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Abstract

Asymptotic variance expressions are analyzed for models that are identi�ed on the

basis of closed-loop data. The considered methods comprise the classical 'direct'

method, as well as the more recently developed indirect methods, employing coprime

factorized models, dual Youla/Kucera parametrizations and the two-stage approach.

The variance expressions are compared with the open-loop situation, and evaluated

in terms of their relevance for subsequent model-based control design.
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1 INTRODUCTION

When identifying dynamic models for the speci�c purpose of subsequent model-

based control design it is argued that a closed-loop experimental setup during
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the identi�cation experiments supports the construction of an identi�ed model

that is particularly accurate in that frequency region that is relevant for the

control design. This mechanism which plays a major role in many contributions

in the area of "identi�cation for control", originally was motivated mainly on

the basis of bias considerations in the form of a "control-relevant" distribu-

tion of the bias over frequency (Schrama, 1992; Gevers, 1993; Lee et al.,1993;

Van den Hof and Schrama, 1995). Later it has been shown in Hjalmarsson et

al. (1996) that, for a particular class of control design methods, also from a

variance point of view closed-loop experiments are preferred over open-loop

ones.

In this technical note asymptotic variance expressions will be presented for

identi�ed models based on several di�erent closed-loop identi�cation meth-

ods, including the recently introduced indirect methods using a coprime factor

model representation (Schrama, 1992; Van den Hof et al., 1995), the method

employing a so-called dual Youla/Kucera parametrization (Hansen et al., 1989;

Schrama, 1992; Lee et al.1993) and the two-stage method (Van den Hof and

Schrama, 1993). The results for the classical 'direct' method (Ljung, 1993) are

extended to also include variance expressions for the estimated noise model,

while they are shown to remain the same for the mentioned alternative indi-

rect methods.

These variance expressions are compared to related expressions for the open-

loop situation, and consequences are discussed for subsequent model-based

control design.

The paper relates to the general framework of the survey Forssell and Ljung

(1999), in particular to Section 7 of that paper. In the current paper, though,

we focus on explicit results for the speci�c methods mentioned above.

2 PRELIMINARIES

Consider the closed-loop con�guration as depicted in Fig. 1, where G0 and C

are linear time-invariant, possibly unstable, �nite dimensional systems, with

G0 strictly proper, while C is a stabilizing controller for G0; e is a white

noise process with variance �0, and H0 a stable and stably invertible monic

transfer function. Signals r1 and r2 are external reference signals. For purpose

of e�cient notation, we will often deal with the signal r(t) := r1(t)+C(q)r2(t)

being the result of external excitation through either r1 or r2. Additionally we

will denote: u(t) = ur(t) + ue(t) with

ur(t) :=S0(q)r(t);

ue(t) :=�C(q)S0(q)H0(q)e(t) = C(q)S0(q)v(t);
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Fig. 1. Closed-loop con�guration.

where the sensitivity function S0 is given by S0(q) := [1 + C(q)G0(q)]
�1. The

signals ur(t) and ue(t) refer to those parts of the input signal that originate

from the independent signals r and e, respectively. For the corresponding

spectra it follows that �u = �r

u
+ �e

u
with

�r

u
= jS0j

2�r and �e

u
= jCS0j

2�v: (1)

The arguments q and ei! will be omitted when appropriate. We will consider

parametrized models G(q; �) for G0 and H(q; �) for H0 with � 2 �, and in

accordance with Ljung (1987) we will use expressions S 2 M and G0 2 G

to indicate the situations that both G0 and H0 or only G0 can be modelled

exactly within the model set. The variance expressions that are considered in

this paper are asymptotic in both n (model order) and N (number of data),

while n2=N is supposed to tend to 0, as in the standard framework of Ljung

(1987).

3 DIRECT IDENTIFICATION

The direct method of closed-loop identi�cation is characterized by �̂N =

argmin�
1

N

P
N�1

t=0
"(t; �)2 with

"(t; �) = H(q; �)�1[y(t)�G(q; �)u(t)]: (2)

An expression for the asymptotic variance of the transfer function estimate

can be given for the situation that S 2 M, and both plant model and noise

are estimated. In this case (Ljung, 1987):

cov

0
B@ Ĝ(ei!)
Ĥ(ei!)

1
CA � n

N
�v(!) �

2
64 �u(!) �eu(!)

�ue(!) �0

3
75
�1

;
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where �ue(!) is the cross-spectrum between u and e. With the relation �ue =

�CS0H0�0 and using the fact that �u�0 � j�uej
2 = �0�

r

u
it follows that

cov

0
B@ Ĝ
Ĥ

1
CA � n

N

�v

�r
u

�

2
664

1 (CS0H0)
�

CS0H0

�u

�0

3
775 : (3)

The variance expressions for Ĝ and Ĥ then become:

cov(Ĝ)�
n

N

�v

�r
u

=
n

N

�v

�u

[1 +
�e

u

�r
u

] (4)

cov(Ĥ)�
n

N

�v

�0

�u

�r
u

=
n

N

�v

�0
[1 +

�e

u

�r
u

]: (5)

The case of an open-loop experimental situation now appears as a special

situation in which �e

u
= 0, �r

u
= �u, and C = 0, leading to the well known

(open-loop) expressions

cov(Ĝ) �
n

N

�v

�u

cov(Ĥ) �
n

N

�v

�0
:

As indicated in Ljung (1993), the closed-loop expressions show that only the

noisefree part ur of the input signal contributes to variance reduction of the

estimates. In other words: increasing the input power only leads to a smaller

variance if the increase in power is achieved by increasing the reference signal

power. The given expressions are restricted to the situation that S 2 M and

that both G(�) and H(�) are identi�ed.

Remark 1 The situation of estimating a plant model in the situation G0 2 G

and having a �xed and correct noise model H
�
= H0 is considered in Ljung

(1993). Using the fact that

cov �̂N =
�0

N
[E (t) T (t)]�1 (6)

where  (t) is the negative gradient of the prediction error (2), this leads to

cov(Ĝ) �
n

N

�v

�u

(7)

for closed loop identi�cation, as it is immaterial whether the input spectrum is

a result of open loop or closed loop operation. Note that this expression gives a

smaller variance than the situation in which both G and H are estimated, and
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that in this (unrealistic) case the total input power contributes to a reduction

of the estimate variance.

4 INDIRECT IDENTIFICATION

4.1 Introduction

Over the last decade several di�erent indirect approaches to closed-loop identi-

�cation have been presented, see e.g. Gevers (1993), Van den Hof and Schrama

(1995) and Forssell and Ljung (1999). These methods have been introduced

mainly from considerations related to the bias on the estimate of Ĝ that oc-

curs in direct closed-loop identi�cation of approximate models. Here we will

briey illustrate their properties with respect to the variance of the estimates.

4.2 Coprime factor identi�cation

Coprime factor identi�cation is treated in detail in Schrama (1992) and Van

den Hof et al. (1995). It is a scheme that relates to (and generalizes) the clas-

sical joint input/output method of closed-loop identi�cation as e.g. described

in Gustavsson et al. (1977). The basic principle is that the (two-times-two)

transfer function (r; e)T ! (y; u)T is identi�ed, while the plant models (Ĝ; Ĥ)

are retrieved from these closed-loop estimates. Consider the system's relations:

y(t)=G0S0r(t) + S0H0e(t) (8)

u(t)=S0r(t)� CS0H0e(t): (9)

They are rewritten, by using a �ltered signal x(t) := F (q)r(t), into the form

y(t)=N0;Fx(t) + S0H0e(t) (10)

u(t)=D0;Fx(t)� CS0H0e(t) (11)

with N0;F := G0S0F
�1 and D0;F := S0F

�1, constituting a coprime factor

representation of G0 as G0 = N0;FD
�1

0;F
. The linear and stable �lter F can be

chosen by the user to serve several purposes, like minimal order properties or

normalization of the coprime factorization as discussed in Van den Hof et al.

(1995); this will not be pursued here any further as it is immaterial for the

variance analysis. The important observation here is that the signals x and

e are uncorrelated. Identi�cation of the 4 transfer functions in (10),(11) from
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the signals x(t), y(t), u(t) therefore corresponds to a one-input two-output

open-loop identi�cation problem. Denote

"y(t; �)=Wy(q; �)
�1[y(t)�N(q; �)x(t)]

"u(t; �)=Wu(q; �)
�1[y(t)�D(q; �)x(t)];

Least squares minimization of ("y; "u)
T provides estimated models N̂ ; D̂; Ŵy; Ŵu.

Plant and noise model Ĝ and Ĥ are then retrieved by

Ĝ= N̂(D̂)�1

Ĥ =(1 + CĜ)Ŵy:

For the variance of Ĝ and Ĥ, use can be made of �rst order approximations:

Ĝ = G0 +�G, N̂ = N0;F +�N , D̂ = D0;F +�D etcetera, leading to

�G=
�N

D0;F

�

N0;F�D

D2

0;F

(12)

�H =(1 + CG0)�Wy + C(�G)Wy:

This leads to the result:

cov

0
B@ Ĝ
Ĥ

1
CA � n

N

�v

�r
u

�

2
664

1 (CS0H0)
�

CS0H0

�u

�0

3
775 : (13)

A sketch of the derivation of this result is given in the Appendix. Note that

(13) is identical to expression (3) for direct identi�cation .

4.3 Identi�cation in a dual Youla-Kucera parametrization

The dual Youla-Kucera parametrization utilizes a particular parametrization

of the plant G0. As C stabilizes the plant, G0 can be parametrized within the

class of all plants that are stabilized by C. This parametrization involves the

relation

G(�) =
Nx +DcR(�)

Dx �NcR(�)
(14)

where Nx=Dx =: Gx is any (auxiliary) system that is stabilized by C; Nc=Dc =

C, and R(�) ranges over the class of all stable proper transfer functions. The
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di�erent factors that build up the quotient expressions Gx and C are required

to be stable and coprime.

Using an expression like (14) for the plant G0 with a Youla-Kucera param-

eter R0, and substituting this in the system's relations, shows -after some

manipulations- that these can be rewritten as

z(t) = R0x(t) +W0e(t)

with R0 = DxS0(G0 �Gx)=Dc, W0 = H0S0=Dc, and

z=(Dc +GxNc)
�1(y �Gxu)

x=(Dx + CNx)
�1r:

Since x is not correlated with e, the identi�cation of R0 and W0 can again be

considered as an open-loop identi�cation problem. The signals z and x can

be constructed by the user, as they are dependent on known quantities and

measured signals. Least-squares identi�cation is performed on the basis of the

prediction error

"z(t; �) =W (q; �)�1[z(t)� R(q; �)x(t)]

and the estimated transfers are denoted by Ŵ and R̂. The plant and noise

model can then be reconstructed from these estimates according to

Ĝ=
Nx +DcR̂

Dx �NcR̂
(15)

Ĥ = ŴDcŜ
�1 = ŴDc[1 + CĜ]: (16)

In order to guarantee that Ĥ is monic it will assumed that Dc is monic.

Variance expressions for R̂ and Ŵ are available through the standard (open-

loop) expressions:

cov(R̂) �
n

N

jW0j
2�0

�x

and cov(Ŵ ) �
n

N
jW0j

2

while cov(R̂; Ŵ ) = 0. In a similar way as in section 4.2, the variance of (Ĝ; Ĥ)

can be obtained, relying on �rst order approximating expressions. Not sur-

prisingly (see Appendix) the resulting expressions are again given by (13).

Further details on this identi�cation method can be found in Lee et al.(1993)

and Van den Hof and Schrama (1995). It can be shown that it is a direct gen-

eralization of the classical indirect method of closed-loop identi�cation, see

Van den Hof and De Callafon (1996).
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4.4 Two-stage method

A two-stage method for closed-loop identi�cation has been introduced in Van

den Hof and Schrama (1993). It operates directly on reference, input and

output data, and does not require knowledge of the implemented controller.

It can best be explained by considering the system's relations:

y(t)=G0u
r(t) + S0H0e(t)

u(t)=S0r(t)� CS0H0e(t):

In the �rst step, measured signals r and u are used to estimate a model Ŝ of the

sensitivity function S0. Next this model is used to construct (by simulation)

an estimate ûr of ur according to ûr(t) = Ŝ(q)r(t). In the second stage, the

signals ûr and y are used as a basis for the identi�cation of a plant model Ĝ.

The procedure is very much alike the coprime factor identi�cation scheme,

albeit that the �nal plant model is not calculated through division of two

identi�ed models; this division is circumvented by constructing the auxiliary

simulated signal ûr = S(q; ̂)r.

Consider the prediction errors

"y(t; �; )=W
�1

y
[y(t)�G(q; �)S(q; )r(t)]

"u(t; )=W
�1

u
[u(t)� S(q; )r(t)]

then the parameter estimate �̂N of this method can be written as the mini-

mizing � argument of VN (�; �) for �!1, with

VN(�; �) =
1

N

NX
t=1

[
1

�
"2
y
(t; �; ) + "2

u
(t; )]

(Note that for � ! 1, ̂ will be determined fully on the basis of r and u).

Applying the coprime factor results from section 4.2 to this situation then

shows that the variance becomes independent of � and equal to (13). 4

4.5 Summarizing comments

For the considered indirect methods, the asymptotic variance expressions for

plant and noise model are exactly the same as the expressions for direct iden-

ti�cation. This may not be too surprising, as similar results for the classical

4 The authors acknowledge the contribution of Urban Forssell (Univ. Link�oping)

to the proof of this result.
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indirect and joint i/o methods were already available (Gustavsson et al., 1977).

However what has to be stressed here, is that for the indirect type methods

the variance expressions for Ĝ are valid also in the situation that G0 2 G

but S =2 M, while for the direct method the results are only achieved under

the stronger condition that S 2 M. With indirect identi�cation we can thus

e.g. �x the noise model to a predetermined choice, only identifying the plant

model Ĝ, and obtain the same asymptotic variance as would be obtained when

indeed estimating a noise model.

5 OPEN-LOOP VERSUS CLOSED-LOOP EXPERIMENTS

Considering that the variance expressions are identical for all closed-loop iden-

ti�cation methods, we can now make a comparison between the variances

obtained from open-loop and closed-loop experimental conditions. The appro-

priate expressions are summarized in table 1. The results show that, if the

Open-loop Closed-loop

V ar(ĜN)
n

N

�v

�u

<
n

N

�v

�r
u

=
n

N

�v

�u

�
1 +

�e
u

�r
u

�

V ar(ĤN)
n

N

�v

�0
<

n

N

�v

�0

�
1 +

�e

u

�r
u

�
Table 1

Variance expressions under open-loop and closed-loop conditions.

input spectrum is similarly constrained in both cases, then the variance of Ĝ

and Ĥ obtained under closed-loop identi�cation is larger than for open-loop

identi�cation. If the input power is not constrained, and if the reference power

is chosen such that �r

u
� �e

u
, then the closed loop expressions converge to the

open loop expressions. Observe also that the input signal plays no role in the

variance of Ĥ in the open loop situation, while in the closed loop situation an

increase in the reference signal power results in a decrease of V ar(ĤN).

The results suggest that in terms of variance of the model estimates ĜN and

ĤN , open-loop identi�cation always has to be preferred over closed-loop iden-

ti�cation. However, perhaps surprisingly, this is not the case if the objective

of the identi�cation is model-based control design. When the model estimates

ĜN and ĤN are used for the design of a controller ĈN = C(ĜN ; ĤN), then

this controller is a random variable, and one can consider the problem of se-

lecting an identi�cation experiment that minimizes the variance of the error

ĈN�C(G0; H0) between the controller estimated from the model and the con-

troller that would be obtained from the true system. Somewhat surprisingly

perhaps, the minimization of this controller variance is obtained by a closed

loop identi�cation experiment, as soon as the control design depends on both

G and H. The apparent contradiction with the results of Table 1 comes from
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the fact that the cross terms of the covariance matrix of ~(ĜNĤN) also play a

role in the expression of the controller variance. In the case of a control design

that only depends on the input-output dynamics G, open loop identi�cation

is optimal. We refer the reader to (Hjalmarsson et al. 1996) for details.

6 CONCLUDING REMARKS

Asymptotic variance expressions have been derived for several closed-loop

identi�cation schemes, showing that the several approaches lead to the same

asymptotic variance. Although asymptotic variance of plant model and noise

model generally will increase when performing closed-loop identi�cation, in

comparison with open-loop identi�cation, closed-loop identi�cation can still

be preferred when the identi�ed model is used as a basis for control design,

provided that a controller is designed on the basis of both plant model and

noise model.

The doubly asymptotic nature of the presented analysis (asymptotic in both

model order and number of data) apparently diminishes possible di�erences

between the several methods presented. A further analysis of parameter vari-

ance expressions for the considered closed-loop identi�cation methods, is re-

cently provided in Ljung and Forssell (1997), while in Codrons, Anderson

and Gevers (2000) it has been shown that signi�cant di�erences between the

closed loop identi�cation methods occur when the controller contains an un-

stable pole (e.g. an integrator) or a nonminimum phase zero.

Additionally it has to be remarked that re�nements of the considered gen-

eral asymptotic high order variance analysis have recently been discussed in

Ninness et al. (1999).

APPENDIX

Proof of (13).

Applying the standard variance expressions to the multivariable situation of

(10),(11) it follows that

cov

0
B@ N̂
D̂

1
CA� n

N

jS0j
2�v

�x

2
64 1 �C�

C jCj2

3
75 (A.1)

cov

0
B@ Ŵy

Ŵu

1
CA� n

N

jS0j
2�v

�0

2
64 1 �C�

C jCj2

3
75 : (A.2)
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Since (10),(11) reect an open-loop situation (as x and e are uncorrelated)

this implies that the cross-covariance terms between (N̂ ; D̂)T and (Ŵy; Ŵu)

are zero. From the �rst order approximations in (12) it follows that j�Gj2 =

j�N j2

jD0;F j
2
+
jG0j

2

jD0;F j
2
j�Dj2 � 2Re

(
G0(�D)(�N)�

jD0;F j
2

)
:

Substitution of (A.1) then provides the result for cov(Ĝ).

For Ĥ one can similarly write (when neglecting terms that have expectation

0):

�Hj2 = j1 + CG0j
2
j�Wyj

2 + jCWyj
2
j�Gj2 (A.3)

and the result for cov(Ĥ) follows after substitution of (A.2). The expression

for cov(Ĝ; Ĥ) follows from

cov(Ĝ; Ĥ) = �(CWy)
� cov(Ĝ).

Variance result for dual Youla-Kucera method

Using (15),(16) the related expressions for the �rst order approximation errors

become

�G =
(Dx �NcR0)Dc(�R) + (Nx +DcR0)Nc(�R)

(Dx �NcR0)2

�H =
Dc(�W )

S0
+W0Nc(�G): (A.4)

For �G this leads to

�G =
Dc +G0Nc

Dx �NcR0

�R =
Dc(�R)

DxS
2

0
(1 + CGx)

and so

cov(Ĝ) =

����� Dc

DxS
2

0
(1 + CGx)

�����
2

cov(R̂):

Substituting the expression for cov(R̂) and using the property that �x =

jDx(1 + CGx)j
2�r it follows after some manipulation that cov(Ĝ) � n=N �

�v=�
r

u
.

For cov(Ĥ) it follows from (A.4) that

cov(Ĥ) =
jDcj

2covŴ

jS0j2
+NcW0j

2covĜ:
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Substituting the known expressions in the right hand side, will show that

cov(Ĥ) � n=N jH0j
2[1 + �e

u
=�r

u
].

For cov(Ĝ; Ĥ) it follows from (A.4) that cov(Ĝ; Ĥ) = (W0Nc)
�cov(Ĝ) which

leads to the appropriate result.
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