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Abstract

This paper presents a robust stability and performance analysis for an uncertainty

set delivered by classical prediction error identi�cation. This nonstandard uncer-

tainty set, which is a set of parametrized transfer functions with a parameter vector

in an ellipsoid, contains the true system at a certain probability level. Our robust

stability result is a necessary and suÆcient condition for the stabilization, by a

given controller, of all systems in such uncertainty set. The main new technical

contribution of this paper is our robust performance result: we show that the worst

case performance achieved over all systems in such an uncertainty region is the so-

lution of a convex optimization problem involving Linear Matrix Inequality (LMI)

constraints. Note that we only consider Single Input Single Output (SISO) systems.
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1 Introduction

This paper is part of our continuing e�ort to close the gap between time-

domain prediction error identi�cation and robust control theory (Bombois et

? This paper was presented (with another title) at the IFAC Symposium on System

Identi�cation, Santa Barbara, California, June 2000.
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al., 1999; Gevers et al., 2000; Bombois, 2000). We have shown in (Bombois

et al., 1999; Gevers et al., 2000; Bombois, 2000) that a prediction error iden-

ti�cation step with a full order model structure can be used as a procedure

for model set validation. The key advantage of using a full order model struc-

ture is that the estimated error is due to the noise only (no bias error): see

(Ljung, 1999). This full order identi�cation step can be performed either on

the system itself (Bombois et al., 1999; Bombois, 2000) or on the model error

(Ljung, 1998; Gevers et al., 2000). In both cases, it delivers an uncertainty

region D containing the true system at a certain probability level, to be cho-

sen by the designer. As shown in (Bombois, 2000), this uncertainty set D

has a generic structure in which the elements are ratios of transfer functions

parametrized by a real vector Æ that belongs to an ellipsoid. Such uncertainty

set is speci�c to prediction error identi�cation (or validation), and is clearly

nonstandard in mainstream robust control theory. It is described by the fol-

lowing Proposition (Bombois et al., 1999; Gevers et al., 2000; Bombois, 2000).

Proposition 1 Consider a true linear time-invariant system y = G0u + v;

where G0 is a rational SISO transfer function and v is additive noise. Let

G(z; Æ) be a full order model structure such that G0 = G(z; Æ0) for some Æ0. The

uncertainty region D resulting from either open loop or closed loop prediction

error identi�cation with the unbiased model structure
2 G(z; Æ), and which

contains the true system G0 at a prescribed probability level, can always be

described in the following generic form:

D =

(
G(z; Æ) j G(z; Æ) = e + ZNÆ

1 + ZDÆ
and Æ 2 U = fÆ j (Æ � Æ̂)TR(Æ � Æ̂) < 1g

)
(1)

where Æ 2 Rk�1
is a real parameter vector, Æ̂ is the parameter estimate resulting

from the identi�cation step, R is a symmetric positive de�nite matrix 2 Rk�k

that is proportional to the inverse of the covariance matrix of Æ̂, ZN(z) and

ZD(z) are row vectors of size k of known transfer functions, and e(z) is a

known transfer function.

The uncertainty region D of Proposition 1, which we have baptized \generic

prediction error (PE) uncertainty set" in (Gevers et al., 2000), is a direct result

of the use of a prediction error method with an unbiased model structure for

the construction of an uncertainty set. The true system belongs to D with

some probability level � which the user is free to select; that level is directly

connected to the scaling of the matrix R.

2 We have recently extended our analysis to the case of possibly biased models

using a stochastic embedding approach (Goodwin et al., 1992) (see (Bombois et

al., 2000)).

2



In this paper, we no longer discuss how this set arises from prediction error

identi�cation or validation. Rather, we take this generic set D as the starting

point of a robust control analysis. We develop a necessary and suÆcient con-

dition for the stabilization of all plants in such a set D by a given controller

C. More importantly, we show how to compute the worst case performance

over all closed loop systems made up of the controller C and all plants in D.

We show that this worst case performance can be computed exactly by an

LMI-based optimization problem. Note that we only consider SISO systems.

Comparison with other uncertainty regions deduced from measured

data. Note that the uncertainty setD is directly deduced from measured data;

no prior assumptions are required on the magnitude of the noise and of the

impulse response. The only important restriction imposed in the Prediction

Error procedure that leads to the uncertainty set D is that the model structure

contains the true system; the same holds for the Model Error Model approach

developed by Ljung (Ljung, 1998) for open-loop validation and extended to

closed-loop validation in (Gevers et al., 1999). This assumption has recently

been relaxed in (Bombois et al., 2000).

Other uncertainty regions, that do not have the structure of our set D, have

been described in the literature, based on rather di�erent assumptions and

methods (Chen, 1997; Poolla et al., 1994; Milanese, 1998; Hakvoort, 1994). In

(Chen, 1997; Poolla et al., 1994) and references therein, a method is proposed

to decide whether a postulated region with bounded uncertainties is consistent

with measured input-output data (the so-called model invalidation concept).

In (Milanese, 1998) (and references therein) a hard bound assumption is made

on the noise and on the impulse response of the true system in order to derive a

parametric uncertainty set using set membership identi�cation. In (Hakvoort,

1994) an additive uncertainty region is estimated on the basis of a stochastic

noise assumption, but with a known prior bound again on the impulse response

of the true system. Furthermore, the approach presented in (Hakvoort, 1994)

is restricted to linearly parametrized models, such as FIR models, whereas our

uncertainty set D is described by rational transfer functions with denominator

uncertainty.

Robustness analysis of D. Our robust stability result for the uncertainty

setD takes the form of a necessary and suÆcient condition for the stabilization

of all plants in D by a given controller C. This result is obtained by recasting

the closed-loop connections of the controller C and the systems in D as a

Linear Fractional Transformation (LFT) (see e.g. (Zhou et al., 1995)) where

the uncertainty part is a real vector. The necessary and suÆcient condition

is then deduced from the results in (Rantzer, 1992). A necessary and suÆ-

cient condition could also have been derived from the results in (Biernacki et

al., 1987). However, the advantage in our approach is that we recast the uncer-

tainty region D as a rank-one LFT which allows us to possibly use the convex
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or quasi-convex optimization methods of (Rantzer and Megretski, 1994) for

the solution of robust control design problems using such uncertainty set D.

The main technical contribution of this paper, however, lies in the procedure

for robust performance analysis. We provide an exact computation, using an

LMI-based optimization problem, of the worst case performance over all closed

loops made up of the controller C and all systems G(z; Æ) in the uncertainty

region D. The performance of a particular loop [C G(z; Æ)] is here de�ned as

the largest singular value of a weighted version of the matrix containing the

four closed-loop transfer functions of this loop. Our de�nition of the worst

case performance is thus very general and, by an appropriate choice of the

weights, allows one to derive most of the commonly used worst case perfor-

mance measures, such as e.g. the largest modulus of the sensitivity function.

The LMI formulation of the problem uses the fact that the uncertainty part

(i.e. the real parameter vector) appears linearly in the expression of both the

numerator and the denominator of the systems in the uncertainty region D

and, as a consequence, also appears linearly in the expression of the di�erent

closed-loop transfer functions.

Some solutions have already been proposed for the computation of the worst

case performance over model sets described by parametric uncertainties. How-

ever, they are not applicable to our model set D of Proposition 1. In (Fan and

Tits, 1992; Ferreres and Fromion, 1997), the worst case performance in an un-

certainty region described by an LFT is computed using an extension of the

structured singular value �. However, this is done only for a limited number

of parametric uncertainties, which do not cover the case of a real vector as

in our uncertainty region D. In (Bhattacharyya et al., 1995, page 402), the

authors give a procedure for the computation of the worst case performance in

uncertainty regions de�ned by a real vector that is constrained to lie in a hy-

percube. This is achieved by replacing the original problem by a �xed number

of simple optimization problems involving one parameter. This procedure can

not be used for the computation of the worst case performance in D, where

the real uncertainty vector is constrained to lie in an ellipsoid and not in a

hypercube.

Paper outline. In Section 2, the robust stability analysis procedure for the

uncertainty region D is developed. In Section 3, the concept of worst case

performance level is introduced and the LMI-based optimization problem de-

veloped for its computation is given. Our procedures are illustrated by an

example in Section 4. Finally, some conclusions are given in the last section.
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2 Robust stability analysis of D

Consider an uncertainty region D given by (1) and containing G0 at some

probability level. We now give a necessary and suÆcient condition for the

stabilization by a given controller C of all plants in D. This theorem is based

on results presented in (Rantzer, 1992).

Theorem 2 Consider an uncertainty set D of the form (1) and a controller

C(z) = X(z)=Y (z) 3
that stabilizes the center of that set, G(z; Æ̂). Then all

models in D are stabilized by C(z) if and only if

max



�(MD(e
j
)) � 1; (2)

where

� MD(z) is de�ned as

MD(z) =
�(ZD + X(ZN�eZD)

Y+eX
)T�1

1 + (ZD +
X(ZN�eZD)

Y+eX
)Æ̂
; (3)

� T is a square root of the matrix R de�ning U : R = T TT:

� � = T (Æ � Æ̂), whereby Æ 2 U , j�j2 < 1

� �(MD(e
j
)) is called the (real) stability radius of the loop [MD(z) �]. For

a real vector � it is computed as follows:

�(M(ej
)) =

r
jRe(M)j22 � (Re(M)Im(M)T )2

jIm(M)j2
2

if Im(M) 6= 0

�(M(ej
)) = jM j2 if Im(M) = 0:
(4)

Proof. The proof consists of showing that the set of feedback loops [C G(z; Æ)]

can be recast in a framework to which the results of (Rantzer, 1992) can be

applied. It is easy to prove that the closed-loop connection of a plant G(z; Æ)

in D with the controller C can be restated in the general LFT framework of

robust stability analysis by introducing the signals p1 and q such that p1 = Æq

8><
>:
y = e+ZNÆ

1+ZDÆ
u = (e+ (ZN�eZD)Æ

1+ZDÆ
)u

u = �Cy
()

8>>>>><
>>>>>:

p1 = Æq

q =

M1(z)z }| {
(�ZD � C(ZN � eZD)

1 + eC
) p1

(5)

3
X(z) and Y (z) are the polynomials corresponding to the numerator and to the

denominator of C(z), respectively.
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We now show the equivalence between the set of loops [C G(z; Æ)] for all Æ 2 U

and the set of loops [MD(z) �] for all � such that j�j2 < 1, by replacing Æ and

its uncertainty domain U by the real vector �
�
= T (Æ � Æ̂) and its uncertainty

domain j�j2 < 1. With p
�
= �q and Æ = Æ̂ + T�1�, we have

8><
>:
p1 = Æq

q = M1(z)p1

,
8><
>:
p = �q

q = M1T
�1

1�M1 Æ̂
p =MD(z)p

(6)

The necessary and suÆcient condition then follows from the fact thatMD(z) 2
H1 and from a result in (Rantzer, 1992). This result states that (4) is the

stability radius of the set of loops [MD(z) �] whose uncertainty part is a real

vector constrained to lie in a two-norm unit ball.

3 Robust performance analysis of D

In Section 2, we have presented a procedure to check whether a controller C

stabilizes all plants in the uncertainty region D. However, stabilization does

not imply good performance with all plants in D. In this section, we show

that we can evaluate the worst case performance in the uncertainty region D,

i.e. the worst level of performance of a closed loop made up of the connection

of the considered controller and any plant in D. Modulo the probability that

G0 2 D, the worst case performance in D is of course a lower bound for the

closed-loop performance achieved with the true system.

3.1 The general criterion measuring the worst case performance

There is no unique way of de�ning the performance of a closed-loop system.

However, most commonly used performance criteria can be derived from some

norm of a frequency weighted version of the stability matrix H(G;C) of the

closed-loop system [C G] made up of G in feedback with the controller C.

De�nition 3 Given a plant G(z) and a stabilizing controller C(z), the per-

formance of a closed-loop system [C G] is de�ned as the following frequency

function

J(G;C;Wl;Wr;
) = �1
�
WlH(G(ej
); C(ej
))Wr

�
(7)

where Wl(z) = diag(Wl1;Wl2) and Wr(z) = diag(Wr1;Wr2) are diagonal

weights, �1(A) denotes the largest singular value of A, and H(G;C) is de-
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�ned as follows:

H(G;C) =

0
B@H11(G;C) H12(G;C)

H21(G;C) H22(G;C)

1
CA =

0
B@ GC

1+GC
G

1+GC

C

1+GC
1

1+GC

1
CA : (8)

The worst case performance criterion over all plants in an uncertainty region

D is then de�ned as follows.

De�nition 4 Consider an uncertainty region D of systems G(z; Æ) with Æ 2
U . Consider also a controller C(z). The worst case performance achieved by

this controller at a frequency 
 over all systems in D is de�ned as:

JWC(D;C;Wl;Wr;
) = max
G(z;Æ)2D

�1
�
WlH(G(ej
; Æ); C(ej
))Wr

�
: (9)

Note that JWC is a frequency function : it de�nes a template. Using appro-

priate weights Wr and Wl, more speci�c worst case performance measures

(such as the largest modulus of one of the four closed loop transfer func-

tions) can be de�ned. For instance, the largest modulus of the sensitivity

function H22(G(z; Æ); C) for a system G(z; Æ) 2 D can be computed choosing

Wl =Wr = diag(0; 1).

3.2 Computation of the worst case performance

We now present a procedure for the computation of JWC(D;C;Wl;Wr;
) at

a given frequency 
. This procedure must be repeated at each frequency in

order to obtain the shape of the frequency function JWC .

Theorem 5 Consider an uncertainty region D de�ned in (1) and a controller

C(z) = X(z)=Y (z) 4
. The worst case performance at 
 de�ned in (9) is equal

to
p
opt, where opt is the optimal value of  for the following standard convex

optimization problem involving LMI constraints evaluated at the frequency 
:

minimize 

over ; �

subject to � � 0 and

(10)

0
B@Re(a11) Re(a12)

Re(a�12) Re(a22)

1
CA� �

0
B@ R �RÆ̂

(�RÆ̂)T Æ̂
T
RÆ̂ � 1

1
CA < 0

where a11 = (Z�
NW

�
l1Wl1ZN +Z�

DW
�
l2Wl2ZD)�(QZ�

1Z1), a12 = Z�
NW

�
l1Wl1e+

W �
l2Wl2Z

�
D�(QZ�

1 (Y +eX)), a22 = e�W �
l1Wl1e+W �

l2Wl2�(Q(Y +eX)�(Y +

4
X(z) and Y (z) are the polynomials corresponding to the numerator and to the

denominator of C(z), respectively.
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eX)), Z1 = XZN + Y ZD and Q = 1=(X�W �
r1Wr1X + Y �W �

r2Wr2Y ).

Proof. It is important to note that Hw(z; Æ)
�
= WlH(G(z; Æ); C(z))Wr is of

rank one. Using the de�nition of the closed-loop transfer matrix H in (8) and

the expression of G(z; Æ) in (1), the weighted matrix Hw(z; Æ) can therefore be

rewritten as follows:

Hw(z; Æ) =

0
B@

Wl1(e+ZN Æ)

Y+eX+Z1Æ

Wl2(1+ZDÆ)

Y+eX+Z1Æ

1
CA
�
XWr1 YWr2

�
(11)

with Z1 = XZN + Y ZD. Proving Theorem 5 is equivalent to proving that the

solution opt of the LMI problem (10), evaluated at 
, is such that:

p
opt = max

Æ2U
�1(Hw(e

j
; Æ))() opt = max
Æ2U

�1(Hw(e
j
; Æ)�Hw(e

j
; Æ))

where �1(A) and �1(A) denote the largest singular value and the largest eigen-

value of A, respectively. An equivalent and convenient way of restating the

problem of computing maxÆ2U �1(Hw(e
j
; Æ)�Hw(e

j
; Æ)) is as follows:

minimize  such that �1(Hw(e
j
; Æ)�Hw(e

j
; Æ))�  < 0 8Æ 2 U:

SinceHw(e
j
; Æ) is a rank one matrix, we have that �1(Hw(e

j
; Æ)�Hw(e
j
; Æ))�

 < 0 is equivalent with

0
B@

Wl1(e+ZN Æ)

Y+eX+Z1Æ

Wl2(1+ZDÆ)

Y+eX+Z1Æ

1
CA
�0
B@

Wl1(e+ZN Æ)

Y+eX+Z1Æ

Wl2(1+ZDÆ)

Y+eX+Z1Æ

1
CA (X�W �

r1Wr1X + Y �W �

r2Wr2Y )�  < 0()

0
BBBBB@

Wl1(e+ZNÆ)

Y+eX+Z1Æ

Wl2(1+ZDÆ)

Y+eX+Z1Æ

1

1
CCCCCA

�0
B@ I2 0

0 �Q

1
CA
0
BBBBB@

Wl1(e+ZNÆ)

Y+eX+Z1Æ

Wl2(1+ZDÆ)

Y+eX+Z1Æ

1

1
CCCCCA < 0 (12)

with Q as de�ned in (10). By pre-multiplying (12) by (Y + eX + Z1Æ)
� and

post-multiplying the same expression by (Y + eX + Z1Æ), we obtain:0
BBBBB@
Wl1(e + ZNÆ)

Wl2(1 + ZDÆ)

Y + eX + Z1Æ

1
CCCCCA

�0
B@ I2 0

0 �Q

1
CA
0
BBBBB@
Wl1(e+ ZNÆ)

Wl2(1 + ZDÆ)

Y + eX + Z1Æ

1
CCCCCA < 0 (13)

which is equivalent to the following constraint on Æ with variable 

0
B@ Æ

1

1
CA
�0
B@ a11 a12

a�12 a22

1
CA
0
B@ Æ

1

1
CA < 0()

�(Æ)z }| {0
B@ Æ

1

1
CA
T 0
B@Re(a11) Re(a12)

Re(a�12) Re(a22)

1
CA
0
B@ Æ

1

1
CA < 0(14)
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with a11, a12 and a22 as de�ned in (10). The equivalence in (14) is due to the

fact that Æ is real.

Expression (14) is equivalent to stating that �1(Hw(e
j
; Æ)�Hw(e

j
; Æ))� < 0

for a particular Æ in U . However, this must be true for all Æ 2 U . Therefore

the last expression must be true for all Æ such that
�(Æ)z }| {0

B@ Æ

1

1
CA
T 0
B@ R �RÆ̂
(�RÆ̂)T Æ̂TRÆ̂ � 1

1
CA
0
B@ Æ

1

1
CA < 0

which is equivalent to the statement \Æ 2 U".

Let us now recapitulate. Computing maxÆ2U �1(Hw(e
j
; Æ)�Hw(e

j
; Æ)) is equiv-

alent to �nding the smallest  such that �(Æ) < 0 for all Æ for which �(Æ) < 0.

Since the domain of Æ is only constrained by one LMI (i.e. �(Æ) < 0), by the

S procedure (Boyd et al., 1994, page 23), the last problem is equivalent to

�nding the smallest  and a positive scalar � such that �(Æ)� ��(Æ) < 0, for

all Æ 2 Rk�1, which is precisely (10).

4 Example

To illustrate our results, we present an example of controller validation for a

model identi�ed in closed-loop. Let us consider the following true system G0

with an Output Error structure:

y =

G0z }| {
0:1047z�1 + 0:0872z�2

1� 1:5578z�1 + 0:5769z�2
u+ ~e;

where ~e is a unit-variance white noise. The sampling time is 0.05 second.

We perform an indirect closed-loop identi�cation of an unbiased closed-loop

transfer function T (Æ̂) by collecting 1000 reference and output data on the true

system in closed loop with an output-feedback controller K = 3 : u = 3(r�y)

(see (Bombois et al., 1999) for details). This controller stabilizes G0. The

open-loop model G(Æ̂) = T (Æ̂)=(K(1 � T (Æ̂))) corresponding to T (Æ̂) is equal

to

G(Æ̂) =
0:1060z�1 + 0:0928z�2

1� 1:5308z�1 + 0:5467z�2

Control design. From the model G(Æ̂), we have designed a controller with a

phase advance : C(z) = (1:8464� 1:3647z�1)=(1� 0:4545z�1). With this con-

troller, the designed closed-loop [G(Æ̂) C] has a stability margin of 57 degrees

9



and a gain margin of 10dB. The cut-o� frequency 
c is equal to 0.5 which cor-

responds to an actual frequency !c = 11 rad=s. Before applying this controller

C(z) to the true system, we verify whether it achieves satisfactory behaviour

with all plants in the uncertainty region DCL. This uncertainty region DCL is

constructed from the estimated covariance matrix PÆ of the parameters of the

closed-loop model T (Æ̂) (see (Bombois et al., 1999) for details). It contains the

true system G0 at a probability level equal to 0.95, and is given by

DCL = fG(Æ) j G(Æ) = T (Æ)

K(1� T (Æ))
and Æ 2 UCLg

where UCL = fÆ j (Æ � Æ̂)TP�1
Æ (Æ � Æ̂) < 12:6g. As shown in (Bombois, 2000),

it is easy to prove that DCL has the general structure (1).

Robust stability analysis. Using the procedure presented in Section 2, we

check whether C stabilizes all plants inDCL. For this purpose, we construct the

row vector MDCL(z) de�ned in Theorem 2 and we compute the corresponding

stability radius �(MDCL(e
j
)) at all frequencies in [0 �]. The maximum over

these frequencies is 0.1313. Since this maximum is smaller than 1, we conclude

that C(z) stabilizes all plants in DCL and therefore also the true system G0,

at least with probability 0:95.

Robust performance analysis. In order to verify that C gives satisfactory

performance with all plants in DCL, we compute at each frequency the worst

case modulus tDCL(
; H22) of the sensitivity function \H22" achieved by C over

all plants in DCL. This can be done by computing JWC(DCL; C;Wl;Wr;
) us-

ing Theorem 5 with the particular weights Wl = Wr = diag(0; 1). The worst

case modulus of the sensitivity function over all models in DCL is represented

in Figure 1. In this �gure, the worst case performance level tDCL(
; H22) is

compared with the sensitivity functions of the designed closed loop [C G(Æ̂)]

and of the achieved closed loop [C G0]. From tDCL(
; H22), we can �nd that the

worst case static error (=tDCL(0; H22)) resulting from a constant disturbance

of unit amplitude is equal to 0.1692, whereas this static error is 0.0834 in the

designed closed-loop. The achieved static error is 0.1017. Using tDCL(
; H22),

we can also see that the bandwidth of 
c = 0:5 in the designed closed-loop

is preserved for all closed loops with a plant in DCL, since tDCL(
; H22) is

equal to 1 at 
c ' 0:5. The di�erence between the resonance peak of the de-

signed sensitivity function (i.e. max
 k H22(G(Æ̂); C) k= 1:6184) and the worst

case reasonance peak achieved by a plant in DCL ( i.e. max
 tDCL(
; H22) =

1:7075) also remains small. Note that the actually achieved resonance peak

(i.e. max
 k H22(G0; C) k) is equal to 1.6229.

We may therefore conclude that the controller C achieves suÆcient perfor-

mance with all plants in DCL since the di�erence between the nominal and

worst case performance level remains very small at every frequency. With
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Fig. 1. tDCL(
;H22) (solid), kH22(G(Æ̂); C)k (dashed) and k H22(G0; C) k (dashdot)

such stability and performance analysis results, one would con�dently apply

the controller to the real system, assuming that the nominal performance is

judged to be satisfactory.

5 Conclusions

This paper matches prediction error identi�cation and robustness theory which

have often been seen as incompatible theories. Indeed, we have shown in

(Bombois et al., 1999; Gevers et al., 2000; Bombois, 2000) that prediction

error identi�cation, in open or closed loop, yields a parametric uncertainty re-

gion D that takes the generic form described in Proposition 1. We have shown

in this paper that this generic uncertainty region D is amenable to robust

stability and robust performance analysis. Our solution to the robust stability

problem is obtained by recasting the set of closed loops in a standard form

using a sequence of transformations. Our solution to the robust performance

problem, which is the main technical contribution of this paper, is the exact

LMI-based computation of the worst case performance achieved by a given

controller in closed loop with all models in the uncertainty set D.
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