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The problem considered is that of selecting an initial covari- 
ante matrix for the Kalman filter to ensure that the closed-loop 
filter at every subsequent time instant is exponentially asymp- 
totically stable as a time-invariant filter. Sufficient conditions 
are derived based on monotonicity properties of the solution of 
the Riccati difference equation. The results have application in 
observer design, and the cases of filtering for nonstabilizable 
systems and systems with singular system matrices are in- 
cluded. 
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1. Introduction 

The results of this paper are concerned with the 
stabilizing properties of solutions {Pi} of the Ric- 
cati difference equation (RDE) of optimal filter- 
ing. In particular, we ask the question: For what 
initial condition values, P,,, is the sequence of 
closed-loop filtering matrices {F - K,H} a se- 
quence of exponentially asymptotically stable 

* Work supported by the Radio Research Board of Australia. 

matrices? The motivation for studying this prob- 
lem comes from considering the use of a Kalman 
filter to derive optimal estimates of the state of a 
constant parameter model. It is well known that 
there are certain conditions under which the Kal- 
man filter is asymptotically stable as a time-vary- 
ing filter [l] and converges, but the limiting 
steady-state filter need not be asymptotically sta- 
ble. The new results presented here allow the use 
of the Kalman filter to generate optimal state 
estimates as a time-varying filter from an initial 
start-up time until a switching-off or freezing time, 
from which the Kalman gain update is stopped 
and the filter is run as a time-invariant observer. 
The mechanism utilizes the learning aspects of the 
Kalman filter’s transient response .but can avoid 
the stability and numerical problems of the steady 
state object. This particular problem arises natu- 
rally in short-time Fourier analysis [2]. 

In the process of deriving a sufficient condition 
on PO that guarantees exponential stability all 
along the trajectory of the Kalman filter, we have 
been led to disprove a number of conjectures 
about the Riccati equation, which corresponded to 
popular beliefs, at least among the group of authors 
of this paper. We believe it serves a useful purpose 
to share the insights we gained by concocting some 
of the couterexamples, because they show that the 
Riccati equation is a difficult beast whose be- 
haviour can often be counterintuitive. 

The Riccati equation is one of the most studied 
objects of optimal control and filtering theory and 
it is rather surprising that new results can still be 
derived. In this short paper, we cannot cite all the 
people who have contributed to the vast mountain 
of results about the behaviour of the RDE but, for 
our purpose, the most relevant previous contribu- 
tions are those of Willems [3], Kucera [4], 
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Martensson [5], Caines and Mayne [a], Payne and 
Silverman [7] and, most recently, Chan, Goodwin 
and Sin [S]. 

To keep this paper short, our results will be 
presented in discrete time, and for the filtering 
problem. The results and conclusions apply equally 
to the dual control problem and to the 
continuous-time Riccati equation, although in 
some instances the importance of the problem 
interpretation is not duality invariant. 

2. The discrete-time Riccati equation 

We consider the standard Kalman filter 

‘i+l 
=F2,+Ki(yi-Cii), (2.1) 

K,=FPiCT(CPiCT+R)-‘, (2.2) 

and the associated Riccati difference equation 
(RDE): 

P,+l =FPiFT- FPiCT(CPiCT+ R)-‘CP;FT+ Q 

(2.3) 
with initial conditions PO. This is the Kalman filter 
for the one-step ahead prediction of the state of 
the following model: 

xi+l = Fx, + wi, (2.4a) 
yi=cxi+ui, (2.4b) 

where x and y have dimension n and p respec- 
tively, and where 

(2.5) 

with Q nonnegative definite (Q L 0) and R posi- 
tive definite (R > 0). By factoring R and Q has 

R = (RI/*)( R1/2)T and Q = UT, (2.6) 
and by defining H = R-‘/*C, we can rewrite the 
Riccati equation in a normalized form: 

pi+1 = FPiFT - FPiHT( HPiHT + I)-‘HPiFT 

+ LLT. (2.7) 
The closed-loop state transition matrix of the Kal- 
man filter is 

E=F-FP,H~(HP~H~+I)-‘H=F-K,H. 

(2.8) 
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We shall assume throughout that C (and hence H) 
has full rank. Let us also note that, if PO > 0, then 
the solution Pi of (2.7) is nonnegative definite for 
all i. This follows easily by rewriting (2.7) as 

‘i+l =(F-K,H)P~(F-K,H)~+K,K’+LL~. 

This paper deals with some properties of the 
RDE (2.7) and its associated algebraic Riccati 
equation (ARE) 

P= FPFT- FPHT(HPHT+ I)-‘HPFT+ LLT. 

(2.9) 

The main result is the derivation of sufficient 
conditions on PO that guarantee the stability of the 
closed loop at any time, i.e. Ihk(f)( < 1 for all 
ia and for k=l,..., n. This main result will be 
established in Section 3. We first recall some basic 
results on the RDE and the ARE that will be 
needed in the sequel. 

Definition 1 [8]. A real symmetric nonnegative 
definite solution P+ of the ARE (2.9) is called a 
strong solution if the corresponding filter state- 
transition matrix 

FA F- FP+HT(HP+HT+ I)-‘H 

has all its eigenvalues inside or on the unit circle. 
It is called stabilizing if F has all its eigenvalues 
inside the unit circle. 

Proposition 1 [8,12]. I/ [H, F] is detectable, then 
(1) the strong solution of the ARE exists and is 

unique; 
(2) if [F, L] is stabilizable, the strong solution is 

the only non-negative definite solution of the ARE; 
(3) if [F, L] has no unreachable modes on the 

unit circle, the strong solution is stabilizing; 
(4) $ [F, L] has an unreachable mode on the 

unit circle, there is no stabilizing solution; 
(5) if [F, L] has an unreachable mode on the 

unit circle, the strong solution is not positive defi- 
nite. 

Remark. The results of [8] have all been estab- 
lished for nonsingular F, but these have been 
extended to Riccati equations with singular F in 
[12]. Some of these results, with no restriction on 
F, can also be found in [7]. 
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Proposition 2 [8,12]. If either 
(1) [F, L] has no unreachable modes on the unit 

circle; [H, F] is detectable; P0 > 0; 
or (2) [F, L] is stabilizable; [H, F] is detectable; 

P,>,O; 
then limi _ m Pi = P+, where (Pi} is the solution of 
the RDE with initial condition P,, and P’ is the 
unique stabilizing solution of the ARE. 

We should stress at this juncture some of the 
similarities and differences between the RDE and 
the ARE, since shortly we shall be making a 
somewhat unorthodox description of the solutions 
to the RDE as solutions of distinct ARE’s. The 
RDE is a recurrence relation for the evolution of a 
time-varying sequence of matrices {Pi}. Should 
this equation possess a fixed point P then clearly 
the P satisfies the ARE (2.3). By the same token 
any n X n matrix,P defines an associated matrix e 
according to 

(2.10) 

which, should e be nonnegative definite, expresses 
p as the solution of an ARE. This connection will 
be exploited more fully to develop the stability 
conditions. 

3. A stability result 

We now turn to the stability of the filter transi- 
tion matrix 6 of (2.8). Our result will require a 
monotonic behaviour of the Riccati equation 
matrices {Pi}. It is well known (see e.g. [6]) that if 
PO = 0, then the sequence Pi increases monotoni- 
cally, in the sense that Pi+, > Pi (Pi+, >, Pi mean- 
ing that Pi+, -Pi is nonnegative definite). How- 
ever, this monotonic behaviour breaks down if PO 
is an arbitrary. nonnegative definite matrix: this 
will be illustrated by an example later. 

We recall first a device due to Nishimura [9]. 
Consider two RDE’s (2.7) with the same F and H 
matrices but possibly different Q = LLT matrices, 
0 and G, and possibly different initial conditions. 
Let the solutions to these RDE’s be written 

where the functional form of f is identical and is 

given by (2.7) with LLT replaced by Q. Then 

iii+, - P,+,=+-P,HT(HP,HT+I)-‘1 

.((&-Fi)-(+Fi)HT 

.(H$~H~+I)-‘H(&--F~)) 

-[I-~~H~(H~~H~+z)-‘]~F~ 

+&Q. (3.1) 

Now define the terms between the brackets { } in 
(3.1) to be g(& - pi), and assume first that pi - pi 
is positive definite. Then it can be shown (see [9]) 
that 

+H(&Fi)HT(HP,HT+I)-’ 

.H(&-P,)HT]-‘H(ji-Pi) 

+{l-(&-~i)HTIH(&?ji)HT} 

.(&jri){l-(&Fi)HT 

.[H(~;-?~~)H~]-‘H]~. (3.2) 

The inverses exist by our standing full rank as- 
sumption on H and the positive definiteness of 
pi 1 pi. Therefore, if & > pi and 8 >, Q, then pi,, 
2 pi+l> since by (3.1) and (3.2) ji+, - Fi+, is the 
sum of 3 nonnegative definite matrices. Suppose 
now that pi - pi is nonnegative definite and con- 
sider g,< pi - pi + ~1) with E > 0. Using (3.2) again, 
with PiA- pi replaced by ji - pi + &I, it follows 
that g( Pi - Fi + ~1) is nonnegative definite for all 
E > 0. And since g(a) is a continuous function of E, 
this remains true when E --) 0. Therefore pi+, 2 
pi+, if i)i 2 pi and 0 2 Q. We have from this: 

Lemma 1. Let P+ be any nonnegative definite solu- 
tion of the ARE (2.9) and suppose that P,, 2 P+. 
Then {Pi: i= 1, 2,... } generated by the RDE (2.7) 
satisfies Pi > P+. 

Proof. Consider P+ = f( P+, Q) and Pi+l = 
f( Pi, Q) in (3.1). A simple induction argument 
yields the result. q 

Lemma 2. Consider the RDE (2.7) and suppose that 
for some i, Pi 3 Pi+, 3 0. Then Pi+k G,P~+~-~ for 
all k >, 1. 
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Proof. Again this follows from (3.1) by considering 
k,. = Pi, pi = Pi+, and 8 = g = LL’, and using 
induction. 0 

As remarked earlier, the proofs of our major 
theorems depend on the monotonicity properties 
of the solution sequences of the RDE and on the 
stabilizing properties of solutions of certain ARE’s. 
The key device is to use the RDE (2.7) to define a 
symmetric matrix Qi and an ARE associated with 
each Pi by 

Qi=Pi-FPiFT+FPiHT(HPiHT+I)-‘HPiFT. 

(3.3) 

Comparing the RDE (2.7) to the ARE (3.3) we 
have 

Qi=LLT+ Pi- Pi+,. 

This yields: 

(3.4) 

Lemma 3. If ( Pi } is a monotonic nonincreasing 
sequence of nonnegative definite matrices satisfying 
the RDE (2.7) then { Qi> is a sequence, not neces- 
sarily monotonic, of nonnegative definite matrices 
defined by (3.3) satisfying 

Qi > LLT. 

This lemma shows that 
satisfying the RDE implies 

(3.5) 

monotonicity of {Pi} 
that each Pi is a non- 

negative definite solution of an ARE (3.3) which is 
well formed, i.e. Qi >, 0. The stabilizing properties 
will follow from this. 

Before proceeding to the main results we shall 
require the following technical result which is easily 
proved. 

Lemma 4. Suppose [F, L] is a stabilizable pair and 
that matrix S satisfies SST > LLT. Then [ F,S] is a 
stabilizable pair. 

We are now in a position to derive the follow- 
ing theorem. 

Theorem 1. Consider the RDE (2.7) with initial 
condition P,, and solution sequence { Pi}. Define the 
sequence of matrices { Qi} by (3.3). If 

(1) [H, F] is detectable, 
(2) [F, L] is stabilizable, 
(3) PO 2 0 is such that Q, > LLT, 

then the solution sequence ( P,L> of the RDE is 
stabilizing for all i > 0, i.e. I&.( I;;)1 < 1 for all i >, 0 
andfor k= 1, 2,..., n with F;, defined by (2.8) and 
X k ( . ) denoting the individual eigenvalues. 

Proof. First note that the set of PO satisfying (3) is 
not empty: take any Q, >, LLT and let P,, be the 
corresponding strong solution of the ARE (2.9), 
with LLT replaced by Qo. By Proposition 1, P, 
exists and is unique. 

From Proposition 2 we know that Pi converges 
to P+, the strong (and in this case stabilizing) 
solution of the ARE (2.9). Further (2.9) shows that 
P, = PO + LLT - Q,, and hence P, Q PO. Therefore, 
from Lemma 2, Pi+, d Pi for all i > 0. Lemma 3 
establishes that each Pi is a nonnegative definite 
solution of an ARE (3.3) with Qj >, LLT. Lemma 4 
and Proposition 1 show that, by condition (2) of 
the theorem statement, Pi is stabilizing. q 

An examination of the conditions of Theorem 1 
is in order before extending the results. The first 
requirement of detectability is crucial to the well- 
posedness of any state estimation problem - the 
admission of unstable, unobservable modes negates 
all possible worth of state estimates. The third 
condition is the necessary requirement for mono- 
tonicity of {Pi). It is well known from Willems [3] 
and others that Q, z LLT implies P,, 2 P+. This is 
easily extracted from the proof of Theorem 1 since 
{Pi} is monotonic nonincreasing and convergent 
to P+, implying Pi 2 P+ for all i > 0. It is in 
regard to the second condition that improvement 
is desirable. Condition (2) states that the underly- 
ing problem generates a stabilizing limiting value 
P’. As we argued earlier, we envisage these stabil- 
ity results on Pi to be of use in instances where 
numerical problems arise due to the [F, L] pair not 
necessarily being stabilize. Indeed, the motivation 
for our particular analysis is from Fourier analysis 
where ostensibly L = 0 and F has eigenvalues 
equally spaced around the unit circle. In generaliz- 
ing Theorem 1 our aim is to replace the stabiliza- 
bility condition on [F, L] by a condition on 
[F, Q;“l. 

Our approach to proving Theorem 2 will be to 
present the theorem, then to derive some inter- 
mediate results before knitting the threads of the 
proof together. 

Theorem 2. Consider the RDE (2.7). Define Q, as 
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in (3.3) and assume that 
(1) [H, F ] is detectable, 
(2) [F, Qb”] is stabilizable, 
(3) P,, >, 0 and Q, >, LLT. 

Then the solution sequence { Pi ) with initial condi- 
tion PO is stabilizing for each i. 

In the light of the previous proofs, our broad 
aim will be to show that [F, Q:/‘] is a stabilizable 
pair for each i. We remark here that the nonstrict 
inequalities of condition (3) of Theorem 2 and the 
possible singularity of F obstruct a simple proof. 

To study the stabilizability of [F, Q!/‘] one 
nee’ds to focus attention on the eigenvectors of FT. 
For simplicity, we consider only simple eigenvec- 
tors and omit the extension to generalized ei- 
genvectors. 

We have two ancillary results: 

Lemma 5. Let x be an eigenvector of FT with 
eigenvalue A. Consider the RDE (2.7) and suppose 
{ Pi } is nonnegative definite. Then 

(1) x*Pi+,x=O, and 
(2) h # 0 

imply x*Pix = 0, x*LLTx = 0 and x*Q,x = 0 
(where x* denotes the conjugate transpose of x). 

Proof. Write Pi = yTV;. for some matrix 5. The 
RDE becomes 

Pi+, =F yTy- yT(yHT)[(yHT)T 
[ 

.(~HT)+I)-‘(~HT)~~]FT+LLT 

=F yTV;.- yT(I-(I 
[ 

+ yHTHFT)-‘)y] FT+ LLT 

or 

Pi+, = FKTII+ KHTHFT]-‘I/;FT+ LLT. (3.6) 

Multiply on the left by x* and on the right by x: 

x*Pi+,x = IX/2x*I/;T[ I+ V;.HTHqT] -‘Kx 

-I- x*LLT,u. 

The right-hand side above is zero for A + 0 if and 
only if J$x = 0 and LTx = 0 since both terms on 
this side are nonnegative. That x*Qix = 0 follows 
from (3.4). 0 

This lemma effectively states that a drop in 
rank from Pi to Pi+, can occur only if [F, L] has 
an unreachable eigenvalue at zero. It is unlikely 
that this would affect stability as we shall show 
later. 

Lemma 6. Suppose { Pi ] is nonnegative definite and 
monotonic nonincreasing and suppose that HP,x = 0 
for a given vector x. Then HP,,,x = 0 for all k > 0. 

Proof. Since Pi is nonnegative definite write 

for y: in the range space of HT, ( HT), and yT2 
in the null space of H, (H). Similarly, write x = x, 
+ x2. Then HP,x = 0 implies y-,x, = 0. The 
property that Pi+, < Pi implies that 5: 1. ,V;.+ ,. , G 
<.‘,V;.. , and the result follows. 0 

Proof of Theorem 2. The existence of PO satisfying 
(3) has been established in the proof of Theorem 1. 
Now, the ARE (3.3) may be written as a Lyapunov 
equation 

(F-KiH)pi(F-K,H)‘-Pi= -Qi-KiK; 

(3.7) 

where 

Ki=FPiHT(HPiHT+I)-‘. 

Let x be an eigenvector of FT - HTKT with 
eigenvalue h. Then (3.7) yields 

1 A I’x*P,x - x*Pix = -x*Qix - x*KiK;x. (3.8) 

We now consider two cases. 
Case 1. X*P,x f 0. In this case, equation (3.8) 

implies Ihl< 1, since Qi >, 0 and KiKiT 2 0. We 
show by contradiction that lhl# 1. For suppose 
Ihl= 1; then 

x*Q,x = 0 = x*KiKiTx 

and hence x is an eigenvector of FT, also with 
eigenvalue h. However, the fact that KiTx = 0 
implies HP,x = 0. By Lemma 6, this implies that 
HPi+,x = 0 for all k 2 0. From assumption (3) of 
the theorem it follows that P, Q PO. Hence, using 
Lemma 2, we conclude that Pi 2 Pi+,. This, to- 
gether with the fact that x*Qix= 0 implies that 
x*LLTx = 0. (See (3.4).) We now use equation 
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(2.7) to conclude that x*Pix = x*P~+~x for all 
k 2 0. From this and from HPi+,,.x = 0 for all 
x 2 0, it follows that x*Pix = x*P+x and HP+x 
= 0 since Pi converges to P+ by Proposition 2. 
Now consider the ARE (2.9) with P replaced by 
P+. Multiplying this equation to the right hand by 
x and denoting P+xk z yields Fz =X-‘z with 
IX]= 1. But we also have Hz = 0. This contradicts 
the detectability of [H, F]. 

Case 2. x*P,x = 0, X # 0. In this case, it again 
follows from (3.8) that 

x*Q,x = 0 = x*K,KTx. 

Hence, x is an eigenvector of FT. Furthermore, 
we may apply Lemma 5 to show that x*Pi- ,x = 0, 
. . . . x*Pox = 0. Hence from (3.7), x*Q,x = 0. Thus, 
by stabilizability of [F, QV’], we have ]A] < 1. 0 

4. Counterexamples and fallacious conjectures 

In deriving the results of this paper, the authors 
explored many false trails while attempting to 
establish desirable results. The most informative of 
these blind alleys and their corresponding counter- 
examples are presented here since they serve best 
to indicate inappropriate procedures for establish- 
ing stability. They also perform a role in defining a 
regime of necessity for our sufficient conditions 
and emphasize the value of our results. 

Fallacious Conjecture 1. If P,, and P+ are stabiliz- 
ing and P,, > 0 then Pi is stabilizing. 

Counterexample. Let 

HT=[;], F=[; !f], 
Q=[_2, 111, P!)=[;:; g>o. 

Then 

-0.182 
0.273 I 

is exponentially asymptotically stable, 

- 0.5909 
2.1364 1 
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and 

is unstable. Further 

‘lrn pi = ‘+= 
6.6347 4.1201 

i-a, 4.1201 7.4877 1 
with 

- 0.4854 1 -0.3676 ’ 
which is exponentially asymptotically stable again. 

This counterexample clearly does not generate 
monotonic nonincreasing ( Pi ). Indeed, PO < P+ 
and we next consider possible conditions to ensure 
monotonicity. 

Fallacious Conjecture 2. If P,, > Pf then {Pi} is 
monotonic nonincreasing. 

Counterexample. Let 

Then 

Taking 

Po=[lO; #P+, 

it is easy to check that 

Statements about failure of (nondecreasing) 
monotonicity have also been given by Caines and 
Mayne [6], who state also that {Pi} need not even 
be cyclomonotonic, i.e. Pi+,,, G Pi for all i and 
some fixed N. Examples of this nonmonotonicity 
can be constructed by considering 

F= 
[ 

c0se sine 
-sine 1 cOse ’ 

for a 0 which is an irrational multiple of 71, and a 
variety of Po’s. It turns out that the crucial condi- 
tion for monotonicity is Q,, 2 LLT which implies 
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but is not implied by Pa z P+. This can be seen 
from: 

Fallacious Conjecture 3. Let PO > P+. Then Q, > 
Q- 

Counterexample. Let 

Then 

15 0 P= o 15. 1 1 4 

Take 

p=16 0 
0 [ 1 0 16’ 

Then 

Qo= [ -t8 1202] References 

which is not greater than Q. 

This collection of conjectures and counterexam- 
ples serves to demonstrate some of the difficulties 
of dealing with the RDE just as the paper’s valid 
results illustrate the utility of some methods con- 
cerning the solutions. We have not as yet found a 
counterexample to the following. 

Possibly Fallacious Conjecture. Suppose PO > P” 
and PO and P+ are both stabilizing. Then {Pi} is 
stabilizing. 

5. Conclusion 

Despite the enormous amount of published 
literature on the Riccati equation, it still maintains 
a few mysteries and its behaviour is sometimes 
counterintuitive. In this paper, we have unveiled 
part of this remaining mystery. Our result provides 
a fairly easy procedure to initialize a Riccati equa- 
tion in such a way that the RDE can be stopped at 
any time, while guaranteeing the exponential sta- 
bility of the corresponding Kalman filter. While 
our conditions are only sufficient, it has proved 
remarkably difficult to narrow them further or to 
obtain necessary and sufficient conditions. 

We have concentrated on the discrete-time 
filtering formulation for our study because, firstly, 

our motivation and rationale come from this area 
and, secondly, the results are extensible to con- 
tinuous-time and optimal control most easily. Fur- 
ther extensions‘ to these results (at least initially 
when F and P” are invertible) may be possible by 
generalizing the Lyapunov stability work of Deyst 
and Price [lo]. This has been the approach of 
Parker [ll] from which the authors first became 
aware of the connection between monotonicity 
and stability. 
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