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Abstract

We propose a model validation procedure that consists of a prediction error iden-
tification experiment with a full order model. It delivers a parametric uncertainty
ellipsoid and a corresponding set of parametrized transfer functions, which we call
PE (for Prediction Error) uncertainty set. Such uncertainty set differs from the clas-
sical uncertainty descriptions used in robust control analysis and design. We develop
a robust control analysis theory for such uncertainty sets, which covers two distinct
aspects. (1) Controller validation. We present necessary and sufficient conditions
for a specific controller to stabilize - or to achieve a given level of performance with
- all systems in such PE uncertainty set. (2) Model validation for robust control. We
present a measure for the size of such PE uncertainty set that is directly connected
to the size of a set controllers that stabilize all systems in the model uncertainty
set. This allows us to establish that one uncertainty set is better tuned for robust
control design than another, leading to control-oriented validation objectives.
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1 Introduction

In this paper, we propose a new validation framework that connects Prediction
Error (PE) Identification and Robustness Theory. This framework consists of
a new method to design an uncertainty region using the tools of PE identi-
fication, coupled with robustness tools that are adapted to this uncertainty
region. These robustness tools pertain both to the robustness analysis of a spe-
cific controller vis-à-vis all models in the model uncertainty region (controller
validation), and to the quality assessment (for model-based control design)
of the model uncertainty region (model validation for control). Most of the
technical results of this paper have already been published in a succession of
papers in which we have addressed a sequence of sub-problems. The interest
of the present paper is that it connects all these disparate technical results
into a coherent framework from measured data to robust controller, via an un-
certainty region and a model deduced from PE identification. In a companion
paper, we illustrate the methodology and the theoretical results of this paper
with two realistic simulation examples.

1.1 Model validation

There are many different ways of understanding the concept of model valida-
tion, and many different frameworks under which model validation questions
have been formulated. For the sake of clarity, we first define the terminol-
ogy adopted in this paper. We shall say that model validation consists in
constructing a model set D that contains the true system G0, perhaps at a
certain probability level. This model set, typically called uncertainty set, is
constructed from a combination of data and prior assumptions. In contrast we
shall use the term identification for the estimation of a nominal model Gmod.
Our reasons for distinguishing these two terms will become clear in the sequel.
The model Gmod will be called validated if it belongs to the validated set D.

As stated above, there exist many other frameworks and definitions of the
terms validation and identification. For example:

• it is very often the case that a single procedure delivers both a nominal
model and an uncertainty set;

• there are procedures, such as set membership identification, where one es-
timates a model uncertainty set without estimating a nominal model;

• there are frameworks that lead to the invalidation of models rather than
the validation of model sets.

The history of model validation in PE identification is as old as PE identi-
fication itself. A reputable engineer should never deliver a product, whether
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it be a measurement device or a model, without a statement about its qual-
ity. However, the information about the quality of a model resulting from PE
identification was classically presented via a battery of model validation tests,
such as the whiteness of the residuals, the cross-correlation between inputs
and residuals, parameter and transfer function covariance formulae, implicit
descriptions of the bias distribution via integral formulae, etc. Thus, despite its
enormous practical successes, PE identification was not delivering the classical
uncertainty descriptions upon which mainstream robustness theory was built
all through the eighties, namely frequency domain uncertainty descriptions.

As a consequence, a huge gap appeared at the end of the eighties between
Robustness Theory and PE identification as was evidenced in the 1992 Santa
Barbara Workshop (Smith and Dahleh, 1994). This gap drove the control
community to develop new techniques, different from PE identification, in
order to obtain, from measured data, an uncertainty region containing the true
system. Several directions have been pursued: set membership identification
(Giarré et al., 1997; Giarré and Milanese, 1997), model invalidation (Poolla et
al., 1994; Kosut, 1995; Chen, 1997; Boulet and Francis, 1998), H∞ and worst
case identification (Helmicki et al., 1991; Gu and Khargonekar, 1992; Mäkilä
and Partington, 1999; Mäkilä et al., 1995). These new techniques aimed at
producing one of the standard linear fractional frequency domain uncertainty
regions that are used in mainstream Robust Control Theory (such as additive,
multiplicative, coprime factor uncertainty regions). The drawbacks of these
techniques are that they are based on prior assumptions about the unknown
system and the noise that are difficult to ascertain. In addition, because they
are based on worst case assumptions rather than on the idea of averaging out
the noise, they typically lead to conservative uncertainty sets (Hjalmarsson,
1994).

Thus, attempts were made to construct frequency domain uncertainty regions
around nominal models identified using PE identification methods. In the case
where the chosen model structure is able to represent the true system, the only
error in the estimated transfer function is the variance error (or noise-induced
error), for which reliable formulae exist (Ljung, 1999). An interesting attempt
to extend these formulae to the case where undermodelling is present was
proposed in (Hjalmarsson and Ljung, 1992). The main difficulty in computing
the total (Mean Square) error around a nominal transfer function, estimated
by PE identification, has always been the estimation of the bias error. A first
attempt at computing explicit expressions for the bias error was made by
Goodwin and collaborators, using the Stochastic Embedding (SE) approach
(Goodwin et al., 1992). The basic idea is to treat the model error (i.e. the
bias) as a realization of a stochastic process whose variance is parametrized
by a few parameters, and to then estimate these parameters from data; this
allows one to compute the size of the unmodelled dynamics, in a mean square
sense. The only prior knowledge is the parametric structure of the variance
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of the unmodelled dynamics. However, the methodology is limited to models
that are linear in the parameters.

Another approach to estimate the model error of a nominal restricted complex-
ity model in a PE framework is the Model Error Model (MEM) approach pro-
posed by L. Ljung in (Ljung, 1997); see also (Ljung, 1998; Ljung, 2000; Reinelt
et al., 1999). The key idea is to estimate an unbiased model of the error be-
tween the nominal model and the true system by a simple step of PE identifi-
cation with full order model structure, using validation data. The mean square
error on this model error estimate is then a variance error only (by virtue of its
full order structure), for which standard formulae exist, as already stated. In
(Ljung, 1997; Ljung, 1998) this error was computed in the frequency domain
from the ellipsoidal confidence region on the parameter vector of the identified
MEM, using a first order approximation. This results in an ellipse at each fre-
quency in the Nyquist plane; these ellipses can be collected together to make
up a frequency domain uncertainty region, say L. However, the mapping from
the ellipsoidal uncertainty region in parameter space to this frequency domain
uncertainty region L is rather subtle, even in the case of linearly parametrized
model structures, and so is the computation of the corresponding probability
levels. For a thorough analysis, see (Bombois et al., 2001a).

The model validation approach that we develop in this paper is inspired by
the MEM approach, but it uses the obvious (and much simpler) alternative of
identifying a full order model directly for the full system, rather than for the
model error between the full system and a low order estimate of this system.
Hence, the MSE is again a variance error only.

The mixed stochastic-deterministic methods for the construction of uncer-
tainty regions presented in (Hakvoort and Van den Hof, 1997; de Vries and
Van den Hof, 1995; Venkatesh and Dahleh, 1997) are based on a mixture of
stochastic assumptions on the noise, and deterministic assumptions on the
decay rate of the tail of the system’s response. Just as for the Stochastic
Embedding approach, the authors show that they can obtain, from data, an
estimate of the noise variance and of the prior bounds on this decay rate. Also
common with the SE approach is a restriction of the method to models that
are linear in the parameters, i.e. fixed denominator models.

All the methods described above, which compute uncertainty sets on the basis
of stochastic assumptions on the noise, do of course lead to stochastic descrip-
tions of the uncertainty sets, i.e. the true system belongs to the validated set
D with probability α; the level α is entirely a choice of the designer.
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1.2 Controller validation

Once an uncertainty set D of models has been constructed by a procedure
of identification or model validation, one can address controller validation
questions. Namely, for such set D, and for a tentative controller C(z) one can
ask one or both of the following questions:

• does the controller C(z) stabilize all models in the model set D ? This is
called controller validation for stability.

• does the controller C(z) achieve a given level of closed loop performance
with all models in the model set D ? This is called controller validation for
performance.

In this paper, we offer a solution to both questions in the context of uncer-
tainty sets obtained by Prediction Error methods. Note that in the approach
adopted in the present paper, we pose the controller validation questions with
respect to the uncertainty set D with the knowledge that the true system be-
longs to D with probability α. This will lead us to ascertain that a controller
C(z) that stabilizes all models in D stabilizes the true system with probability
at least equal to α. A more precise and less conservative estimate of the prob-
ability that C(z) stabilizes the true system can be obtained using the theory
of randomized algorithms: see (Campi et al., 2000), (Campi et al., 2002).

1.3 Model validation for control

The assessment of the quality of a model cannot be decoupled from the pur-
pose for which the model is to be used. The research on identification for
control has, in the last 10 years, focused on the design of identification crite-
ria that delivered a control-oriented nominal model. Similarly, the validation
experiment must be designed in such a way as to deliver uncertainty sets that
are tuned for robust control design. Thus, one must think in terms of “control-
oriented validation design”. In this paper we highlight the connection between
validated uncertainty sets obtained by Prediction Error methods and sets of
stabilizing controllers.

1.4 Contribution of our work

We develop a framework that connects Robustness Theory and PE identifi-
cation with full order model structures. Our results can be extended to PE
identification with biased (i.e. low order) model structures using the stochastic
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embedding framework and linearly parametrized model structures (Bombois
et al., 2000a). This extension will be briefly discussed in this paper.

The starting point for this framework is the observation that, if a full order
rational model structure is used, then a straightforward step of PE identifica-
tion delivers an ellipsoidal confidence region in parameter space, constructed
from the estimated parameter covariance matrix. This ellipsoid can be mapped
without any approximation to an uncertainty set D in transfer function space
to which the unknown system belongs with a prescribed probability.

Our first contribution is to derive a general expression for the transfer function
uncertainty set D obtained by a step of PE validation, i.e. identification with
a full order model structure. We call such set the generic PE model uncer-
tainty set, because it is the uncertainty set that results from either open loop
or closed loop identification in a PE framework. This generic PE uncertainty
set takes the form of a set of parametrized transfer functions whose (real)
parameter vector is constrained to lie in an ellipsoid. The center of this uncer-
tainty region is the full order identified model. Since our validation procedure
is based on signal statistics, this implies that a statement like “On the basis
of the data I have collected, the true system G0 lies in this set” really means
“On the basis of the data I have collected, and with probability 95%, say, G0

lies in this set.”

Our second contribution is to furnish robust stability and robust performance
analysis tools that are adapted to this PE uncertainty set D, i.e. without em-
bedding it in a classical, but necessarily larger, uncertainty set as we initially
did in (Bombois et al., 1999). Even though earlier robustness results have been
derived for parametric uncertainty sets (Fan et al., 1991; Rantzer, 1992; Bhat-
tacharyya et al., 1995), they did not cover uncertainty sets like our generic PE
uncertainty region D. However, they have helped us to develop new robustness
tools adapted to the uncertainty region D. Our main robust stability result
is a necessary and sufficient condition for the stabilization of all plants in D

by a given controller. Our main robust performance result is to show that the
worst case performance achieved by a given controller over all plants in the
PE uncertainty set D is the result of a Linear Matrix Inequality (LMI)-based
optimization problem.

Our third contribution is on model validation for robust control in a PE
framework. This is a design problem, where our contribution is to charac-
terize what quality a validated PE uncertainty set D must possess for it to
be tuned for robustly stable control design. We define a “measure of size” of
a validated PE uncertainty set D that is connected to the size of a set of
model-based controllers that stabilize all models in the model set D. This
measure of size, called the worst-case ν-gap between the model and the vali-
dated set, δWC(Gmod, D), was initially introduced in (Gevers et al., 1999b) (see
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also (Bombois et al., 1999)). It is an extension of the ν-gap, a distance measure
between two transfer functions introduced in (Vinnicombe, 1993). We show
that this worst case ν-gap can be computed using an LMI-based optimiza-
tion problem at each frequency. We also show in Section 6 that the smaller
the worst-case δWC(Gmod, D) gap between the nominal model Gmod used for
control design and the validated PE uncertainty set D, the larger is the set of
Gmod-based controllers that are guaranteed to stabilize all systems in D. Our
result therefore establishes a link between identification experiment design and
controller stability robustness: an uncertainty set is “tuned for robust control
design” if its worst case ν-gap is small. In (Hildebrand and Gevers, 2002) a
solution has been obtained to the problem of optimal experiment design with
respect to the worst case ν-gap .

In a companion paper (Gevers et al., 2002) we give two realistic simulation
examples of our methodology. In these examples, the objective is to design a
controller satisfying a number of specifications with the unknown true system.
Several PE identification experiments are performed on the true system, under
different experimental conditions, leading in each case to a model Gmod and
an uncertainty region D containing G0 at a certain probability level. The
worst-case ν-gap is then used to assess the quality of the pair {Gmod, D} for
robustly stable control design. When this test is judged to be satisfactory, the
model Gmod is used to design a controller satisfying the specifications with
the model. The controller validation results are then used to verify if these
specifications are also satisfied with all systems in D, and therefore also with
the true system.

1.5 Structure of paper

The paper is organized as follows. In Section 2 we present our prediction
error validation procedure, both in open and in closed loop. Section 3 presents
necessary and sufficient conditions for a given controller to robustly stabilize
all models in an uncertainty set validated by prediction error methods, while
Section 4 shows how to compute the worst case performance of this controller
with respect to all models in that uncertainty set. In Section 5 we define the
worst-case ν-gap and the worst-case chordal distance function, two control-
oriented measures of quality of a validated set. In Section 6 we build upon
these quality measures to introduce a procedure for control-oriented model
validation. Conclusions are presented in Section 7.
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2 Uncertainty regions obtained by PE Identification

In this section, we show that we can design an uncertainty region contain-
ing the true system G0, at a certain probability level α, using a PE iden-
tification experiment with a full order model structure, and this without
adding any further assumptions on the true system G0 than the classical
assumptions required by PE identification. In order to remain concise, we
consider here only the case of open-loop identification, but we have shown in
(Bombois, 2000; Bombois et al., 1999) that an uncertainty region containing
G0 with probability α can also be deduced from different types of closed-loop
identification.

All through this paper we shall consider that input-output data y and u are
generated from a single-input single-output Linear Time Invariant unknown
“true system”:

S : y(t) = G0(z)u(t) + v(t), (1)

where G0(z) is a discrete-time rational transfer function having the following
general form

G0(z) = G(z, θ0) =
z−d(b0 + b1z

−1 + ... + bmz−m)

1 + a1z−1 + ... + anz−n
=

Z2(z)θ0

1 + Z1(z)θ0
, (2)

where d is the delay; θT
0 = [a1 ... an b0 ... bm] ∈ Rq×1, (q

∆
= (n + m +

1)); Z1(z) = [z−1 z−2 ... z−n 0 ... 0] is a row vector of size q; Z2(z) =
z−d [0 ... 0 1 z−1 z−2 ... z−m] is a row vector of size q. We will further as-
sume that v(t) is additive wide sense stationary noise, that can be described
as the output of a white noise driven filter. Observe that PE identification the-
ory requires no additional assumptions on the noise; in particular v(t) need
not be Gaussian: see (Ljung, 1999).

2.1 Open-loop PE identification

A full order model structure for G0(z) is given by

Mol =

{

G(z, θ) | G(z, θ) =
Z2(z)θ

1 + Z1(z)θ

}

, (3)

where θ ∈ Rq×1. From N input and output data obtained on the true system
G0, we can compute a model G(θ̂) ∈ Mol and an estimate of the covariance
matrix Pθ of θ̂, using classical PE identification. The true parameter vector
θ0 lies then with probability α(q, χ) = Pr(χ2(q) < χ) in the ellipsoidal uncer-
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tainty region (Ljung, 1999)

Uol = {θ | (θ − θ̂)T P−1
θ (θ − θ̂) < χ}, (4)

with χ2(q) the chi-square probability distribution with q parameters. 1 This
parametric uncertainty region Uol defines a corresponding uncertainty region
in the space of transfer functions which we denote Dol:

Dol =

{

G(z, θ) | G(z, θ) =
Z2(z)θ

1 + Z1(z)θ
and θ ∈ Uol

}

. (5)

Property of Dol: G0 ∈ Dol with probability α(q, χ).

Role of the experimental conditions. The validated model set Dol depends
very much on the experimental conditions under which the validation has been
performed. This is perhaps not so apparent in the definition (5) of Dol via
the parameter covariance matrix Pθ. However, let us recall that a reasonable
approximation for the covariance of the transfer function estimate G(z, θ̂) is
given, for sufficiently large q and N , by (Ljung, 1999):

cov(G(ejω, θ̂)) ≈
q

N

φv(ω)

φu(ω)
. (6)

This shows the role of the signal spectra φu(ω) and φv(ω), as well as the number
of data, in shaping the uncertainty set Dol. Clearly, with a very small input
signal energy and a small number of data, the validated region D would be very
large, and hence almost any model would be validated by such experiment.
However, such uncertainty region would be useless. A validation experiment
is useful for control design if the resulting uncertainty set is small and if its
distribution in the frequency domain is “control-oriented”; this last concept
will be made precise in Sections 5 and 6.

2.2 The generic PE uncertainty set

A PE identification experiment with a full order model can similarly be
performed on closed-loop data in order to design a corresponding uncer-
tainty region based on a parameter covariance estimate. Alternatively, the
Model Error Model (MEM) approach can be used to estimate a full order
model of the model error (i.e. the unmodelled dynamics) using open loop data

1 This result holds even if v(t) is not Gaussian or is colored; this is a consequence
of the central limit theorem. In addition, the probability level α can be chosen as
close to 1 as desired.
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(Ljung, 1997; Ljung, 1998), or closed-loop data (Gevers et al., 1999a), again
leading to a parametric confidence ellipsoid and a corresponding transfer func-
tion uncertainty set. Whether the identification procedure is performed in open
loop or in closed loop, whether it directly estimates a full order model of the
true system, or a full order model of the model error, it can be shown that the
resulting uncertainty sets D can all be described in the generic form defined
in the following proposition. For ease of reference, we call this uncertainty set
the generic PE uncertainty set.

Proposition 1 Consider G0(z), the true system defined in (2). The uncer-
tainty regions D resulting from prediction error identification, and which con-
tain the true system G0 at a prescribed probability level, can all be described
in the following generic form:

D =

{

G(z, δ) | G(z, δ) =
e(z) + ZN(z)δ

1 + ZD(z)δ
and δ ∈ U = {δ | (δ − δ̂)T R(δ − δ̂) < 1}

}

(7)
where δ ∈ Rk×1 is a real parameter vector; δ̂ is the parameter estimate resulting
from the identification step; R ∈ Rk×k is a symmetric positive definite matrix
that is proportional to the inverse of the covariance matrix of δ̂; ZN(z) and
ZD(z) are row vectors of size k of known transfer functions; and e(z) is a
known transfer function.

Proof: see (Bombois, 2000). Note that Dol in (5) has the structure (7) with
e(z) = 0, θ = δ and R = (χPθ)

−1.

Proposition 1 defines the general structure of the uncertainty region D which
results from a PE identification experiment with unbiased model structures.
Let us point out the following characteristics of this uncertainty region.

• The uncertainty region D is simply the result of a PE identification experi-
ment with full order model structure. Such PE identification step, performed
with the purpose of constructing an uncertainty region, will be called a val-
idation experiment in the sequel.

• The true system G0 lies in D with a probability level that is entirely fixed
by the designer.

• The uncertainty region D is “centered” at G(z, δ̂), which is a full order
model of the true system G0 deduced from the identified parameter vector
δ̂. For control design, one can of course use G(z, δ̂). However, it is a high
order model, and will therefore lead to a high order controller. Hence it
is often the case that one will choose a low order approximation Gmod of
G(z, δ̂) as the model for control design.

• Sometimes a low order model Gmod has been obtained a priori, by modeling
or by a separate identification experiment. The PE validation step is then
performed for the purpose of constructing an uncertainty set D, that is
known to contain the true G0 at a certain probability level. The prior model
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Gmod is then used for control design if it is validated, i.e. if Gmod ∈ D.
• Different identification experiments (i.e. open-loop or closed-loop identifica-

tion, different measured data, ...) lead to different identified parameter vec-
tors, different covariance matrices, and therefore also different uncertainty
sets D(i).

2.3 Extension to PE identification with reduced order model structures

Expression (7) defines the structure of the uncertainty region obtained from
a PE identification experiment with full order model structure, i.e. without
undermodeling. We have shown in (Bombois et al., 2000a) that the stochastic
embedding tools presented in (Goodwin et al., 1992) allow one to design un-
certainty regions L using PE identification with low order (and hence biased)
model structures. The uncertainty region L is then a ratio of transfer func-
tions parametrized by a transfer vector whose frequency response is real and
constrained to lie in an ellipse at each frequency. The structure of the uncer-
tainty region L is thus quite similar to that of the uncertainty region D. This
approach therefore allows us to also handle infinite dimensional unmodeled
dynamics in a PE framework.

In the sequel, we develop two sets of results for PE uncertainty regions D.
The first are controller validation results: they allow us to verify whether a
controller C(z) stabilizes and achieves a prescribed level of performance with
all systems in such uncertainty region D and therefore also with the true
system G0. The other set of results pertain to model validation for control,
and are based on a measure of size of the region D that is connected to the
size of stabilizing controller sets. These are presented in Section 5 and 6.

3 Necessary and sufficient conditions for stabilization of a PE model
set

In this section, we establish necessary and sufficient conditions for some given
controller C(z) to stabilize all models in a generic PE uncertainty set de-
fined by (7) (controller validation for stability). A controller that stabilizes all
models in a PE model set will be called validated for stability.

For the standard uncertainty sets that are used in robust control theory,
such as additive, multiplicative, coprime factor uncertainty sets, necessary
and sufficient conditions are usually obtained by rewriting the closed loop
connections of the controller with all plants in the uncertainty region as a
set of loops that connect a known fixed dynamic matrix M(z), that includes
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this controller, to an uncertainty part ∆(z) of known structure that belongs
to the prescribed uncertainty domain: the so-called LFT framework (Fan et
al., 1991; Doyle, 1982; Zhou et al., 1995; Packard and Doyle, 1993; Hinrichsen
and Pritchard, 1988). For our PE uncertainty sets D, a necessary and suf-
ficient condition for robust stability is obtained by showing that the set of
feedback connections of C with all models in D can be reformulated, using an
LFT framework, as a set of feedback connections [MD(z) φ], where MD(z)
is fixed and contains the controller information, and where the uncertainty
part φ is a real vector, linearly related to the parameter vector δ that defines
D: see (7). We have then shown that the (real) stability radius linked with
the set of loops [MD(z) φ] can be computed exactly and efficiently, using re-
sults of (Hinrichsen and Pritchard, 1988; Rantzer, 1992). The full analysis of
our results, together with the proofs, can be found in (Bombois et al., 2001b).
They hold only for single-input single-output systems. Here we recall the main
robust stability result of (Bombois et al., 2001b).

Theorem 1 Consider a generic PE uncertainty set of the form (7) and a
controller C(z) = X(z)/Y (z) that stabilizes the center of that set, G(z, δ̂).
Then all models in D are stabilized by C(z) if and only if

max
ω

µ(MD(ejω)) ≤ 1, (8)

where

• MD(z) is defined as

MD(z) =
−(ZD + X(ZN−eZD)

Y +eX
)T−1

1 + (ZD + X(ZN−eZD)
Y +eX

)δ̂
, (9)

• T is a square root of the matrix R defining D : R = T T T.
• φ = T (δ − δ̂), whereby δ ∈ U ⇔ |φ|2 < 1
• µ(MD(ejω)) is called the stability radius of the loop [MD(z) φ]. For a real

vector φ it is computed as follows:

µ(M(ejω)) =

√
√
√
√|Re(M)|22 −

(Re(M)Im(M)T )2

|Im(M)|22
if Im(M) 6= 0

µ(M(ejω)) = |M |2 if Im(M) = 0.

Proof: see (Bombois et al., 2001b).

We note that checking the stability of a controller C(z) with all models in
the PE uncertainty set D requires that a frequency domain point-by-point
inequality be satisfied. The same will hold for most of the robust stability
results presented later in this paper. Thus, such test belongs to the same
family of methods as the Nyquist stability test. It might well be possible
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to replace such pointwise stability test by one based directly on C(z), the
structure of D and the normalized covariance matrix R. This is the subject of
future investigations.

The necessary and sufficient conditions for controller validation depend criti-
cally on the uncertainty set D. A controller that is not validated for stability
with a validated PE uncertainty set D(1) may well be validated for stability
with another validated PE uncertainty set D(2), obtained using different ex-
perimental conditions. Of course, this observation applies to all robust control
methodologies, i.e. the validation of a controller always depends on the model
uncertainty set. What distinguishes our approach from most others is that,
in mainstream robust control theory or in model invalidation theory, the un-
certainty sets used for control analysis and/or design are either assumed a
priori, or obtained by overbounding uncertainty sets estimated from data and
assumptions. Here we work directly with uncertainty sets identified from data
without overbounding. Our analysis in Section 5 will give us at least some
handle on how we can shape these uncertainty sets towards robust control
design.

4 Worst case performance over a PE model set

In this section we show that we can compute the worst case performance
achieved by some controller C(z) over all models in a PE uncertainty region
D. This worst case performance is of course an upper bound for the closed-loop
performance achieved by this controller with the true system. We shall say that
a controller is validated for performance if the worst case performance over all
models in D remains below a prespecified threshold. There is no unique way
of defining the performance of a closed-loop system. However, most commonly
used performance criteria are derived from some norm of a frequency weighted
version of the transfer matrix T (G, C) of the closed-loop system [G C] defined
by:

T (G, C) =






T11 T12

T21 T22




 =






GC
1+GC

G
1+GC

C
1+GC

1
1+GC




 . (10)

Thus we shall start from the following very general definition.

Definition 1 The performance of a closed loop system [G C] is defined as the
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following frequency function:

J(G, C, Wl, Wr, ω) = σ1












Wl
︷ ︸︸ ︷





Wl1 0

0 Wl2




T (G(ejω), C(ejω))

Wr
︷ ︸︸ ︷





Wr1 0

0 Wr2

















(11)
where Wl1(e

jω), Wl2(e
jω) and Wr1(e

jω), Wr2(e
jω) are frequency weights that al-

low one to define specific performance levels, and where σ1(A) denotes the
largest singular value of A.

The frequency function J defines a template. Any function that is derived
from J can of course also be handled, such as ‖ WlT (G, C)Wr ‖∞, as used in
(de Callafon and Van den Hof, 1997), for example. Observe also that the choice
of a diagonal structure for Wl and Wr is no loss of generality, since the four
transfer functions in T (G, C) can all be weighted differently. For example,
a common choice for the performance measure of a closed loop system is
the shape of the modulus of the frequency response of one or several of the
four transfer functions defined in (10): see (Zames, 1981). The worst case
performance over a validated PE set is now defined as follows.

Definition 2 Consider a validated PE uncertainty region D given by (7) and
a controller C(z) that is validated for stability with respect to D. The worst
case performance achieved by this controller at a frequency ω over all models
in D is defined as

JWC(D, C, Wl, Wr, ω) = (12)

max
G(z,δ)∈D

σ1












Wl
︷ ︸︸ ︷





Wl1 0

0 Wl2




T (G(ejω, δ), C(ejω))

Wr
︷ ︸︸ ︷





Wr1 0

0 Wr2

















.

The following theorem, proved in (Bombois et al., 2001b), shows how to com-
pute the criterion JWC(D, C, Wl, Wr, ω) at the frequency ω as the solution of
an optimization problem involving LMI constraints (Boyd et al., 1994). A cru-
cial feature that makes this computation possible is the rank one property of
the matrix T (G, C); such property does not hold in general for MIMO plants.

Theorem 2 Consider a PE uncertainty region D defined by (7) and a robustly
stabilizing controller C = X

Y
. Then, at frequency ω, the criterion function

JWC(D, C, Wl, Wr, ω) is obtained as

JWC(D, C, Wl, Wr, ω) =
√

γopt(ω), (13)
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where γopt(ω) is the optimal value of γ for the following standard convex opti-
mization problem involving LMI constraints:

minimize γ

over γ, τ

subject to τ ≥ 0 and






Re(a11) Re(a12)

Re(a∗12) Re(a22)




− τ






R −Rδ̂

(−Rδ̂)T δ̂T Rδ̂ − 1




 < 0

(14)

where

• a11 = (Z∗

NW ∗

l1Wl1ZN + Z∗

DW ∗

l2Wl2ZD)− γ(QZ∗

1Z1)
• a12 = Z∗

NW ∗

l1Wl1e + W ∗

l2Wl2Z
∗

D − γ(QZ∗

1 (Y + eX))
• a22 = e∗W ∗

l1Wl1e + W ∗

l2Wl2 − γ(Q(Y + eX)∗(Y + eX))
• Q = 1/(X∗W ∗

r1Wr1X + Y ∗W ∗

r2Wr2Y )
• Z1 = XZN + Y ZD.

Proof: see (Bombois et al., 2001b).

5 A robust stability oriented quality measure for D

In this section we introduce control-oriented quality measures for the generic
PE uncertainty set (7) obtained by a validation experiment, namely the worst-
case chordal distance and the worst-case ν-gap between a model Gmod

2 and the
set D. The worst-case chordal distance is a frequency function, while the worst-
case ν-gap is a global measure. These measures are control-oriented because
they are related to sets of stabilizing controllers. The worst-case ν-gap is an
extension of the ν-gap, introduced in (Vinnicombe, 1993), which is a measure
of distance between two transfer functions. For the sake of completeness, we
first briefly recall the definition of ν-gap for scalar transfer functions and the
definition of generalized stability margin linked to this metric.

Definition 3 The ν-gap metric between two transfer functions G1 and G2,
introduced in (Vinnicombe, 1993) and denoted δν, is defined as

δν(G1, G2) =







max
ω

κ (G1(e
jω), G2(e

jω)) if W (G1, G2) = 0

1 otherwise
(15)

2 Gmod is the model used for control design; typically the center of D, or a low
order approximation of this center contained in D.
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where

κ
(

G1(e
jω), G2(e

jω)
)

,
|G1(e

jω)−G2(e
jω)|

√

1 + |G1(ejω)|2
√

1 + |G2(ejω)|2
(16)

and where W (G1, G2) = wno(1 + G∗

1G2) + η(G2)− η̃(G1).

Here G∗(ejω) = G(e−jω), η(G) (resp. η̃(G)) denotes the number of poles of G in
the complement of the closed (resp. open) unit disc, while wno(G) denotes the
winding number about the origin of G(z) as z follows the unit circle indented
into the exterior of the unit disc around any unit circle pole and zero of G(z).

If the winding number condition W (G1, G2) = 0 is satisfied, then the ν-gap
between two plants has a simple frequency domain interpretation (in the SISO
case). Indeed, the quantity κ(G1(e

jω), G2(e
jω)) is the chordal distance between

the projections of G1(e
jω) and G2(e

jω) onto the Riemann sphere of unit diam-
eter with South Pole at the origin of the complex plane (Vinnicombe, 1993).
The distance δν(G1, G2) between G1 and G2 is therefore, according to (15),
the supremum of these chordal distances over all frequencies. Observe that
0 6 δν(G1, G2) 6 1.

Consider now a closed loop system made up of the feedback interconnection
of a system G and a controller C: see Figure 1.

G

C

f

f

- -

��

-
6

?

+
+

+
−

r2(t) u(t) y(t)

r1(t)

Fig. 1. Closed-loop system

The closed loop transfer function matrix between [r1 r2]
T and [y u]T is the

matrix T (G, C) defined in (10).

Definition 4 The generalized stability margin of the closed loop system
[G C] is defined as (Vinnicombe, 1993)

bGC =







‖T (G, C)‖−1
∞

= min
ω

κ
(

G(ejω),− 1
C(ejω)

)

if [G C] is stable

0 otherwise

Thus, the generalized stability margin of a closed loop system [G C] is mea-
sured by the least chordal distance between the projections on the Riemann
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sphere of G and of the inverse of −C. It is also important to note that, for
a given plant G, and whatever the linear controller, the generalized stability
margin has a maximum value bopt(G) (see e.g. (Zhou and Doyle, 1998)) given
by

bopt(G) = max
C

bGC =
√

1− ‖ [N M ] ‖2
H , (17)

where ‖ A ‖H is the Hankel norm of the operator A (see e.g. (Zhou et al., 1995))
and {N, M} is the normalized coprime factorization of G.

5.1 Robust stability and the ν-gap

The main interest of the ν-gap metric is its use in a range of robust stability
results. One of these results relates the size of the set of robustly stabilizing
controllers of a ν-gap uncertainty set (i.e. an uncertainty set defined with the
ν-gap) to the size of this uncertainty set (Vinnicombe, 2000).

Proposition 1 Let us consider the uncertainty set Gγ, centered at a model
Gmod, and defined by:

Gγ =
{

G | κ
(

Gmod(e
jω), G(ejω)

)

≤ γ(ω) ∀ω and δν(Gmod, G) < 1
}

,

with 0 ≤ γ(ω) ≤ 1 ∀ω. Then, a controller C stabilizing Gmod stabilizes all
plants in the uncertainty region Gγ if and only if it lies in the controller set:

Cγ =

{

C(z) | κ

(

Gmod(e
jω),−

1

C(ejω)

)

> γ(ω) ∀ω

}

.

A simpler min-max version of this Proposition is as follows.

Proposition 2 (Vinnicombe, 2000) Let us consider the ν-gap uncertainty set
Gβ of size β, centered at a model Gmod:

Gβ = {G | δν(Gmod, G) ≤ β}.

Then, a controller C stabilizing Gmod stabilizes all plants in the uncertainty
region Gβ if and only if it lies in the controller set:

Cβ = {C(z) | bGmodC > β}.

The size β of a ν-gap uncertainty set Gβ is thus directly connected to the size
of the set of all controllers that robustly stabilize Gβ. Moreover, the smaller is
this size β, the larger is the set of controllers that robustly stabilize Gβ.
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5.2 The worst case distance between a model and a validated PE model set

We now build on these robust stability results in order to connect validated PE
uncertainty sets to sets of robustly stabilizing controllers. Proposition 2 shows
that the Gmod-based controller set that is guaranteed to robustly stabilize all
systems in D is large if the largest ν-gap between Gmod and any plant in
D remains small. We therefore extend the definitions of distance between two
models to definitions of worst case distance between a model and all models
in a PE model set.

Definition 5 Consider a PE uncertainty set D of the form (7) and a model
Gmod. The worst case chordal distance at frequency ω between Gmod and
D is defined as:

κWC(Gmod(e
jω), D) = sup

GD∈D

κ(Gmod(e
jω), GD(ejω)).

Definition 6 Consider a PE uncertainty set D of the form (7) and a model
Gmod. The worst case ν-gap between Gmod and D is defined as:

δWC(Gmod, D) = sup
GD∈D

δν(Gmod, GD).

The worst case ν-gap can alternatively be defined as the supremum over all
frequencies of the worst case chordal distance. This is shown in the following
lemma, which is an extension of a proposition presented in (Vinnicombe, 2000).

Lemma 1 If W (Gmod, GD) = 0 for one plant GD ∈ D, then the worst case ν-
gap δWC(Gmod, D) defined in Definition 6 can also be expressed in the following
way using the worst case chordal distance:

δWC(Gmod, D) = sup
ω

κWC (Gmod(e
jω), D) (18)

where κWC(Gmod(e
jω), D) is defined in Definition 5.

Proof: See (Bombois et al., 2000b).

5.3 Robustly stabilizing controller sets

Having extended the concept of chordal distance and of ν-gap between plants
to that of worst-case chordal distance and worst-case ν-gap between a model
and a validated PE uncertainty set D, we can now also extend the stability
results of Propositions 1 and 2 to the context of our validated PE sets.

18



Theorem 3 Consider a PE uncertainty region D having the structure (7),
and a model Gmod, with δWC(Gmod, D) < 1. Then the set of controllers defined
by

Cκ(Gmod, D) =

{

C | κWC(Gmod(e
jω), D) < κ

(

Gmod(e
jω),−

1

C(ejω)

)

∀ω

}

(19)
are guaranteed to stabilize all plants in the uncertainty region D.

Proof: immediate consequence of Proposition 1 and of the definition of worst-
case chordal distance.

A more compact but more conservative version of this robust stability theorem
is as follows.

Theorem 4 (Min-Max version) Consider a PE uncertainty set D having
the structure (7), and a model Gmod, with δWC(Gmod, D) < 1. Then the set of
controllers defined by 3

Cδ(Gmod, D) = {C | δWC(Gmod, D) < bGmodC} (20)

are guaranteed to stabilize all plants in the uncertainty region D.

Proof: immediate consequence of Proposition 2.

5.4 Computation of the worst case chordal distance and worst case ν-gap

We have shown in (Bombois et al., 2000b) that the worst case chordal distance
between a model Gmod and all systems in D can be computed at every fre-
quency as the solution of an optimization problem involving LMI constraints.
Several algorithms have been devised for solving these problems (Boyd et
al., 1994). The worst case ν-gap can then be computed from Lemma 1 using
a gridding procedure.

Theorem 5 Consider a model Gmod and a generic PE uncertainty set D de-

fined by (7). Then κWC(Gmod(e
jω), D) =

√

γopt(ω), where γopt(ω) is the optimal

value of γ(ω) in the following standard convex optimization problem involving
LMI constraints:

minimize γ

over γ, τ

subject to τ ≥ 0 and

3 Observe that this set Cδ(Gmod,D) is strictly included in the set Cκ(Gmod,D)
defined above.
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Re(a11) Re(a12)

Re(a∗12) Re(a22)




− τ






R −Rδ̂

(−Rδ̂)T δ̂T Rδ̂ − 1




 ≤ 0 (21)

with a11 = (Z∗

NZN −Z∗

NxZD−Z∗

Dx∗ZN +Z∗

Dx∗xZD)− γ(Z∗

NQZN +Z∗

DQZD),
a12 = Z∗

Ne − Z∗

Nx − Z∗

Dex∗ + Z∗

Dxx∗ − γ(Z∗

NeQ + Z∗

DQ), a22 = ee∗ − e∗x −
ex∗ + xx∗ − γ(ee∗Q + Q), Q = 1 + x∗x and x = Gmod(e

jω).
The worst case ν-gap is then obtained as

δWC(Gmod, D) = max
ω

κWC(Gmod(e
jω), D).

Proof: see (Bombois et al., 2000b).

6 Model validation for control

The results of section 5.3 constitute the basis for connecting the quality of
a PE validation experiment with the size of sets of stabilizing controllers.
Roughly speaking, they tell us that the smaller the size of the validated set,
as measured by the worst case ν-gap (a single number) or the worst case
chordal distance (a frequency function) between Gmod and all members of
that set, the larger the set of stabilizing controllers. The results of Theorem 3
and 4 are valid with respect to any model Gmod, whether it be G(z, δ̂) or any
other model. An important aspect of these robust stability results is that all
quantities are available for computation. Observe that the left hand side of
the inequality in (19) is not a function of C while the right hand side is not
a function of D. Thus, δWC(Gmod, D) and κWC(Gmod(e

jω), D) can be taken as
robust stability oriented measures of quality for a validated set, in that the
smaller these measures, the larger are the sets of model-based controllers that
are guaranteed to stabilize all models in the corresponding uncertainty set.

6.1 Comparing validated PE uncertainty sets

The uncertainty set D that results from a PE identification experiment is very
much dependent on the experimental conditions (open loop or closed loop
identification, choice of input signal spectrum, number of data, etc). Different
validation experiments lead to different PE uncertainty sets. The results of the
previous section, and the observations above, allow us to compare the quality
of these uncertainty sets in terms of robust stabilization.

Theorem 6 Consider two different validated PE sets D(1) and D(2), obtained
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from two different validation experiments. Let Gmod be a model that belongs to
both sets and that is used for control design. Then:

κWC(Gmod(e
jω), D(1)) < κWC(Gmod(e

jω), D(2)) ∀ω

⇒ Cκ(Gmod, D
(2))⊂Cκ(Gmod, D

(1)). (22)

Proof: immediate consequence of Theorem 3.

Theorem 7 Consider two different validated PE sets D(1) and D(2), obtained
from two different validation experiments, both containing the model Gmod.
Then:

δWC(Gmod, D
(1)) < δWC(Gmod, D

(2)) ⇒ Cδ(Gmod, D
(2)) ⊂ Cδ(Gmod, D

(1)).
(23)

Proof: immediate consequence of Theorem 4.

Corollary 1 Among k validated uncertainty regions D(i) obtained from k val-
idation experiments for a model Gmod, the uncertainty region D∗ that generates
the largest set Cδ(Gmod, D

(i)), i = 1...k, of Gmod-based robustly stabilizing con-
trollers is

D∗ = arg min
D(i)

δWC(Gmod, D
(i)).

If D̄ denotes the intersection of the sets D(i), then the set Cδ(Gmod, D̄) contains
all controller sets Cδ(Gmod, D

(i)), i = 1...k, including Cδ(Gmod, D
∗).

6.2 Practical use of the worst case ν-gap

As said above, the worst case ν-gap is a nice and compact measure of how well
the uncertainty region D is tuned for control stability robustness. In order to
present a practical use of this measure, let us consider the following situations.

Suppose first that we have performed one validation experiment leading to one
uncertainty region D, and no model has yet been chosen for control design.
Before we perform any control design, we want to check whether this uncer-
tainty region is suited for the design of robustly stabilizing controllers. One
way to evaluate the quality of D for robust control design is to check whether

δWC(G(z, δ̂), D) � bopt(G(z, δ̂)), (24)

where bopt(G(z, δ̂)) was defined in (17). Note that both quantities in (24) can be

computed. If (24) holds, then the set of controllers Cδ(G(z, δ̂), D) that robustly
stabilize D is large, and D is thus a suitable uncertainty set for the design

21



of a robust controller. If (24) does not hold, it might be advisable to perform
a new validation experiment that would lead to a smaller δWC(G(z, δ̂), D),
thereby allowing for a larger choice of robustly stabilizing controllers. The
choice of experimental conditions that lead to a very small δWC(G(z, δ̂), D) is
the object of present research; some preliminary considerations are given in
the next subsection.

Suppose now that we have obtained an uncertainty set D for which (24) holds.
One can then choose for control design either the full order model G(z, δ̂)
estimated during the validation procedure or a low order approximation Gmod

of G(z, δ̂). One should then check whether

δWC(Gmod, D) � bopt(Gmod). (25)

Observe that the following inequality holds:

δWC(Gmod, D) ≤ δWC(G(z, δ̂), D) + δν(Gmod, G(z, δ̂)). (26)

If (25) holds, then by Theorem 4 the set of Gmod-based controllers that robustly
stabilize D is large, and the nominal model Gmod, jointly with the uncertainty
set D, are suitable for robust control design. If (25) does not hold, it then
behooves us to replace the initial model Gmod by another model that is closer
to the center of D.

Finally, note that the discussion in this subsection has advocated the use of the
worst case ν-gap (and its comparison with the corresponding bopt) to evaluate
the quality of an uncertainty region for robust control design. One advantage
is that this worst case ν-gap is just one number. However, at the cost of a
more complicated but less conservative analysis, one could also use the worst-
case chordal distance between G(ejω, δ̂) and D to evaluate the quality of an
uncertainty set D, on the basis of Theorem 6 rather than Theorem 7.

6.3 Control-oriented design of the validation experiment

It has been argued in (Date and Vinnicombe, 1999) that, in identification for
control, it makes sense to pose the identification problem for the nominal model
Gmod as one of finding the model that minimizes δν(G0, Gmod); a suboptimal
solution to this problem has been proposed in that paper. We have argued in
the present paper that it makes sense (from a robust stability point of view) to
design the validation experiment such as to minimize δWC(G(z, δ̂), D). This
optimal experiment design problem has been addressed in (Hildebrand and
Gevers, 2002) where optimal inputs have been constructed that minimize this
measure.
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7 Conclusions

We have developed a Prediction Error model validation procedure that leads
to uncertainty sets that have a probability level attached to them, the prob-
ability level being at the designer’s choice. Our model validation procedure
is data driven, and does therefore not rely on such typical prior assumptions
as a prior bound on the noise, or a bound on the exponential decay of the
impulse response of the true system. Our PE model set validation procedure
is nothing but an identification experiment with a full order model structure.
The validated uncertainty sets are described in a generic form, which we have
called the generic PE model uncertainty set. Our validation procedure has
been extended in (Bombois et al., 2000a) to reduced order model sets, using
a stochastic embedding approach.

We have developed robust analysis tools that are compatible with such PE
uncertainty sets, both for the full order case and for the reduced order case.
These tools allow one to compute necessary and sufficient conditions for the
validation of a controller for stability over all models in a PE uncertainty set.
They also allow one to compute the worst case performance achieved by some
controller over all models in such set. These results can be characterized as
verification tools, i.e. for all models in a validated PE set, they allow one to
verify whether some tentative controller meets the specifications.

Another part of our results pertain to validation design for robust control. In
order to establish a connection all the way from the design of the validation
step to the specification of a set of robustly stabilizing controllers, we have
defined a measure of the size of the PE validated sets, and shown that it is
connected to the size of the controller sets that are guaranteed to robustly
stabilize all models in these PE validated sets.

In the companion paper (Gevers et al., 2002) we shall illustrate the use of both
the controller validation tools and the validation for control tools developed in
this paper on two realistic examples. We end up with a note of caution. The
results of our paper have been presented in a SISO context. While many of
the new concepts on model and controller validation carry over to the MIMO
case, the extension of a number of our technical and computational results is
by no means trivial.
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Linköping University, Sweden.

Hjalmarsson, H. and L. Ljung (1992). Estimating model variance in the case of
undermodeling. IEEE Trans. Automatic Control 37, 1004–1008.

Kosut, R.L. (1995). Uncertainty model unfalsification : a sytem identification
paradigm compatible with robust control design. In: Proc. Conference on
Decision and Control. New Orleans,LA.

Ljung, L. (1997). Identification, model validation and control. 36th IEEE Conf. on
Decision and Control, plenary lecture.

Ljung, L. (1998). Identification for control - what is there to learn ?. In: Workshop
on Learning, Control and Hybrid Systems, Bangalore. Bangalore, India.

Ljung, L. (1999). System Identification: Theory for the User, 2nd Edition. Prentice-
Hall. Englewood Cliffs, NJ.

Ljung, L. (2000). Model error modeling and control design. In: CD-Rom Proc. of
IFAC Symposium on System Identification, paper WeAM1-3. Santa Barbara,
California.
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