2(z)Q2,, V~.(z) = L and 

W(z)= ¢¢'(z)[V~ z) VE0(z)]. (54) 

(b) Construction of a canonical admissible 
"d/(z). Let ft(z),  O be the NMSF of ~(z_). If 
F(=) = H(=) = LR=) = 0, take f t(z)  = W(z), 
0 = Q. If F(w) = 0, take f t(z)  = ft(z)L, O = I, 
where LL r= O. and L is the unique lower tri- 
angular factor of Q with positive diagonal ele- 
ments. If H(=) = Lo(=) = 0, take f t (z)  = lgZ(z)U, 
0 = L where UU r= Q, U being upper trian- 
gular with positive diagonal elements. In all 
three cases if'(=) is finite and nonsingular. 
{ ft(z),  t)} are clearly admissible in the second 
and third case, since f t (~)  is consistent with the 
delay structure and t) = L As for the first case, 
by the spectral factorization theorem, f t ( z ) =  
W(z)T, for some constant T for which T T r =  
Q. Letting z ~ =, it follows that T, and hence t~, 
is block-diagonal. This establishes admissibility. 

(c) Relation between '¢¢(z) and VC(z). By 
arguments like those in the proof of Theorem 
4.1, W(z) is related to a canonical admissible 
spectral f t(z)  by a block-diagonal transfor- 
mation; hence {F, G} is identifiable by Lemma 
5.1. 

Comparison between Theorem 5.1 (method I0 
and Theorem 5.2 (method I2). The relation (49a) 
is a special case of the model (43). It establishes 
a relation directly between the physical noises ni 
and m~ With /'1 the more general model (43) is 
allowed, but G(z) is assumed minimum phase 
and L(z) stable; this is a more restrictive 
assumption, because then one can always define 
Lo(z) = L(z)G-~(z), with L0(z) causal and stable; 
hence (49a) and (49c) are always satisfied under 
assumptions of Theorem 5.1. The structural 
assumptions (delays and block-diagonal Q) are 
identical for both methods. The major 
difference therefore is that Theorem 5.2 requires 
a stable F, while Theorem 5.1 requires G mini- 
mum phase and G-tF stable. We shall show in 
Theorem 5.3 that, if G is minimum phase, {F, G} 
is identifiable with /2 under the same assump- 
tions as those required for L in Theorem 5.1. 

We show now by a counterexample that if G 
is nonminimum phase, {F, G} is not identifiable 
with/2 if the conditions (49a, c) are violated. 

Example 5.2 
F= z -~, G=(1--2Z-I/I--O.5z-I), H=O.5z -I, 

K = 1, L = z -~, Q = L Notice that F is stable, G 
is nonminimum phase, L0 = LG -~ is unstable 
and does not obey condition (49c). The closed- 
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loop is stable minimum phase 

W(z) =I 
1 - 2z -~ + z -2 - 0.5z -3 z -1 

1 - 0.5z -I - 0.5z-" + 0.25z -3 1 - 0.5z -2 
1.5z - ~ -  1.5z -2 1 

l - 0 . 5 z  - l - 0 . 5 z - 2 + 0 . 2 5 z  -3 1 - 0 . 5 z - :  

The N M S F  of d~y,(z)= W(z)W*(z) should be 
admissible because there is a delay in F, H and 
L 

W(z)= L-VoM VoR(VAC)-IC O] 
(57) 

K'(z) is square. By the stationarity of the joint 
process the inverted matrix in (57) has all deter- 
minantal zeros in Izl < 1, while det (VAC) has all 
its zeros in Izl < 1. Hence  ff'(z) is stable; it is 

• (z) = I 
1 - 0 . 8 z  -~ + 0 . 4 z - :  - 0 . 2 z  -~ 

1 - 0.5z -~ - 0.5z-: + 0.25z -3 
0.9z -~ - 0.6z-: 

1 - 0.5z -~ - 0.5z -2 + 0.25z -3 

and 

We notice that Q is not block diagonal and 
w,: Wi~ ~, F. 

In the next theorem we drop the constraint 
that F is stable, but introduce a minimum phase 
constraint on G. 

Theorem 5.3. Consider the closed-loop sys- 
tem (9) with assumptions A.1-A.3. The forward 
path {F, G} is identifiable using/2 if 

(1) 8[/-/ i  K ! L]+ = 8[/-/+]. (55a) 
(2) Q is block-diagonal. 
(3) G(z) is square, strictly minimum phase 

and G(~) is nonsingular. (55c) 
(4) There is a delay either in F or in H and L. 

(55d) 
(5) 8[F ~ G]. = 8[G+]. (55e) 

Note: Again condition (55e) is implied by 
A.2 and is included only for comparison pur- 
poses.  

Proof: Let A-~[B ~ C] and D-~[M ~ N ~ R] be 
left coprime factorizations of [F~ G] and 
[ H  ~ K ~ L], respectively.  From (55c, e) it fol- 
lows that ICI has all its zeros in Izl < 1. 

The remainder of the proof  follows a line 
completely parallel to the proof  of Theorem 5.2. 
Therefore we only sketch it and stress the 
differences. With VA and Vo as before  we have 

[ VAA -v~DB] -, [VAC ~ ] .  W(z) = L- VoM VDR 
(56) 

With C and /Q as in Theorem 5.2 we define a 

0"4z-1-O'2z-2-O'15z-3 1 
1 - 0.5z -1 - 0.5z -2 + 0.25Z -3 

1 - 0.2z -~ - 0.45z-: 
1 - 0.5z -~ - 0.5z -2 + 0.25z -3 

minimum phase because det C d e t / Q ~  0 in [zl > 1 

ff,(oo) = [H(loo ) - F(oo)]-' 

lim z-'AC 

x [L(~)~_l~'~oo)lim z-n 'C lim :-n~/Q] (58) 

with G(oo) finite and nonsingular by assumption. 
The remainder of the proof  is identical to that of 
Theorem 5.2. 

Comment: The assumptions of Theorem 5.3 
are identical to those of Theorem 5.1 established 
for method Ii, except  that a certain type of 
instability is allowed for L(z) in Theorem 5.3: 
compare (45a) and (55a). Assumption (55c) and 
(55e) ensure that G-IF is stable (see the proof  
of Theorem 3.2). 

We show now by a counterexample that, even 
with a minimum phase G(z), the 'stability' con- 
dition (55e) on F(z) is required to guarantee 
identifiability with /2. We recall our comment  
made above that this condition is also necessary 
for Ii. 

Example 5.3 
Same F, G, H, K, L as in Example 5.1, and 

Q = I. Notice that F is unstable, while G is 
stable, so (55e) is violated 

( I -  HF) -1 (z + 0 . 5 ) ( z  - 2 )  
= z 2--- 1.5z +0.8" 

This is stable, and since there is no unstable 
pole-zero cancellation in HF, the closed-loop is 
stable. The corresponding W(z) is 

I 
z - 1 . 5 z : - 0 . 1 z - 0 . 4 5  1 

1 - - - - ~ - ~  0.9z 
W ( z )  = ~ - ( z  - 2)(z + 0.5) z(z - 2) l 

z - 0 . 5  
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where d( z )  = z 2 - 1.5z + 0.8. Notice that W ( z )  is 
stable but not minimum phase. Also W(~)= L 
The corresponding NMSF should be admissible 
because F(~) = H(~o) = L(~) = 0. Now 

We then restrict attention to those spectra ~b(to) 
for which 

0 < c ) I  <- qb(o~) < c,.I < ~ (61) 

1 • (z) = X a~z~ I 
z 3 - 0.3Z 2 - O.04Z - O. 18 

- - - - 7 - - - 6 3 " -  

- 1.6z 2 + 0.6z + 0.4 
z - 0 .5  

0"3 z2 - O'48z - - 0.5 l 

z 3 - 2.2z" + 1.45z + 0.3 
z -0 .5  

and 

Again we remark that 0 is not diagonal and 
wn # 

We now give a last set of  suff icient condi t ions 
in which we impose further constraints on F, G, 
H and K than earlier, but drop the requirement 
that {wi} and {vi} be uncorrelated. 

Theorem 5.4. Consider the closed-loop sys- 
tem (9) obeying assumptions A.I and A.2. Then 
{F, G} is identifiable using I~ if it is known a 
prior i  that 

(1) 8 [ F i  G]+ = 8[G+], 8[H ~ K ~ L]+ = 8[H+]. 
(59a) 

(2) G and K are minimum phase, while G@o) 
and K(oo) are nonsingular. (59b) 

(3) F(oo) = O. (59c) 
Proof: By Theorem 3.2 W(z) is minimum 

phase. By (7) and the assumptions, W(z) is 
finite and nonsingular 

f a(=) o ] 
W(=)  = [.H(®)G(oo) + L(oo) K ( = )  " (60) 

Therefore, W ( z ) =  f f ' ( z ) T  for some constant T. 
Letting z-oo~ shows that T = W(~). The result 
then follows by Lemma 5.1. 

6. CONTINUITY OF SPECTRAL FACTORS 
In this section we first show that the NMSF 
{ ~/(z), Q} is a continuous function of the joint 
spectrum ~by.(z), so that consistent estimates of 
~y.(z) will yield consistent estimates of ff'(z) 
and (~. The continuity result will be established 
in the more general context of not necessarily 
rational, complex spectral density matrices. The 
real rational spectrum is a special case. 

As a notational convenience, let us define ~o 
such that exp (ko) = z, so that if Izl = l, o~ is real. 

*For a complex matrix A, we understand IIAtt= 
* 1/2 [Am.x(A A)]  . F o r  a h e r m i t i a n  A, [[A[[ = Am=~(A). 

for some positive constants cl, cz and ~o~ 
[-~-, ~-]. We shall describe the spectral fac- 
torization result achievable for such spectra, 
based on the treatment in Rozanov (1967). Then 
we shall state and prove an intuitively reason- 
able continuity result. 

Step  1: normal i za t ion  o f  4)((o). Consider the 
spectrum d(to) = (2/c~ + c94~(~) and set q = 
( c 2 -  c~/c2 + cO. We shall solve the spectral fac- 
torization problem for d; rather than $, noting 
that $(~)  = I + M(~o), where* 

l[Mta))l[- q < 1 'Ca) ~ [ - ~-, 7r] (62) 

Step  2: definit ion o f  certain opera-  
tors. Consider the space z L,×n of n x n matrix 
functions ~(~o), to ~ [ - ~-, tr], with 

f" -i-I [[(1)((o)ll = da~ < ~. (63) 
217" 

With norm II~(')l[~ given by the integral on the 
left side of (6.3) and with 

(¢, ~> = ~ I)¢(a))¢*(~o)II d~o (64) 

L~×n becomes a Hilbert space. Every ~ ( . ) ~  
z L,×~ can be written as 

+ : e  

a n)e - j "  

where 

and 

a(n) = ~ e ÷~" ~(to) die (65) 
¢r 

÷¢c 

Ila(n)tl z = I14)II~. (66) 
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Let us define projections P_, P÷ by 

p_c~(~o) = ~ a(n) e -'~", 
I 

- I  

= ~, a(n) e - ~ .  (67) 

Finally, define operators B_ M, B+ M on L ~ .  by 

B_U(~)= P_[~(to)M(to)], B~(~) 
= P+[M(to)(1)(to)]. (68) 

Step 3: properties of B_ u, B+ u. The spectral 
factorization formula depends on the following 
crucial properties of B~. We use a subscript 
to distinguish operator norms 

IIB II,-< q (69) 

from which it readily follows that (I + B_~) -j and 
( I+B~)  -I exist as operators on L~×,: ( I +  
B~) -~ = I -  B~ +(B~)  2 . . . .  

Step 4: construction of quantities appearing 
in spectral factorization. Make the following 
definitions 

~t'_o(~O) = (I + BY)-IL ~o.(~o) = (I + BM+ )-II 
(70) 

Q = *-0(I  + M)*0+. (71) 

These definitions can be shown to ensure that 

*-o(tO) = n~=o= c(n) e -~". 
0 

~( ta)  = ~, d(n) e -~" 
o¢ 

(72) 

for certain L: summable series c(n), d(n). 
Step 5: the spectral factorization theorem. 

q'-o(z) = .[~ c(n)z-" is analytic, (a )  together 

with its inverse, outside and on the unit circle; 
0 

(b) ~/o÷(Z)= Y~ d(n)z-" is analytic, together 

with its inverse, inside and on the unit circle; 
(c) Q is positive definite and constant; 
(d) I + M(to) = *~(t~)Qq'~(to);  (73) 
(e )  = - (7,*) 
(f) ~'-0(z)l~., = I = c(0). (75) 

Evidently, W ( z ) ~ = ~ ( z )  is the normalized 
minimum phase spectral factor, and Q is the 
covariation of the innovations. For the original 
spectrum 6, ~=~(z) is still the NMSF, while the 
innovations covariance is 

- -  C 1 +  C2 (~ - ~ Q .  (76) 

The calculations in the above procedure 
depend continuously on the given spectrum. 
The main result is as follows: 

Theorem 6.1. Suppose there is given a her- 
mitian n × n d~(¢o), oJ E [ -  ~r, ~'] satisfying (61) 
with d ' ( -  ~r) = 4'(~'), and define a norm for such 
matrix functions by 

(77) 

Then the quantities ~:~(z) for Iz[---1 and 0 
defined by the above procedure depend con- 
tinuously on d~. The theorem is proved in Ap- 
pendix B. 

The next result states that the canonical ad- 
missible spectral factor { ~V(z), 0} depends also 
continuously on 6(to). 

Corollary 6.1. Consider a closed-loop system 
of the form of Figs. 2 or 3, obeying assumptions 
A.1 and A.2. Let ey,(z) be the joint spectrum, 
and let { $~'(z), Q} be a corresponding canonical 
admissible spectral faetorization of &y~(z), con- 
sistent with the structural assumptions con- 
sidered in Sections 4 and 5. Then {l~'(z), 0} 
depend continuously on ¢y~(z) in Iz[ > 1. 

Proof: From the construction of ~¢¢'(z), 0 in 
Sections 4 and 5 it follows that these quantities 
depend continuously on I~(z), Q, the NMSF. The 
result follows from Theorem 6.1. 

We show now that, when the identifiability 
conditions of Section 4 are satisfied, F, G, H, K 
can be approximately identified if an ap- 
proximation d~y,(z) to the true spectrum ~,~(z) is 
available. A similar result holds for F, G if the 
identifiability conditions of Section 5 are 
satisfied. Note that (~ and /~ are the minimum 
phase equivalents of the physical G and K. 

Theorem 6.2. Consider a closed-loop system 
with assumptions A. 1, A.2 and A.3. Suppose ~y,(z) 
is an approximation to the joint spectrum d,,~(z), 
and let P, G, /4, /~ be derived by (10) from the 
canonical admissible spectral factor W(z) of 
4~y,(z). If the closed-loop system has the form 
(28) and if any set of structural conditions of 
Theorem 4.1 is satisfied, {P,/t} approximate 
{F, H}, while {G,/(} approximate the minimum 
phase equivalents G, /~ of G, K, the ap- 
proximations being at all z in [z[ > 1 away from 
poles of !~[~ and I7¢'~ I. If the closed-loop sys- 
tem has the form (9) and if the structural con- 
ditions of Theorem 5.2 or 5.3 are satisfied, then 
P approximates F, while t~ approximates t7 in 
Izl > 1. 

Proof: Let !~' be the canonical admissible 
spectral factor of ~by~(z), consistent with the 
structural knowledge about the system under 
consideration. Then, under the conditions of 
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Theorem 4.1, F, G, H, /~ are identifiable from 
ff'(z) by the following formulas 

F = ¢¢,: W;1, 
(78a) 

H = if'2, lit'i,', 
(78b) 

Similarly, under the conditions of Theorem 5.2 
or 5.3, F, q are identifiable via (78a). By Corol- 
lary 6.1 W approximates if' in Izl> 1; and 
hence we conclude from (78) that, away from 
poles of W~ or ff'il ~ in [zl-> 1, #, G , / t , / ~  will 
approximate F, (~, H, K if the conditions of 
Theorem 4.1 are satisfied (and F', G will ap- 
proximate F, (~ if the conditions of Theorems 
5.2 or 5.3 are satisfied). 

Following Theorem 4.2, it was argued that the 
orthogonality of the plant noise and the regula- 
tor in a generic system could be derived from 
the joint spectrum. We now examine what can 
be said when only an approximation 0y, of the 
joint spectrum i$ a]~ailable. We shall show that 
if the NMSF { W, Q} obtained [rom ogr, has an 
approximately block-diagonal Q, then the phy- 
sical Q is approximately block-diagonal. We 
shall prove our main result with the help of a 
series of lemmas. 

Lemma 6.1: Consider the closed-loop system 
(28) with assumptions A.I and A.2, and the 
corresponding W(z). Let 4~(z)= W(z)QW*(z). 
Assume that there exists a block-diagonal 
matrix D such that D:g Q<-(I + a)D, for some 
a > 0. Define O~(z) -- WDW*. Let { l~(z), Q} be 
the NMSF of O(z), and { ff'Az),/5} the NMSF 
of r~d(Z). Then a s 0  implies 

IIWd-wllx 0 and [1(2 - /~1--} 0. (79) 

Proof: By the assumptions, ~d < 0 ----- 
(1 + a)~bd. The result then follows from Theorem 
6.1. 

Corollary 6.2. Consider the closed-loop sys- 
tem (28) with assumption A.2 and the following 
additional assumptions: 

(1) the model is generic. (80) 
(2) F ( ~ ) = H ( ~ ) = 0 ;  G(~) and K(ao) are 

nonsingular. (81) 
(3) D -< Q < (1 + a)D for some block diagonal 

D and some a > 0. (82) 
Let 4~(z)= WOW*, let {ff'(z),Q} be the 

NMSF of d}(z), with F, G, H, K the cor- 
responding NMR. Then (~ is approximately 
block-diagonal, F, H approximate F, H, while 
G, /~ approximate the minimum phase 
equivalents of G, K. 

Proof: By Theorem 3.3,/5 defined in Lemma 

6.1 is block-diagonal and ff'a yields, via (10), the 
original F and H and the minimum phase 
equivalents of G and K. The result then follows 
from (79). 

Comment: Corollary 6.2 states that, under 
mild assumptions, if the original noise matrix is 
approximately block-diagonal, then the cor- 
responding NMSF noise matrix Q is also ap- 
proximately block-diagonal, and F, G, H, K are 
a_pproximately identifiable from the NMSF 
W(z). The main result of this section,  see 
Theorem 6.3 and 6.4 below, is a partial con- 
verse. 

Theorem 6.3. Consider a 4-block closed-loop 
system (28) with F, G, H, K generic, F(oo)= 
H(~) = 0 and G(~), K(~) nonsingular, and let 
d~y,(z) be the joint spectrum. Suppose the 
NMSF {ff'(z), Q} of 4~y,(z) is such that (~ is 
approximately block-diagonal, and ff'(z) has a 
coprime MFD with denominator ~/ and which 
can be approximated by a minimum phase W(z) 
of the form 

}~"(z)= M- ' [C  O]  with l~'(ao)= I (83) 

where C and 2V obey the genericity conditions 
(25). Then the system noise covariance matrix Q 
is approximately block-diagonal. 

Proof: See Appendix C. 
Comment: We already knew from Lemma 

6.1 that if the noise covariance matrix of the 
true system is approximately block-diagonal 
then the NMSF noise matrix is approximately 
block-diagonal; Theorem 6.3 states the converse 
result that if the NMSF noise matrix obtained 
from the true spectrum is approximately block- 
diagonal and the system is generic, then the 
noise matrix of the true system is approximately 
block-dagonal. In the next and final result we 
extend this to the case where only an ap- 
proximate spectrum d~y~(z) is available. 

Theorem 6.4. Consider a closed-loop system 
(28) with F, G, H, K generic, F ( ~ ) =  H ( ~ ) =  0 
and G(oo), K(~) nonsingular. Let ~y~(z) be an 
approximation of the t rue  spectrum Sy,(z). 
Suppose the NMSF {W, Q} of 4~y,(z,~ has Q 
approximately block-diagonal, that W has a 
coparime MFD that has approximately the form 
of W in (83), and that this form is generic. (The 
matrices W and W have the same denominator 
matrix.) Then the true noise conva!iance is ap- 
proximately block-diagonal and W yields ap- 
proximations of F, H and of the minimum 
phase equivalents of G, K via (10), i.e. F, G, H. 
K are approximately identifiable from Syu(z). 

Proof: By Theorem 6.1 the NMSF depends 
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continuously on d,,~(z). Therefore the NMSF 
{W, Q} of the true d~yu(z) also has Q ap- 
proximately block-diagonal and l~'(z) ap- 
proximately of the form (83). Thus by Theorem 
6.3 the true noise covariance is approximately 
block diagonal; the result then follows by 
Corollary 6.2. 

We have shown in this section that under all 
conditions that guarantee identifiability from the 
exact spectrum ~by~(z), the parameters (either F, 
G, or F, G, H, K)  can also be approximately 
estimated from an approximate spectrum dyu(z). 
This was the content of Theorem 6.2. We have 
also shown that the absence of correlation be- 
tween plant noise and regulator noise, which 
can be detected for generic systems from the 
exact spectrum via the NMSF,  can also be 
detected from the NMSF obtained from an ap- 
proximate spectrum ~y~(z). This was the content 
of Theorem 6.4. 

7. CONCLUSIONS 
We have obtained a new set of identifiability 

results for the identifiability of linear feedback 
systems using the joint input-output 
identification method. These results have been 
obtained by extending previously known results 
in two directions. 

First we have shown that the NMSF,  which 
was the canonical factor previously used with 
the joint method, is not always compatible with 
the a priori  knowledge about the structure of 
the feedback system. By introducing the 
concept of admissible canonical factors,  new 
situations can be considered for which 
identifiability can be proved. 

Next we have shown that there exists a whole 
class of spectral factors that lead to the same 
forward path model, even though the feedback 
models are different. This has allowed us to 
obtain new identifiability results for the forward 
path, in the presence of one-sided correlation 
between the regulator noise and the process 
noise, a situation that could not be handled by 
the joint input-output  identification method 12 
before. The identifiability results obtained here 
for 12 include all previously known results 
obtained with the direct prediction error 
method, at least for the linear case. They actu- 
ally extend those results to a few new cases. 

Finally, the continuity results of the last sec- 
tion show that the identifiability conditions ob- 
tained for Is are not merely of academic interest. 
In all cases where identifiability is guaranteed, 
consistent estimates of ~ ( z )  will yield con- 
sistent estimates of the system parameters.  In 
addition, for all generic feedback systems, the 
absence of correlation between plant noise and 

regulator noise can be checked from ap- 
proximate estimate of d,y,(z). 
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APPENDIX A: PROOF OF LEMMA 2.1 
(a) First we consider L = 0. Observe that 

7]" (A.l) 

The row rank of W(z) is therefore the sum of the row ranks 
of G(z) and K(z). If, say, Wn fails to have full row rank, 
then K fails to have full row rank because Wn= 
( I - F H ) - ' K .  Therefore W(z) does not have full row rank, 
which contradicts assumption A.2. Same argument for W;] ~. 

(b) Now consider L# 0. 
(1) Suppose first that W(z) is square. The same argument 

as above shows that if Wn fails to have full rank, then so 
does K. But then, since K is square [ Wz)l Wz:] has less than 
full column rank by (7), and since W(z) is square, W(z) has 
less than full rank. This contradicts A.2. 

(2) If K(®) has full row rank, then K(z) has full normal 
row rank, and so does Wn(z)= ( I - H F ) - ' K .  

(3) If L(z) = l~z)G(z),  then 

7]" o] 
The row rank of W(z) is therefore the row rank of 

°]=[L [0 7,] 
This, in turn, is the sum of the row ranks of G and K. 
Therefore K(z) and Wa(z) have full normal row rank. 

APPENDIX B: PROOF OF THEOREM 6.1 
The main task is to prove that ¢:~(o~) and Q depend 

continuously on ~. 
Lamtma B.I. Let BY, B+ u be defined as earlier. Then 

these operators depend continuously on M, in fact 

lIB ~' - B-~[t~, ~ max I IM , (o~ )  - M=( ,~) I [  ( A . 3 )  

Proof: For arbitrary O, we have 

[BY' - B-M~I(d ~) = P_{d>(o~)[M)(u) - M2(<o)]} 

t I [BY'-  SY,](O)~[~, < ItP_O(o~)[ M,(~o)- M~(o~)lli~r 

< II~(oJ)[Ml(o~) - M2(o~)]Jl~r (P- is a projection) 

-< max IIM,(~) - M,.(o~){l" ]_]. II@(~a)lf 2 d~ 

whence (A.3) is immediate. Same proof for B~. 
Lemma B.2. ( I  + B~) -~ d e , r i d  continuously on M. 
Proof: By Lemma 1 I + B~ depend continuously on M. 

Since the inverse of both operators exist the result follows 
by a standard calculation, see Simmons (1963, p. 306, 
Theorem C). 

Lemma B.3. q'-0(~), ~0.(~o) depend continuously on M 
in L~,.,, and also Q and Q depend continuously on M in the 
set of Hermitian complex conjusate matrices. 

Proof: Follows by Lemma B.2 and the formulas (70), (71) 
and (76). 

Lemma B.4. ~'=~L~). ~'~2(w) depend continuously on M 
in L:,~,. 

Proof: By (73), ~:~(o~)= [ I+  M(o~)J~0+(~o)Q -I. The 
result follows by Lemrna B.3. 

Lemma B.5. For arbitrary but fixed z with Izi > 1, l,V'(z) 
depends continuously on M. 

Proof: Let r~(~a)=a ~ (~o ) ,  and let WI(') and W2(') be 

obtained from MI and My Then by the previous lemmas 

t[ W~(')- ~/:(')ll~r <- KIIM, - M,.II® 

for some finite, positive K. Now, remembering (72), let 

Wtt(a) = ~)~ k,(n)e- 

and 

Then by (66) 

and hence 

Therefore 

:o 

• :(,o) = ~/¢2(n) e - ~ .  

~=~/Ikt(n)- k,.(n)j[ ~ < K~M, - M~Jl. 

",[,z~(z) = #(z)  a_ ,~, t(n)z-" 

whose existence in Izl >1 is guaranteed by the spectral 
factorization theorem, depends continuously on M, and 
hence on <b(o~). 

APPENDIX C: PROOF OF THEOREM 6.3 
Lemma C.I. Let Q be an n x n real symmetrical positive 

definite matrix. Let B(z) be an n x n polynomial matrix of 
the form B(z)=diag{z~}+polyuomial terms of lower row 
degree, and such that det B(z) and z p det B*(z) are coprime, 

where p = ~ i~. Let M(z) be an n x n matrix of the form 
k = l  

M(z) = M, diag {z i~} + M,_~ diag {z a-I} + ... +/)do ÷ . . .  + M r 

diag {z -it} with o = max {ik} and M(z)= Mr(z-t). Then 
k = l  . . . . .  t l  

there exist e0 > 0 and, for any • with le[ < ~, B,(z)= diag 
{z~*}+polynomial terms of lower row degree, and Q, > 0  
symmetric, such that 

(i) Bdz)Q, Br(z -') = BQB* + eM; (A.4) 
(ii) B,, Q, depend continuously on e; (A.5) 

(iii) B0 = B, Q0 = Q. (A.6) 

Comment: This Lemma is a particular case of an implicit 
function theorem. (i) implicity defines B,. Q, as a function of 
e. (iii) defines a solution of the equation at the value e = 0. 
(ii) is expected to be a conclusion of the implicit function 
theorem. 

Proof: Consider the equation 

(AB)QB* + B(AQ)B* + BQ(AB*) = eM (A.7) 

where AB is a polynomial matrix whose row degrees are 
lower than it . . . . .  i,. This can be rewritten as 

(B-t~B)Q + Q(A B*)(B*)-I + AQ = ~B-I M(B*) -z. 

Now let z = (I - s/l + s)  and define 

B,s) =a diag {(1 + s ) i ' }B( l~s  s) 

A:t'(s) A- diag {(1+ s)ittM(ll~+Ss)diag {(1-sYk}. 

(A8) 
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Then M(s)= kU(-s), B(s) is polynomial, det ~(s) and 
det B(- s) are coprime, and~ 

B-I(z)M(7.)B-'(z) .,-r'-. j~-I(~I.-.~.-+S$)M(II'~+$$),-'(II+~$$) 

= ~-qs) /~ / ( s )~- r ( -  s). 

Since det B(z) and z ~ det B*(z) have no common zeros, 
neither one has a zero at z = - 1. By construction M(z) has 

no poles at z = - 1 .  Therefore lira B-t(z)M(z)B-*(z) -- 

lira B-t(s)~r(s) /~-r(-s)  is finite. Hence B-S(s)M(s)B-*(s) 

is proper, but not necessarily strictly proper. Therefore let 

B-t(s)~l(s)B-*(s)= N + B-t(s)Ms(s)B-*(s) (A.9) 

where N is constant and symmetric, and B-t(s)bt~(s)B-*(s) 
is strictly proper. Now let /~-SMs = E + B - t F ,  where E is 
polynomial and B - ' F  is strictly proper. Then E/~-* is 
strictly proper because B-aM~-* is strictly, proper. Since 
dee B(s) and det B ( - s )  are coprime, and B- tF  is strictly 
proper, there exist unique polynomial matrices X and Y 
[see proof of Appendix in Anderson and Bitmead (1977)] 
such that 

B(s)X(s)+ Y(s)BY( - s) = F (A.10) 

and B'S(s)Y(s) and X(s)B-*(s)  are strictly proper. Adding 
B(s)E(s) on both sides of (A.10) yields 

B(s)tX(s) + E(s)] + Y ( s ) ~ r ( -  s)= F + BE = M,(s) 
(A.11) 

Equivalently, with X(s)  + E(s) a= Z(s) 

Z(s)B-*(s) + B-S(s) Y(s) = l~-l(s)Mds)l~-*(s) 
(A.12) 

with ZB-* and ~-s y strictly proper, and Z and Y uniquely 
defined by Ms and B. Since M~(s)= Mr( - s), we have 
Y(s)= Z*(s)= z r (  - s). Substituting (A.9) in (A.12) yields 

Z(s)/B-*(s) + B-l(s) Y(s) + N = IB-S(s)~I(s)B-*(s). 
(A.13) 

*B -T is used to denote (BT) -., and B - ' =  (B*)-L In the 
s-plane B'(s) will denote BT(- s), while B-'(s) = B-T(-  s). 

Now if we define LX/~(s) ~ diag {(1 + s)~'}&B(I - s/l + s), then 

(A.8) can be rewritten 

B-Z(s)AF3(s)Q + O~B*(s)B-*(s) + ~Q 
= EB-S(s)i(4(s)B-*(s). (A.14) 

Comparing with (A.13) shows that (A.14) has a unique 
solution given by 

AB(s) = ~Y(s)Q -s, AQ = f.N. (A.15) 

Converting back to the z-plane, and noting that s = 
(1 - zll + z), and 1 + s = (2/1 + z), this defines LxB(z) through 

~xB(z)=diagu, 2 / J  k l+z / J "  

aB(z)  is polynomial because /~-s y is strictly proper. B is 
row proper and is . . . . .  /, are the row degrees of B. Recog- 
nizing that the left-hand side of (A.7) is the first variation of 
BQB* (with variables B and Q), we have shown that (A.14) 
defines a unique solution for B, and Q,; (A.5) and (A.6) 
follow from (A.15). 

Proof of Theorem: Let (~ be the block diagonal ap- 
proximation of Q, and let the true W(z), corresponding to E 
G,/4, K, be written as W= .~-s~, while W= ~-s~]. Since 
W has minimal degree by the genericity assumption, there is 
no loss in generality in assuming that W, I~' and I~ have the 
same denominator matrix (see Lemma 3.1). Then 
~ t - , ~ . ~ - .  = ~ - s [ ~ . l a - . .  

By the assumptions, there exists an • >0  and a M(z), 
satisfying the conditions of Lemma C.I, such that 

[0 : 
Now let 

SinceB is minimum phase, and C and )q satisfy the 8eneri- 
city assumption, it follows that det ~ and z p det ~* are 
coprime, where p = deg det ~. Therefore, by Lemma C. 1, 
and O det~end continuously on ~, and so, if e is small, O is 
close to Q and, therefore, approximately block-diagonal. 


