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Abstract. Parameter identification experiments deliver an identified model together with an
ellipsoidal uncertainty region in parameter space. The objective of robust controller design is thus
to stabilize all plants in the identified uncertainty region. The subject of the present contribution is
to design an identification experiment such that the worst-case ν-gap over all plants in the resulting
uncertainty region between the identified plant and plants in this region is as small as possible.
The experiment design is performed via input power spectrum optimization. Two cost functions
are investigated, which represent different levels of trade-off between accuracy and computational
complexity. It is shown that the input optimization problem with respect to these cost functions is
amenable to standard numerical algorithms used in convex analysis.
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1. Introduction. This paper continues the line of research that aims at connect-
ing prediction error identification methods with robust control theory ([2],[3],[4],[10]).
Subject to investigation are discrete time SISO real-rational stable LTI plants, which
are to be identified in open loop within an ARX model structure. We assume the
true plant to lie in the model set. Hence the model error is determined only by the
covariance of the estimated parameter vector.

Since the aim of the identification experiment is control design, it is desirable
to obtain an uncertainty region with good stability robustness properties. By this
is meant that the set of controllers that stabilize all models in the uncertainty set
should be as large as possible. A suitable measure of robust stability that allows
one to connect the ”size” of an uncertainty set with a set of robustly stabilizing
controllers is the worst-case ν-gap δWC(Ĝ,D) introduced in [10]. It is the supremum
of the Vinnicombe ν-gap (see e.g. [28]) between the identified model Ĝ and all plants
in the uncertainty set D. Specifically, if δWC(Ĝ,D) = β, then all controllers C that
stabilize the model Ĝ with a stability margin bĜ,C > β stabilize all plants in D.

In previous papers ([3],[4],[10]) a special type of uncertainty sets D of trans-
fer functions, which emerges from prediction error identification experiments, was
described and investigated. It is given by an ellipsoid in parameter space and is
determined by the covariance matrix of the parameter vector and the prespecified
confidence level. The latter is defined to be the probability with which the true plant
is lying inside the considered uncertainty set.

The goal of this paper is to minimize the worst-case ν-gap of such uncertainty
regions D by choosing a suitable input u(t) for the identification experiment. To
restrict the class of admissible inputs we assume the total input energy to be bounded.

The problem setting of experiment design first arose in statistics and was exten-
sively studied throughout the last century. Important results were obtained by Kiefer
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and Wolfowitz (see e.g. [15],[16]), Fedorov (e.g. [9]), Mehra (e.g. [20],[21]), Goodwin,
Payne and Zarrop (e.g. [12],[30]) and others.

We shall adopt the most common viewpoint and study input optimization in
the frequency domain, i.e. optimize the input power spectrum with respect to a cost
function that depends on the average per data sample information matrix M̄ of the
experiment. This matrix is defined as the limit of the ratio between the information
matrix and the number of data as the number of data tends to infinity (see e.g. [30]).
For typical number of data this leads to a sufficiently good approximation of the
optimal input. The latter can be obtained only by computationally expensive time
domain optimization (see e.g. [11],[23],[26],[6]). Thus we will essentially regard the
average information matrix instead of the input power spectrum as the quantity that
is going to be optimized. Once the optimal average information matrix, i.e. the one
that minimizes the considered cost function, is found, we proceed by construction of
an input power spectrum that produces this information matrix.

For different classes of cost functions iterative procedures were designed to find
the optimal input power spectrum up to a prespecified precision. Most common cost
functions are ln(det M̄−1) (D-optimality), trM̄−1 (A-optimality), trWM̄−1, where
W ≥ 0 (L-optimality), λmax(M̄

−1) (E-optimality), Φs = (p−1trM̄−s)1/s, where p

is the dimension of the parameter vector and s = 0, 1, . . . ,∞ (Φ-optimality). All
mentioned cost functions except Φ∞ = λmax(M̄

−1) depend analytically on the entries
of M̄ and Kiefer-Wolfowitz theory can effectively be applied to them (see [15]). All
above-mentioned criteria are convex and monotonic with respect to M̄ (see [30, p.39]).

In this paper, we optimize the input power spectrum with respect to the worst-
case ν-gap of the uncertainty region D. This is a nonstandard cost function, which
is nonsmooth and thus more difficult to treat than the common above-mentioned
criteria. We shall also introduce another cost function, which approximates the worst-
case ν-gap, but is somewhat simpler. Nevertheless, both cost functions are compound
criteria (see [15, section 4G]) and application of Kiefer-Wolfowitz theory does not make
them more tractable. However, the proposed criteria satisfy the natural condition of
monotonicity with respect to M̄ , as well as the condition of quasiconvexity, which is
slightly weaker than convexity.

It follows from a classical result on trigonometric moment spaces (see [14, chapter
VI, Theorem 4.1]) that the set of possible average information matrices M̄ can be
represented as the feasible set of a linear matrix inequality (LMI). For a survey on
LMI’s see e.g. [5]. Since the worst-case ν-gap and the other proposed criteria are qua-
siconvex with respect to the input power spectrum, the apparatus of convex analysis
and the theory of LMI’s can be applied to solve this optimization problem. For recent
results in convex optimization see e.g. [22].

In the last years several authors successfully treated input design problems arising
in Identification for Control with convex optimization methods. In [18], the input
spectrum for an open loop identification experiment was designed to minimize the
closed-loop system performance. By a Taylor series truncation, the cost function
reduced to the weighted-trace criterion (L-optimality). However, the input spectra
were restricted to those which can be realized by white noise filtered through an FIR
filter. An LMI description of the corresponding set of information matrices can be
derived from the positive-real lemma ([5],[29]).

In this paper we optimize over the whole set of nonnegative input power spectra.
It can be shown [30] that under the assumptions made above the corresponding set of
admissible average information matrices, over which the optimization is performed,
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represents a moment space of a trigonometric Tchebycheff system. The foundations
of the theory of moment spaces are classical. In the last century important contri-
butions were made by Krein (see e.g. [17]), Karlin, Shapley [13] and others. For a
comprehensive treatment, see textbook [14] by Karlin and Studden. It follows from
a well-known fact of Tchebycheff system theory (see e.g. [14]) that any admissible
average information matrix M̄ can be obtained by applying an input with discrete
power spectrum, and that there exist admissible M̄ which can be realized only by
discrete power spectra. A restatement of this assertion is provided in Theorem 3.6
in this paper. In view of this, we propose an algorithm that yields optimal input
power spectra which are discrete. Given the result just quoted, this is in no way a
restriction. There are different ways to choose an input sequence with a desired power
spectrum. We can choose the input e.g. as a multisine function. However, in many
cases one could use also binary signals (see e.g. [30, p.29]) or other functions.

Another approach, which leads to a suboptimal discrete input power spectrum,
was proposed by van den Eijnde and Schoukens ([25],[27]). Here a finite subset of
frequencies is prespecified and the optimal input power spectrum is sought within
this subset. Advantages of this suboptimal method are less computational effort and
an easier way to generate an input signal with the desired spectrum.

Let us mention also the paper [7], where identification in the ν-gap metric was
treated outside the context of input design. The identification of a model was per-
formed from a set of frequency response measurements in a way that aimed at mini-
mizing the ν-gap between the true plant and the model.

We stress that the assumption of an ARX model structure and an input en-
ergy constraint are in no way restrictive. The ideas and methods proposed in the
present paper easily carry over to other model structures and to input power or out-
put power/energy constraints.

The remainder of the paper is structured as follows. In the next section the con-
sidered identification problem as well as the cost functions will be formally defined. In
section 3 we will show that the set over which the optimization takes place is amenable
to an LMI formulation. In section 4 we prove that the optimization problem is qua-
siconvex. In section 5 we show how to construct cutting planes to the different cost
functions. Sections 3 to 5 are the key part of the paper. The results obtained therein
allow the problem to be treated with standard convex analysis methods. In section
6 we provide some results that are useful for designing stopping criteria for iterative
search algorithms and quality assessment of the solution. Since the optimization takes
place in an abstract parameter space, it is necessary to convert values in this space
into power spectra and input sequences. This task is accomplished in section 7. In
section 8 we present a simulation example, which demonstrates the superiority of the
proposed cost functions over the classical design criteria D- and E-optimality. Finally,
in section 9 we draw some conclusions.

2. Problem setting. Let us consider an ARX model structure

y(t)+a1y(t− 1)+ . . .+ana
y(t−na) = b1u(t−nk)+ . . .+ bnb

u(t−nk−nb+1)+ e(t),

where u(t) is the input signal, y(t) is the output signal, both onedimensional, θ =
(a1, . . . , ana

, b1, . . . , bnb
)T is the parameter vector, and e(t) is normally distributed

white noise with covariance λ0. Let us assume that the true system dynamics can be
described within this structure and corresponds to a parameter value θ = θ0. Assume
further that the true system is stable. Denote by z−1 the delay operator. Then we
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can write

y = z−nk+1 b1z
−1 + . . .+ bnb

z−nb

1 + a1z−1 + . . .+ ana
z−na

u+
1

1 + a1z−1 + . . .+ ana
z−na

e =

= z−nk+1B(θ)

A(θ)
u+

1

A(θ)
e = G(θ)u+

1

A(θ)
e,

where A,B are obviously defined polynomials in the delay operator with coefficients
depending on the parameter vector. Note that by our stability assumption A has no
zeros on the unit circle and hence |A|2 is strictly positive there.

Suppose an identification experiment with input (u(1), . . . , u(N)) is performed,
leading to an observed output (y(1), . . . , y(N)) with N data samples, where u(t) is a
realization of a quasistationary stochastic process with power spectrum Φu. Suppose a
parameter estimate θ̂ is obtained by least squares prediction error minimization. Then
it is well-known (see [19]) that the estimate θ̂ is asymptotically unbiased as N → ∞
and its covariance for large N is given by E(θ0 − θ̂)(θ0 − θ̂)T ≈ λ0

N (ĒψψT )−1, where
ψT = (−z−1y, . . . ,−z−nay, z−nku, . . . , z−nk−nb+1u) is the gradient of the predictor
with respect to θ at θ = θ0. The power spectrum of ψ is given by

Φψ =
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This yields the following asymptotic expression for the parameter covariance.

E(θ0 − θ̂)(θ0 − θ̂)T ≈
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= M−1,

where z = ejω. The inverse of the parameter covariance matrix is the Fisher infor-
mation matrix. Let us denote the asymptotic expression for the information matrix
by M and the average information matrix per data sample (see e.g. [30, p.24]) by M̄ ,



Input design with respect to the worst-case ν-gap 5

M̄ = 1
NM . We obtain

M̄ =
1

2π

π
∫

−π
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dω.(2.1)

Note that in the expansion of M̄ , we have A = A(θ0), B = B(θ0). Since the

parameter estimate θ̂ is asymptotically normally distributed (see [19]), we can assume,
following [10], that the true parameter vector θ0 lies with a prespecified probability
α ∈ (0, 1) in the uncertainty ellipsoid

U =

{

θ| N

χ2
na+nb

(α)
(θ − θ̂)T M̄(θ − θ̂) < 1

}

,(2.2)

where χ2
l is the χ2 probability distribution with l degrees of freedom.

The uncertainty ellipsoid U corresponds to an uncertainty set

D =

{

G(z, θ) = z−nk+1B(θ)

A(θ)
|θ ∈ U

}

=

{

G(z, θ) =
ZN (z)θ

1 + ZD(z)θ
|θ ∈ U

}

in the space of transfer functions. Here

ZN = z−nk+1(0 · · · 0 z−1 · · · z−nb), ZD = (z−1 · · · z−na 0 · · · 0)(2.3)

are row vectors of dimension na + nb. The set D belongs to the class of generic
prediction error model uncertainty sets as defined in [10].

The worst-case ν-gap between the identified model G(θ̂) and the uncertainty
region D is defined by

δWC(G(θ̂),D) = sup
θ∈U

δν(G(θ̂), G(θ)),(2.4)

where δν denotes the Vinnicombe ν-gap between two plants (see [28]). Since G(θ̂)
belongs to D, the worst-case ν-gap can be expressed in the following way (see [10,
Lemma 5.1]).

δWC(G(θ̂),D) = sup
ω∈[0,π]

κWC(G(ejω, θ̂),D),(2.5)

where κWC(G(ejω, θ̂),D) is called the worst-case chordal distance between G(θ̂) and
D at frequency ω and is defined by

κWC(G(ejω, θ̂),D) = sup
θ∈U

|G(ejω, θ̂) −G(ejω, θ)|
√

(1 + |G(ejω, θ̂)|2)(1 + |G(ejω, θ)|2)
.(2.6)
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The worst-case ν-gap is directly related to the robustness properties of the un-
certainty region D. The smaller it is, the larger is the set of controllers stabilizing
simultaneously all plants in D. Therefore our primary goal shall be to minimize the
quantity δWC(G(θ̂),D) = maxω∈[0,π] κWC(G(ejω, θ̂),D) by choosing an input with an
appropriate power spectrum.

To be more precise, by input spectrum we mean a nonnegative measure on [−π, π]
such that the equality

∫ π

−π
Φuϕ(ω) dω =

∫ π

−π
Φuϕ(−ω) dω holds for all functions

ϕ(ω) ∈ C∞([−π, π]). To any such measure Φu on [−π, π] corresponds a unique non-

negative measure Φ̄u on [0, π] such that
∫ π

−π
Φuϕ(ω) dω =

∫ π

0
Φ̄u

ϕ(ω)+ϕ(−ω)
2 dω for all

ϕ ∈ C∞([−π, π]). For details of constructing Φ̄u from Φu see e.g. [30, p.23]. In the
sequel we will denote the single-sided measure Φ̄u also by Φu. Since the measures are
defined on different intervals, confusion is excluded.

To restrict the class of admissible power spectra we impose an input energy con-
straint

1

2π

∫ π

−π

Φu(ω)dω ≤ c,(2.7)

where c > 0 is a prespecified positive constant.
The worst-case ν-gap depends on Φu via the average per data sample information

matrix M̄ , which enters in the expression for the set U . Furthermore, it depends via
M̄ on the unknown true parameter value θ0 and noise covariance λ0. In addition it
depends on the identified parameter value θ̂, which is naturally not available before
the identification experiment is performed. All these three quantities have to be
approximated with values derived from previous knowledge about the system, for
instance from a preliminary identification experiment. Since the expectation of θ̂
equals θ0, these two quantities can be approximated by the same value. Denote this
value by θ̄, and denote the approximation of λ0 by λ̄.

We can now formulate our main
Problem 1 Find Φu satisfying (2.7) such that M̄(Φu) defined by (2.1) minimizes

the cost function J1 = δWC(G(θ̂),D) defined by equations (2.5),(2.6).
Along with the worst-case ν-gap of the uncertainty region D, we will consider

another cost function, which is easier to compute and is an approximation of δWC .
Let us approximate cost function J1 = J1(M̄) by its asymptotic expression for

large information matrices. For a fixed positive definite matrix M̄0 the size of the
parameter ellipsoid U defined by any multiple M̄ = βM̄0 of M̄0, where β > 0, is
proportional to β−1/2. Since for small ellipsoids the worst-case ν-gap is asymptotically
proportional to the size of the former, it follows that for large β the value of J1(M̄)
diminishes asymptotically proportionately to β−1/2. Thus we can approximate J1 by

J2 = lim
ε→0

J1(ε
−2M̄)

ε
.(2.8)

Problem 2 Find Φu satisfying (2.7) such that M̄(Φu) defined by (2.1) minimizes
cost function J2 defined by equation (2.8).

The goal of the present paper is the development of numerical algorithms for solv-
ing both Problems 1 and 2. There is a two-fold reason for introducing cost function
J2. Beside its much lower computational complexity, it turns out that identification
with an input power spectrum minimizing J2 in many cases gives better results than
one with an input power spectrum minimizing J1. This apparently counter-intuitive
observation has the following reason. Both cost functions depend on the identified
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parameter value θ̂, the true parameter value θ0 and the noise covariance λ0. As
mentioned above, these quantities are unknown and must be replaced by estimates
obtained e.g. from a preliminary identification experiment. This approximation in-
troduces an error to the argument of the minimum of the cost functions J1 and J2,
i.e. to the solutions of Problems 1 and 2. Now simulations show that the impact of
this effect on arg minJ2 is lower than that on arg minJ1 and that this difference as
a rule overweighs the error introduced by approximating cost function J1 by J2. We
will address this issue again in the simulation section.

3. LMI description of the search space. In this section we shall describe
the set of possible average information matrices M̄ , over which the optimization takes
place, as the feasible set of an LMI.

The following fact is due to Payne and Goodwin [24].
Proposition 3.1. The average information matrix M̄ is contained in a (na+nb)-

dimensional affine subspace of the space of symmetric (na+nb)× (na+nb)-matrices.
We find it convenient to give a proof here in order to provide explicit expressions

that clarify the structure of M̄ .
Proof. Define a0 = 1 and n = na + nb − 1. Then we have

|B|2 =

nb−1
∑

k=−(nb−1)





min(nb,nb−k)
∑

j=max(1,1−k)

bj+kbj



 zk,

−BĀ =

na−1
∑

k=−nb





min(nb,na−k)
∑

j=max(1,−k)

−aj+kbj



 zk,

|A|2 =

na
∑

k=−na





min(na,na−k)
∑

j=max(0,−k)

aj+kaj



 zk.(3.1)

Using (3.1) in (2.1) and ordering by powers of z, we can rewrite (2.1) as M̄ =
1
2π

∫ π

−π
Φu

λ0|A|2

(

∑n
i=−n M̃iz

i
)

dω + M̃ . The matrices M̃i are constant and depend

only on the coefficients of A and B. By M̃ the integral over the second term in (2.1)
is denoted. It is a constant matrix and independent of Φu. M̃ is most easily computed
using the method proposed in [19, p.50]. Note that M̃i = M̃T

−i. Hence we obtain

M̄ =
1

2π

∫ π

−π

Φu
λ0|A|2

dωM̃0 +

n
∑

i=1

(

1

2π

∫ π

−π

Φu
λ0|A|2

zi dω(M̃i + M̃T
i )

)

+ M̃

=
1

π

∫ π

0

Φu
λ0|A|2

dω
M̃0

2
+

n
∑

i=1

(

1

π

∫ π

0

Φu
λ0|A|2

cos(iω) dω
M̃i + M̃T

i

2

)

+ M̃.(3.2)

Thus M̄ is contained in the (n + 1)-dimensional affine subspace that is spanned by
M̃0, M̃i + M̃T

i , i = 1, . . . , n, and shifted by M̃ . This completes the proof. 2

Let us compose a vector x̃ ∈ Rn+1 of real numbers x̃i, i = 0, . . . , n, defined by
x̃i = 1

π

∫ π

0
Φu

λ0|A|2 cos(iω) dω.

Definition 3.2. The quantities x̃k = 1
π

∫ π

0
Φu

λ0|A|2 cos(kω) dω, k ∈ N, are called

trigonometric moments of the measure Φu

πλ0|A|2 .

Since 1
πλ0|A|2 is strictly positive on ω ∈ [0, π], we have the following result [30].
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Proposition 3.3. The set {x̃(Φu) |Φu is a nonnegative measure on [0, π]} equals
the moment space M(n+1) of the Tchebycheff system {1, cosω, . . . , cosnω} on [0, π].

For definition and properties of moment spaces see e.g. [14].
The characterization of the space M(n+1) is a special case of the extensively stud-

ied classical trigonometric moment problem. The following theorem is a consequence
of the general result [14, Chapter VI, Theorem 4.1]. It asserts that M(n+1) can be
characterized as the feasible set of an LMI.

Theorem 3.4. A point x̃ ∈ Rn+1 belongs to the space M(n+1) if and only if the
Töplitz matrix composed of the elements of x̃ is positive semidefinite, i.e.

T (x̃) =

















x̃0 x̃1
. . . x̃n

x̃1 x̃0
. . . x̃n−1

. . .
. . .

. . .
. . .

x̃n x̃n−1
. . . x̃0

















≥ 0. 2(3.3)

Since n+ 1 ≥ 2, the strict LMI T (x̃) > 0 is feasible. Hence the feasible set of the
strict version is the interior of M(n+1) (see [5, section 2.5]). By M denote the set of
average information matrices corresponding to the interior of M(n+1). From (3.2) we
have

M =

{

M̄(x̃) = x̃0
M̃0

2
+

n
∑

i=1

x̃i
M̃i + M̃T

i

2
+ M̃ |T (x̃) > 0

}

.

Definition 3.5. Let Φu be a discrete double-sided power spectrum with support
suppΦu ⊂ [−π, π]. The number of points in the intersection suppΦu∩ [−π, π), divided
by two, is called the index of Φu: index(Φu) = 1

2#(suppΦu ∩ [−π, π)). The index
of a single-sided nonnegative discrete measure on [0, π] is defined as the index of the
corresponding double-sided power spectrum.

Remark. This definition of the index is consistent with its definition for nonneg-
ative discrete measures on the interval [0, π] (see e.g. [14]).

The notion of the index also allows us to characterize the interior of the moment
space M(n+1). The following theorem is a standard result on moment spaces.

Theorem 3.6. (see e.g. [14]) Let x̃ be a point in M(n+1). Then the following
conditions hold.
i) x̃ ∈ Bd(M(n+1)) if and only if there exists a discrete nonnegative measure

on [0, π] with index less than n+1
2 that induces x̃. This measure is unique.

ii) x̃ ∈ Int(M(n+1)) if and only if there exists a discrete nonnegative measure
on [0, π] with index n+1

2 that induces x̃. There are exactly two such measures.
Exactly one of them contains the frequency π.

iii) Let x̃ ∈ Int(M(n+1)) and ω ∈ [0, π]. Then there exists a unique discrete
nonnegative measure on [0, π] which induces x̃, has index not exceeding
n+2

2 , and contains the frequency ω. 2

Remark. Measures with index n+1
2 which induce x̃ are called principal realiza-

tions of x̃. The one containing π is called upper principal, the other lower principal
realization. Measures with index not exceeding n+2

2 are called canonical.

We see that the interior of M(n+1) is characterized by those points x̃ which can
be represented by a discrete measure with index not less than n+1

2 .
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Now we shall characterize the set of input power spectra Φu that lead to nonsin-
gular average information matrices M̄ .

Proposition 3.7. Let Φu be a power spectrum and M̄ the corresponding average
information matrix. Then M̄ is singular if and only if Φu is discrete and its index is
less than nb

2 .
Proof. ”⇒”: Suppose M̄(Φu) is singular. Then there exists a nonzero vector

v = (v1, . . . , vna+nb
)T ∈ Rna+nb such that vT M̄v = 0. Expanding M̄ , we obtain

vTM̄v =
1

2π

π
∫

−π

(

Φu
λ0|A|2

|−v1z−1B−. . .−vna
z−naB+vna+1z

−1A+. . .+vna+nb
z−nbA|2

+
1

|A|2 | − v1z
−1 − . . .− vna

z−na |2
)

dω = 0

with z = ejω. This yields −v1z−1 − . . .− vna
z−na = 0 for all z on the unit circle and

−v1z−1B− . . .−vna
z−naB+vna+1z

−1A+ . . .+vna+nb
z−nbA = 0 for all z = ejω such

that ω ∈ suppΦu. From the first identity we obtain v1 = . . . = vna
= 0. Inserting

this in the second equality, we get vna+1 + . . .+ vna+nb
z−nb+1 = 0. Since v 6= 0, this

equation can have at most nb − 1 different roots. Since Φu has to be concentrated at
these roots, it is discrete and its index cannot exceed nb−1

2 .
”⇐”: Suppose Φu is discrete with index less than nb

2 . Denote the frequencies of
Φu by ω1, . . . , ωk′ . They correspond to k different points z1, . . . , zk on the unit circle,
where k < nb. We have

M̄ =
1

2π

k
∑

i=1

αi

λ0|A(zi)|2





















−z−1
i B(zi)

...
−z−na

i B(zi)
z−1
i A(zi)

...
z−nb
i A(zi)









































−z−1
i B(zi)

...
−z−na

i B(zi)
z−1
i A(zi)

...
z−nb
i A(zi)





















∗

+
1

2π

π
∫

−π

1

|A|2





















−z−1

...
−z−na

0
...
0









































−z−1

...
−z−na

0
...
0





















∗

dω.

Here αi > 0 are the weightings of the different frequencies. It is easily seen that
the matrices under the sign of the sum are of (complex) rank one, while the integral
is a matrix which has a rank of at most na. Thus the rank of M̄ does not exceed
na + nb − 1 and M̄ is singular. This concludes the proof. 2

Corollary 3.8. Any M̄ ∈ M is strictly positive definite. 2

This corollary ensures the existence of the inverse M̄−1 in the interior of the
search space.

By inspecting (2.2),(2.4) and (2.8), the reader will have no difficulty to prove the
following monotonicity property.

Proposition 3.9. Let M̄1, M̄2 be two positive semidefinite average information
matrices, and suppose M̄1 ≤ M̄2. Then the values of the cost functions J1,J2 at M̄2

do not exceed the respective values at M̄1. 2

Now we shall include the input energy constraint (2.7) into our framework. By
Proposition 3.9, for any constant β > 1 the value of each of the considered cost
functions at a particular input power spectrum Φu will be not less than its value at
the input power spectrum βΦu. Thus we can replace constraint (2.7) by

1

2π

∫ π

−π

Φu(ω)dω = c.(3.4)
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In [30] it was shown that relations like (3.4) determine affine hyperplanes in the
space of feasible average information matrices. Indeed, we have

1

2π

∫ π

−π

Φu(ω)dω =
λ0

2π

∫ π

−π

Φu
λ0|A|2

(

na
∑

i=0

a2
i +

na
∑

i=1

(

2

na−i
∑

k=0

ak+iak

)

cos iω

)

dω =

= λ0

(

x̃0

na
∑

i=0

a2
i +

na
∑

i=1

x̃i

(

2

na−i
∑

k=0

ak+iak

))

= c.

Thus we get

x̃0 =
1

∑na

i=0 a
2
i

(

c

λ0
−

na
∑

i=1

x̃i

(

2

na−i
∑

k=0

ak+iak

))

.(3.5)

Inserting (3.5) into (3.3), we obtain an LMI on the variables x̃1, . . . , x̃n, i.e. in an n-
dimensional space instead of the initial n+1-dimensional one. The feasible set of LMI
(3.5),(3.3) is a subset of Rn, parametrized by new variables x1, . . . , xn, which we define
by x1 = x̃1, . . . , xn = x̃n. Denote by Xc the interior of this set and by Mc the set of
average information matrices corresponding to points in Xc. Thus the optimization
takes place over the closure of Xc. Let us stack the variables x1, . . . , xn into a vector
x ∈ Rn, to be distinguished from x̃ ∈ Rn+1. While the latter parametrizes the set
M, the former parametrizes the set Mc or Xc.

Using (3.5), we can represent average information matrices in the closure of Mc

as affine functions of the variables x1, . . . , xn. We have

M̄ = M̄0 +

n
∑

i=1

xiM̄i,(3.6)

where

M̄0 =
c

2λ0

∑na

i=0 a
2
i

M̃0 + M̃,

M̄i =
M̃i + M̃T

i

2
−
∑na−i
k=0 ak+iak
∑na

i=0 a
2
i

M̃0, i = 1, . . . , na,

M̄i =
M̃i + M̃T

i

2
, i = na + 1, . . . , n.

Thus the closure of Mc is contained in an n-dimensional affine subspace of the space
of symmetric (na + nb) × (na + nb)-matrices.

Proposition 3.10. The search space of Problems 1 and 2 can be represented
as a section of the trigonometric moment cone M(n+1) and is thus a bounded closed
n-dimensional convex set. It is parametrized by the variables x1, . . . , xn.

Proof. What is left to prove is that relation (3.5) defines a section of the moment
cone M(n+1). Let x̃ be an arbitrary non-zero moment point and Φu(ω) a measure
generating this moment point. Then the ray βx̃, β > 0, will be generated by the
ray βΦu(ω) of measures. On the latter, exactly one measure satisfies relation (3.4).
Therefore exactly one point on the ray βx̃ satisfies relation (3.5). 2

In this section we reduced the infinite-dimensional problem of searching the min-
imum of the cost functions over the set of all admissible input power spectra to the
finite-dimensional problem of searching the minimum over a section of a moment cone.
Moreover, we described the search space as an LMI, namely (3.3), (3.5), and showed
that it is bounded.
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4. Quasiconvexity. In the previous section we proved the search space to be a
bounded convex set. In this section we prove quasiconvexity of cost functions J1,J2

and thus of Problems 1 and 2.
Proposition 4.1. On M cost function J1 is quasiconvex with respect to M̄ .
Proof. The worst-case chordal distance can be expressed as a solution to a gener-

alized eigenvalue problem (GEVP) [10, Theorem 5.1]. We have κWC(G(ejω, θ̂),D) =√
γopt, where γopt is the solution of the GEVP

minimize γ subject to F0 + γF1 + τR ≥ 0, τ ≥ 0.(4.1)

Here F0, F1, R are symmetric matrices given by

F0 = V









−1 0 −ImG(ejω, θ̂) ReG(ejω, θ̂)

0 −1 ReG(ejω, θ̂) ImG(ejω, θ̂)

−ImG(ejω, θ̂) ReG(ejω, θ̂) −|G(ejω, θ̂)|2 0

ReG(ejω, θ̂) ImG(ejω, θ̂) 0 −|G(ejω, θ̂)|2









V T ,

F1 = (1 + |G(ejω, θ̂)|2)V V T ,

R =

(

Ina+nb

−θ̂T
)

M̄
(

Ina+nb
− θ̂
)

−









0 · · · 0
...

. . .
...

0 · · · χ2
na+nb

(α)

N









,(4.2)

where V is a (na + nb + 1) × 4 -matrix defined by

V =

(

ReZTN ImZTN ImZTD ReZTD
0 0 0 1

)

with ZN , ZD given by (2.3).
We will now show that γopt is quasiconvex with respect to R. Choose λ ∈ (0, 1)

and let R1, R2 be symmetric matrices of appropriate dimension. Suppose γ, τ1, τ2 are
nonnegative numbers such that F0 + γF1 + τ1R1 ≥ 0, F0 + γF1 + τ2R2 ≥ 0. We have
to show that there exists τ ≥ 0 such that F0 + γF1 + τ(λR1 + (1 − λ)R2) ≥ 0. If
τ1 = 0 or τ2 = 0, then we can choose τ = 0. Let τ1τ2 > 0. Define

λ′ =
λτ2

λτ2 + (1 − λ)τ1
, τ =

τ1τ2

λτ2 + (1 − λ)τ1
.

Obviously λ′ ∈ (0, 1) and τ > 0. It is easily verified that λτ = λ′τ1, (1 − λ)τ =
(1 − λ′)τ2. Hence we have

F0 +γF1 +τ(λR1 +(1−λ)R2) = λ′(F0 +γF1 +τ1R1)+(1−λ′)(F0 +γF1 +τ2R2) ≥ 0.

Thus if γ is feasible for R = R1 and for R = R2, then it is also feasible for
any linear convex combination of R1, R2. It follows that γopt|R=λR1+(1−λ)R2

≤
max{γopt|R=R1

, γopt|R=R2
}, i.e. quasiconvexity of γopt with respect to R.

Suppose ω ∈ [0, π] is fixed. Note that R affinely depends on M̄ , while F0 and F1

are constant for given ω. Therefore γopt is quasiconvex with respect to M̄ for fixed ω.
But quasiconvexity is preserved under the operation of taking the maximum over a
family of functions and under rescaling by a strictly monotonic function (in this case
the square root). This completes the proof. 2

Proposition 4.2. On M cost function J2 is quasiconvex with respect to M̄ .
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Proof. Let us compute cost function J2.

J2 = lim
ε→0

J1(ε
−2M̄)

ε
= sup
ω∈[0,π]

lim
ε→0



ε−1 sup
z∈Uε(ω)

|G(ejω, θ̂) − z|
√

1 + |G(ejω, θ̂)|2
√

1 + |z|2



 =

= sup
ω∈[0,π]

d

dε
|ε=0 sup

z∈Uε(ω)

|G(ejω, θ̂) − z|
√

1 + |G(ejω, θ̂)|2
√

1 + |z|2
.

Here Uε(ω) denotes the set

{

z = G(ejω, θ)| N
χ2

na+nb
(α)

(θ − θ̂)T M̄(θ − θ̂) < ε2
}

. The

expression
√

1 + |z|2 tends to

√

1 + |G(ejω, θ̂)|2 as ε→ 0, therefore

J2 = sup
ω∈[0,π]

d
dε |ε=0 supz∈Uε(ω) |z −G(ejω, θ̂)|

1 + |G(ejω, θ̂)|2
= sup
ω∈[0,π]

ε−1 supz∈Uε(ω) |T (θ − θ̂)|
1 + |G(ejω, θ̂)|2

,

where the 2 × (na + nb)-matrix T is given by

T =

(

Re
∂G(ejω,θ)

∂θ |θ=θ̂
Im

∂G(ejω,θ)
∂θ |θ=θ̂

)

.

If T has full rank, then, following [2], we can write the term ε−1 supz∈Uε(ω) |T (θ−

θ̂)| as (λmin((T ( N
χ2

na+nb
(α)
M̄)−1TT )−1))−1/2 =

√

χ2
na+nb

(α)

N (λmax(TM̄
−1TT ))1/2. By

λmin and λmax the minimal and maximal eigenvalue, respectively, are denoted.
If T is rank deficient, we can find vectors w ∈ Rna+nb and w1 ∈ R2 such that

|w1| = 1 and T = w1w
T . We exclude the trivial case T = 0 from consideration and

assume w 6= 0. Then ε−1 supz∈Uε(ω) |T (θ − θ̂)| = ((wT ( N
χ2

na+nb
(α)
M̄)−1w)−1)−1/2 =

√

χ2
na+nb

(α)

N (wT M̄−1w)1/2. But we have anyway wT M̄−1w = λmax(TM̄
−1TT ).

Hence in either case we obtain

J2 =

√

χ2
na+nb

(α)

N
sup

ω∈[0,π]

(λmax(T (ω)M̄−1T (ω)T ))1/2

1 + |G(ejω, θ̂)|2
.(4.3)

It is well-known that the inverse P−1 of a symmetric positive definite matrix
P and the maximal eigenvalue λmax(Q) of a symmetric positive semidefinite matrix
Q are convex functions with respect to P or Q respectively (see e.g. [8]). Hence
λmax(TM̄

−1TT ) is convex with respect to M̄ for fixed ω. Since the operation of
taking the maximum over a family of functions preserves convexity, we have that J 2

2

is a convex function with respect to M̄ . By strict monotonicity of the square root
this yields quasiconvexity of J2. 2

In the preceding two sections we have shown that Problems 1 and 2 stated in
section 2 are quasiconvex. In the next section we will provide the necessary tools
that allow the user to apply standard convex algorithms to solve these problems
numerically.

5. Cutting planes. Most methods in convex analysis are based on the notion
of a cutting plane (see e.g. [5]). Suppose S ⊂ Rm is a convex set and f : S → R is a
quasiconvex function defined on S.
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Definition 5.1. A cutting plane to f at a point x(0) ∈ S is defined by a nonzero
vector g ∈ Rm such that f(x(0)) ≤ f(x) for any x ∈ S satisfying the inequality
gT (x− x(0)) ≥ 0.

Thus the global minimum of f on S lies in the halfspace {x | gT (x − x(0)) ≤ 0}.
By definition of quasiconvexity a cutting plane always exists.

In this section we will compute cutting planes for cost functions J1,J2 at an
arbitrary point x(0) ∈ Xc.

Let M̄ (0) be the average information matrix corresponding to x(0). By Corollary
3.8 the matrix M̄ (0) is positive definite.

We shall now compute a cutting plane for J1 = maxω∈[0,π] κWC(G(ejω, θ̂),D).

Denote by ω(0) the frequency where the worst-case chordal distance κWC attains its
maximum. The value of ω(0) can be foung e.g. by a grid search with subsequent
refinement using a denser grid in the vicinity of the maximum. It is easily seen that a

cutting plane to the function κWC(G(ejω
(0)

, θ̂),D) or its square will also be a cutting
plane to J1. In the sequel we will assume that ω is equal to ω(0) and omit it as
argument.

Thus our goal is to find a cutting plane for the optimum value γopt of GEVP
(4.1),(4.2), considered as a function of x. Note that F0, F1 are independent of x,
while R depends on x via M̄ . By (3.6), we can represent R as R(x) = R0 +

∑n
i=1 xiRi

with

R0 =

(

Ina+nb

−θ̂T
)

M̄0

(

Ina+nb
− θ̂
)

−









0 · · · 0
...

. . .
...

0 · · · χ2
na+nb

(α)

N









,

Ri =

(

Ina+nb

−θ̂T
)

M̄i

(

Ina+nb
− θ̂
)

.

Let γ
(0)
opt, τ

(0)
opt be the optimal values for γ, τ in GEVP (4.1),(4.2) at x = x(0). Then

the matrix F0 + γ
(0)
optF1 + τ

(0)
optR is both singular and positive semidefinite. Let V 0 be

the nullspace of this matrix.

Proposition 5.2. If τ
(0)
opt > 0 then there exists a unit length vector v ∈ V 0 such

that vTRv = 0. If τ
(0)
opt = 0 then there exists a unit length vector v ∈ V 0 such that

vTRv ≤ 0. In either case the vector g ∈ Rn given componentwise by gi = −vTRiv, if
it is nonzero, defines a cutting plane for the function J1. If g is zero, J1 achieves a
minimum at x(0).

The proof of this proposition can be found in the Appendix.
Let us now compute a cutting plane for cost function J2, which is given by (4.3).

Denote by ω(0) the frequency at which the function λmax(T (ω)M̄−1T (ω)T )

(1+|G(ejω,θ̂)|2)2
attains its

maximum. Let v ∈ R2 be a unit length eigenvector to the maximal eigenvalue of the
matrix T (ω(0))M̄−1T (ω(0))T .

Proposition 5.3. Let g ∈ Rn be defined componentwise by
gi = −vTT (ω(0))M̄−1M̄iM̄

−1T (ω(0))T v. Then g defines a cutting plane for the cost
function J2 at x(0), if g 6= 0, and J2 attains a minimum at x(0), if g = 0.

Proof. Consider f(x) =

√

χ2
na+nb

(α)

N

(vTT (ω(0))(M̄0+
∑n

i=1
xiM̄i)

−1T (ω(0))T v)1/2

1+|G(ejω(0)
,θ̂)|2

. By

definition we have f(x(0)) = J2(x
(0)), but f(x) ≤ J2(x) for any x ∈ Xc.

Let x ∈ Xc be a point such that gT (x− x(0)) ≥ 0. We shall show that f(x(0)) ≤
f(x), which would imply J2(x

(0)) ≤ J2(x). This is equivalent to f̃(x(0)) ≤ f̃(x),
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where f̃ is defined by

f̃(x) =
N

χ2
na+nb

(α)
(1 + |G(ejω

(0)

, θ̂)|2)2f2(x) =

= vTT (ω(0))(M̄0 +

n
∑

i=1

xiM̄i)
−1T (ω(0))T v =

= tr(T (ω(0))T vvTT (ω(0))(M̄0 +
n
∑

i=1

xiM̄i)
−1).

In other words, we have to show that g defines a cutting plane for f̃ . It is well-known
(see e.g. [30, p.39]) that f̃ , being of the form trWM̄−1 with W ≥ 0, is a smooth
convex function on Xc. Hence a cutting plane to f̃ is defined by its gradient, which
is identical to g.

If g = 0, then f̃ attains a minimum at x(0). Hence f attains a minimum at x(0),
which yields J2(x

(0)) ≤ J2(x) for any x ∈ Xc. This concludes the proof. 2

The results of sections 3 to 5, i.e. the LMI description of the feasible set and
the knowledge of cutting planes, allow the user to apply a whole range of convex
optimization methods for solving Problems 1 and 2. For a description of different
methods see e.g. [5],[22].

6. Error assessment of the solution. Suppose we seek the minimum of a
quasiconvex cost function J (x) on the closure of Xc. Let us assume that with some
method an approximation x(0) ∈ Xc of the optimal value x∗ was obtained together
with an upper bound on the scalar product gT (x(0) − x∗) (which is usually delivered
by standard convex analysis methods), where g is a vector defining a cutting plane to
J at x(0).

In this section we assess the quality of the approximation x(0), i.e. we derive a
bound on the error J (x(0))−J (x∗). The results presented can be used for designing
termination criteria for iterative optimization algorithms, guaranteeing a prespecified
level of accuracy.

Proposition 6.1. Let x(0) ∈ Xc be a feasible point and ω(0) a frequency at
which the worst-case chordal distance κWC(G(ejω, θ̂),D(x(0))) attains its maximum.
Suppose cost function J1 attains its minimum at x∗. Let vectors v and g be defined
as in Proposition 5.2. If vTF1v > 0, then the following bound on the error J1(x

(0))−
J1(x

∗) holds.

J 2
1 (x(0))−J 2

1 (x∗) ≤ N
J 2

1 (x(0))

χ2
na+nb

(α)vTF1v
(1 + |G(ejω

(0)

, θ̂)|2)2|1 +ZD θ̂|2gT (x(0) − x∗),

where ZD is defined in (2.3).
Note that the condition vTF1v > 0 is satisfied whenever J1(x

(0)) < 1. This
inequality holds at least in the vicinity of x∗ if J1 is not identically 1 on Xc.

Proof. of Proposition 6.1. Denote by γ∗opt the square of the worst-case chordal

distance κWC(G(ejω
(0)

, θ̂),D(x∗)) at frequency ω(0) and at the point x∗. Let τ∗opt be
the corresponding optimal value of τ . Then we have J 2

1 (x∗) ≥ γ∗opt.

By definition we have at frequency ω(0) the relations vT (F0+γ
(0)
optF1+τ

(0)
optR)v = 0,

(τ − τ
(0)
opt)v

TR(x(0))v ≤ 0 for any τ ≥ 0 and vT (R(x)−R(x(0)))v ≤ −gT (x− x(0)) for
any x. Hence

vT (F0 + γ∗optF1 + τ∗optR(x∗))v ≤ (γ∗opt − γ
(0)
opt)v

TF1v − τ∗optg
T (x∗ − x(0)).
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Since the left-hand side of this inequality is nonnegative, we obtain

J 2
1 (x(0)) − J 2

1 (x∗) ≤ γ
(0)
opt − γ∗opt ≤

τ∗opt

vTF1v
gT (x(0) − x∗).

Let us now derive a bound on τ ∗opt. We have (v′)T (F0 + γ∗optF1 + τ∗optR)v′ ≥ 0 for

any vector v′ ∈ Rna+nb+1. Choose v′ = (θ̂T 1)T . By direct calculation one can show

that (v′)TF0v
′ = 0, (v′)TF1v

′ = (1 + |G|2)2|1 + ZD θ̂|2, (v′)TRv′ = −χ2
na+nb

(α)

N . Thus
we have

τ∗opt ≤
N

χ2
na+nb

(α)
γ∗opt(1 + |G|2)2|1 + ZD θ̂|2 ≤ N

χ2
na+nb

(α)
γ

(0)
opt(1 + |G|2)2|1 + ZD θ̂|2.

Combining the obtained inequalities, we complete the proof. 2

Proposition 6.2. Let x(0) ∈ Xc be a feasible point. Let ω(0) be a frequency

at which the quantity λmax(T (ω)M̄−1(x(0))T (ω)T )

(1+|G(ejω,θ̂)|2)2
attains its maximum. Suppose cost

function J2 attains its minimum at x∗. Let g be defined as in Proposition 5.3. Then
the following bound on the error J2(x

(0)) − J2(x
∗) holds.

J 2
2 (x(0)) − J 2

2 (x∗) ≤ χ2
na+nb

(α)

N(1 + |G(ejω(0)
, θ̂)|2)2

gT (x(0) − x∗).

Proof. Recall that we defined two functions f(x), f̃(x) in the proof of Proposition
5.3 and identified g as the gradient of f̃ . Since f̃ is convex, we can bound it by its
first order Taylor polynomial, i.e. f̃(x(0))− f̃(x∗) ≤ gT (x(0) − x∗). Therefore we have

J 2
2 (x(0)) − J 2

2 (x∗) ≤ f2(x(0)) − f2(x∗) =
χ2
na+nb

(α)

N(1 + |G(ejω(0)
, θ̂)|2)2

(f̃(x(0)) − f̃(x∗)) ≤

≤ χ2
na+nb

(α)

N(1 + |G(ejω(0)
, θ̂)|2)2

gT (x(0) − x∗). 2

The propositions proven in this section enable the user to tell whether a given
solution x(0), delivered e.g. by the current iteration step, satisfies the prespecified
accuracy requirements. This information can be used e.g. to decide whether further
iterations are necessary.

7. Design of input signals. Let us now turn to the question of how to design
an input signal from x(0). By Theorem 3.6, there exist moment points which can
be realized only by discrete spectra. On the other hand, any moment point can be
realized by a discrete spectrum. Therefore we propose here the following two-step
procedure. First a discrete input power spectrum generating the moment point x(0)

is computed, and then a multisine input with the desired spectrum is generated. This
procedure in no way restricts the optimality of the solution.

We weaken the condition x(0) ∈ Xc and suppose that x(0) is in the closure of Xc.
The point x(0) corresponds to a point x̃ = (x̃0, x̃1, . . . , x̃n) in moment space M(n+1).
Here x̃i equals the i-th component of x(0) for i = 1, . . . , n, and x̃0 is given by (3.5).

Our goal will be to construct a realization of x̃. By Theorem 3.6, there exists a
discrete realization with index not greater than n+1

2 .

Denote by x̃s(ω) ∈ M(n+1) the moment point induced by the design measure
that satisfies constraint (3.4) and concentrates all power at the single frequency ω.
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Then the i-th entry of x̃s(ω) is given by c
λ0|A(ω)|2 cos(iω). Since (3.4) defines an affine

section of the convex cone M(n+1) and x̃ satisfies (3.4), x̃ is a convex combination of
points on the curve {x̃s(ω) |ω ∈ [0, π]}.

If x̃ equals x̃s(π), then we have already found a realization of index 1
2 . In this

case this is the only possible realization.

Suppose now that x̃ is not equal to x̃s(π). To construct a realization of x̃, we will
exploit an idea that is used to prove Theorem 3.6 (see e.g. [14]).

Consider the line going through the points x̃ and x̃s(π). This line has an interval
in common with the convex set M(n+1). This interval is finite, because it lies on the
section defined by (3.4), and nondegenerated, because it contains two different points
x̃ and x̃s(π). By Theorem 3.6 part i), x̃s(π) is one of the endpoints of this interval.
Denote the other endpoint by x̃bd. The computation of x̃bd from x̃ and x̃s(π) can
be reduced to a standard GEVP using LMI description (3.3) of the set M(n+1). For
treatment of this type of problems see e.g. [5].

Thus x̃ is a linear convex combination of the points x̃s(π) and x̃bd. Any realization
of x̃bd will deliver us a realization of x̃. Note that x̃bd lies on the boundary of M(n+1).
By Theorem 3.6, part i) it has only one realization, which is of index less than n+1

2 .
Hence the realization of x̃ that we obtain with the described procedure, will have an
index not exceeding n+1

2 . If x̃ lies in the interior of M(n+1), then this realization
contains the frequency π and is therefore the upper principal realization of x̃.

We shall now construct the realization of x̃bd. Denote the frequencies which are
involved in this realization by ωi, i = 1, . . . , k. Then the point x̃bd is a nondegenerated
linear convex combination of x̃s(ω1), . . . , x̃

s(ωk). We can write x̃bd =
∑k
i=1 λix̃

s(ωi),

where λi > 0 and
∑k
i=1 λi = 1.

Since x̃bd lies on the boundary of M(n+1), there exists a supporting hyperplane
E at x̃bd. Note that E is a linear subspace, because M(n+1) is a convex cone. The
construction of a supporting hyperplane proceeding from LMI description (3.3) of
M(n+1) is a standard procedure and is described e.g. in [5].

Lemma 7.1. The points x̃s(ω1), . . . , x̃
s(ωk) lie in E.

Proof. Denote by nE the normal vector to E that points toward M(n+1) and
by LE the linear functional x 7→ 〈nE , x〉 defined by nE . For any ω ∈ [0, π] we have

LE(x̃s(ω)) ≥ 0. On the other hand, LE(x̃bd) =
∑k
i=1 λiLE(x̃s(ωi)) = 0, because x̃bd

lies in E. Hence for all i we have LE(x̃s(ωi)) = 0, i.e. x̃s(ωi) ∈ E. 2

Lemma 7.2. There exist maximally n
2 +1 frequencies such that the corresponding

points x̃s(ω) lie in E.

Proof. Consider pE : [0, π] → R defined by pE(ω) = LE(x̃s(ω))λ0|A(ω)|2

c . By
definition, pE is a trigonometric polynomial. Since LE(x̃s(ω)) is nonnegative for all
ω, pE is too. Now we can apply a classical result from Tchebycheff system theory
which states that pE can have at most n

2 + 1 zeros. But the zeros of pE lie exactly at
those frequencies whose corresponding points x̃s(ω) lie in E. 2

Now we are able to obtain a finite set of frequencies that is guaranteed to contain
ω1, . . . , ωk. Namely, we have to find the zeros, which are at the same time local
minima, of the trigonometric polynomial pE(ω).

Once we have found a set of frequencies ω1, . . . , ωk, ωk+1, . . . , ωk+k′ such that
the convex hull of the points x̃s(ω1), . . . , x̃

s(ωk+k′) contains x̃bd, it is a standard
LQ programming problem to find the weights associated with the different frequen-

cies. Namely, the weights λj minimize the squared distance |x̃bd −
∑k+k′

j=1 λj x̃
s(ωj)|2,

which is a quadratic polynomial in the λj . Note that the number of frequencies in-
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volved is not greater than n
2 + 1 and hence not greater than n. Therefore the points

x̃s(ω1), . . . , x̃
s(ωk+k′) are linearly independent and the minimized polynomial has a

positive definite quadratic part. An efficient algorithm for solving this type of prob-
lems is e.g. the Beale algorithm (see [1]).

Suppose that a discrete realization of x̃ with frequencies ω1, . . . , ωm and associated
weights λ1, . . . , λm is available. Then the multisine input u(t) =

∑m
i=1 αi sin(tωi+φi)

with αi =
√

2cλi, φi arbitrary, if ωi 6= 0, π; and αi =
√
cλi, φi = ±π

2 , if ωi ∈ {0, π},
has the desired input power spectrum (see e.g. [30]).

Often it is also possible to obtain the desired power spectrum by using binary
signals (see [30, p.29] and references cited therein).

8. Simulation results. Consider the true system y = G0u + H0e = B(z)
A(z)u +

1
A(z)e with G0 = B(z)

A(z) = 0.1047z−1+0.0872z−2

1−1.5578z−1+0.5769z−2 . Here u is the input, subject to the

energy constraint Ēu2(t) = 1, and e is white Gaussian noise with variance 0.1.

The system is to be identified within an ARX model structure of order two. The
number of data points to be collected is N = 1000. The aim is to minimize the
worst-case ν-gap of the uncertainty region around the identified model corresponding
to a confidence level of α = 0.95.

In a Monte-Carlo simulation, 500 runs were performed. Each run consisted of
five identification experiments: one preliminary experiment and four mutually inde-
pendent second experiments based on this preliminary experiment, corresponding to
the four different cost functions J1, J2, D-optimality and E-optimality.

In the preliminary experiment, the input was chosen to be white Gaussian noise
with variance 1. The parameter vector and noise variance identified in the prelimi-
nary experiment were used as a priori estimates of the true parameter vector and the
true noise variance for designing the input power spectrum for the series of second
experiments. In two of the second experiments, the input power spectrum minimized
the cost functions J1,J2, respectively. The actual input sequence was a multisine
having the evaluated optimal power spectrum. For comparison, two other second
experiments with D-optimal and E-optimal input power spectra were performed. Af-
ter each identification experiment the worst-case ν-gap of the identified uncertainty
region was recorded.

The noise realizations for the five experiments within one run and for different
runs were different, as well as the input realizations for the preliminary experiments
of the different runs.

In figure 8.1 the worst-case ν-gap obtained from the preliminary experiment with
white noise input, as well as from the experiments with inputs optimized with respect
to J1 and J2 respectively, are shown for the first 50 simulation runs. The mean
over 500 runs of the worst-case ν-gap resulting from the preliminary experiments
equals 0.1345. The means of the worst-case ν-gap resulting from the experiments
with multisine input optimized with respect to criteria J1,J2 are 0.0937 and 0.0927,
respectively. The difference between them is statistically significant (2×1.64 standard
deviations). The means of the worst-case ν-gap resulting from the experiments with
D- and E-optimal multisine input are equal to 0.1434 and 0.1055, respectively.

It is evident that using inputs optimized with respect to criteria J1,J2 gives better
results than using white noise input or input optimized with respect to the classical
D- and E-optimality criteria. Note also that the inputs optimized with respect to the
cost function J2, which is a first order approximation of the exact cost function J1,
give better results than J1, despite the fact that the plotted quantity is in fact J1. As
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mentioned already in section 2, this tendency was observed also in simulations with
other systems. The reason is that the optimum of the input power spectrum with
respect to J2 is less dependent on the preliminary estimate θ̄ of the true parameter
vector than the optimum with respect to J1. Given the lower complexity of J2 and
hence the lower computational effort in comparison with J1, it is recommendable to
use primarily the former.

9. Conclusions. Let us summarize the results obtained in the present paper.
We have to design an input sequence for an identification experiment that makes the
worst-case ν-gap between the identified model and the uncertainty region around it
as small as possible. The design takes place via power spectrum optimization. Two
nonstandard cost criteria J1 and J2 are defined, which reflect the optimization task
with different accuracy. J1 is the exact worst-case ν-gap one would want to minimize,
while J2 is an approximation of J1. These functions fulfil the natural conditions of
monotonicity and quasiconvexity with respect to the power spectrum.

It was shown that optimization of the input power spectrum with respect to these
cost criteria can be reduced to a standard convex optimization problem involving LMI
constraints. In Propositions 5.2 and 5.3 we demonstrate how to construct cutting
planes to the cost functions J1,J2, which is essential for applying standard numerical
methods such as the ellipsoid algorithm. In Propositions 6.1 and 6.2 we derive bounds
on the difference between the actually achieved and the optimal value of the cost
functions, which allows to estimate the quality of the optimization result and to
design stopping criteria for iterative search algorithms. We have also briefly touched
the problem of designing an input sequence with a prespecified power spectrum.
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Simulations show clearly the superiority of the proposed cost functions over clas-
sical design criteria. They also suggest to use cost function J2 rather than J1, due to
both lower computational effort and higher performance.
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Appendix A. Proof of Proposition 5.2.

Lemma A.1. Let γopt, τopt be the optimal values of γ, τ in GEVP (4.1),(4.2).
Then the following conditions hold.
i) The matrix F0 is negative semidefinite.
ii) The nullspace of F1 is a subset of the nullspace of F0.
iii)The matrix F0 + F1 is positive semidefinite.
iv) The nullspace of F1 is a strict subset of the nullspace of F0 + F1.
v) τopt > 0 if and only if the restriction of R on the nullspace of F0 + F1 is

strictly positive definite.
vi) γopt = 1 if and only if τopt = 0.

Proof. i) follows from the representation F0 = −VWWTV T , where W is a 4× 2-
matrix given by

W =









1 0
0 1

ImG(θ̂) −ReG(θ̂)

−ReG(θ̂) −ImG(θ̂)









.

The nullspace of F1 is given by the kernel of V T . The latter is contained in the
kernel of F0, which yields ii).

iii) follows from the representation

F0 + F1 = V









|G(θ̂)|2 0 −ImG(θ̂) ReG(θ̂)

0 |G(θ̂)|2 ReG(θ̂) ImG(θ̂)

−ImG(θ̂) ReG(θ̂) 1 0

ReG(θ̂) ImG(θ̂) 0 1









V T = VW⊥W
T
⊥V

T ,

where W⊥ is a 4 × 2-matrix given by

W⊥ =









|G(θ̂)| 0

0 |G(θ̂)|
− sin argG(θ̂) cos argG(θ̂)

cos argG(θ̂) sin argG(θ̂)









.

Here argG(θ̂) is an arbitrary number if G(θ̂) = 0. Note that W TW = (1+ |G(θ̂)|2)I2,
WTW⊥ = 0 and W T

⊥W⊥ = (1 + |G(θ̂)|2)I2.



Input design with respect to the worst-case ν-gap 21

By ii) the nullspace of F1 is a subset of the nullspace of F0 + F1. We shall now

show that the vector v = (ζ, 0, . . . , 0, 1, 0, . . . , 0,− cosnkωReG(θ̂)+ sinnkωReG(θ̂)−
ζ cosω)T ∈ Rna+nb+1, where ζ = −cotnkω ImG(θ̂) − ReG(θ̂) if ω ∈ (0, π) and ζ

arbitrary otherwise, is not contained in the kernel of V T but is contained in the
kernel of W T

⊥V
T . The ”1” in v is situated at position na + 1. Indeed, by (2.3) we

obtain

V T v =









cosnkω
− sinnkω
−ζ sinω

− cosnkωReG(θ̂) + sinnkω ImG(θ̂)









=

= cosnkω









1
0

ImG(θ̂)

−ReG(θ̂)









− sinnkω









0
1

−ReG(θ̂)

ImG(θ̂)









6= 0,

because cosnkω, − sinnkω cannot both vanish. In case ω ∈ {0, π} the equality holds

by ImG(θ̂) = 0. On the other hand, we haveW T
⊥V

Tv = WT
⊥W (cosnkω,− sinnkω)T =

0. This concludes the proof of iv).
Let us prove v) and vi). Denote the nullspace of F0 +F1 by V̄ 0 and its orthogonal

complement by V̄ ⊥. By definition there exists a positive number β1 such that for any
v⊥ ∈ V̄ ⊥ we have (v⊥)T (F0 + F1)v

⊥ ≥ β1|v⊥|2.
Suppose the restriction of R on V̄ 0 is strictly positive definite. Then there exists

a positive number β2 such that for any v0 ∈ V̄ 0 we have (v0)TRv0 ≥ β2|v0|2. Let
v = v0 + v⊥ be an arbitrary vector with v0, v⊥ being its orthogonal projections on
V̄ 0, V̄ ⊥ respectively. Let τ > 0 be a positive number. Then we have

vT (F0 + F1 + τR)v = (v⊥)T (F0 + F1)v
⊥ + τ((v⊥)TRv⊥ + 2(v0)TRv⊥ + (v0)TRv0)

≥ β1|v⊥|2 + τ(λmin(R)|v⊥|2 − 2min{λmin(R),−λmax(R))|v⊥||v0| + β2|v0|2} =

(

|v⊥|
|v0|

)T (
β1 + τλmin(R) −τ min{λmin(R),−λmax(R)}

−τ min{λmin(R),−λmax(R)} τβ2

)(

|v⊥|
|v0|

)

.

It is easily seen that the 2 × 2-matrix in the middle is positive definite if τ is small
enough. Therefore there exists τ > 0 such that the matrix F0 + F1 + τR is strictly
positive definite, while the matrix F0 + F1 is not. Thus in this case we have τopt 6= 0
and γopt < 1.

Now suppose the restriction of R on V̄ 0 is not strictly positive definite. Since M̄
is strictly positive definite, it follows from expression (4.2) that R has na+nb positive
eigenvalues and one negative eigenvalue. Thus it can be represented as a difference
R = R+ − R−, where R+, R− are positive semidefinite matrices of rank na + nb, 1
respectively and the linear hulls V̄+, V̄− of their columns are orthogonal to each other.
The whole space Rna+nb+1 splits into a direct sum V̄+ ⊕ V̄−.

Let v0 ∈ V̄ 0 be a nonzero vector such that (v0)TRv0 ≤ 0. The vector v0 can be
represented as a sum v0 = v+ + v−, where v+ ∈ V̄+, v− ∈ V̄−. Since (v0)TRv0 =
(v+)TR+v+ − (v−)TR−v− ≤ 0, the assumption v− = 0 would imply v+ = 0, which
contradicts v0 6= 0. Hence v− 6= 0. We can represent v− as a sum v− = v0

−+v⊥− , where
v0
− ∈ V̄ 0, v⊥− ∈ V̄ ⊥. Let ε > 0 be a positive number and consider the vector v = v0 +
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εv−. We have v = v+ +(1+ε)v−. Hence vTRv = (v+)TR+v+−(1+ε)2(v−)TR−v− =
(v0)TRv0 − (2ε + ε2)(v−)TR−v−. On the other hand, v = (v0 + εv0

−) + εv⊥− . Since
v0 + εv0

− ∈ V̄ 0, this yields vT (F0 + F1)v = ε2(v⊥−)T (F0 + F1)v
⊥
− . We obtain

vT (F0 + F1 + τR)v ≤ ε2(v⊥−)T (F0 + F1)v
⊥
− − τ(2ε+ ε2)(v−)TR−v−.

Note that (v−)TR−v− is strictly positive. Hence for any prespecified τ > 0 we can
choose a small ε > 0 such that vT (F0 + F1 + τR)v < 0. Thus for any positive τ
the matrix F0 + F1 + τR is not positive semidefinite, while F0 + F1 is. This implies
τopt = 0. γopt = 1 now follows from iv).

The proof of the lemma is complete. 2

Proof. of Proposition 5.2. Denote the orthogonal complement of V 0 by V ⊥. Then

the restriction on V ⊥ of the quadratic form defined by the matrix F0 +γ
(0)
optF1 + τ

(0)
optR

is strictly positive definite. Hence there exists a positive number β1 such that for any

vector v⊥ ∈ V ⊥ we have (v⊥)T (F0 + γ
(0)
optF1 + τ

(0)
optR)v⊥ ≥ β1|v⊥|2.

Suppose the restriction on V 0 of the quadratic form defined by the matrix R is
strictly positive definite. Then there exists a positive number β2 such that for any
vector v0 ∈ V 0 we have (v0)TRv0 ≥ β2|v0|2.

Let v = v0 + v⊥ be an arbitrary vector, where v0 ∈ V 0 and v⊥ ∈ V ⊥ are its
orthogonal projections on the subspaces V 0 and V ⊥ respectively. Let ε > 0 be a
positive number. Then we have

vT (F0 + γ
(0)
optF1 + (τ

(0)
opt + ε)R)v =

= (v⊥)T (F0 + γ
(0)
optF1 + τ

(0)
optR)v⊥ + ε((v⊥)TRv⊥ + 2(v0)TRv⊥ + (v0)TRv0)

≥ β1|v⊥|2 + ε(λmin(R)|v⊥|2 + 2min{λmin(R),−λmax(R))|v⊥||v0| + β2|v0|2} =

(

|v⊥|
|v0|

)T (
β1 + ελmin(R) εmin{λmin(R),−λmax(R)}

εmin{λmin(R),−λmax(R)} εβ2

)(

|v⊥|
|v0|

)

.

It is easily seen that the 2 × 2-matrix in the middle is positive definite if ε is small

enough. This implies that there exists a number τ > τ
(0)
opt such that the matrix

F0 + γ
(0)
optF1 + τR is strictly positive definite. This contradicts the optimality of γ

(0)
opt.

In a similar way it is shown that if the restriction on V 0 of the quadratic form
R is strictly negative definite, then there exists a number ε > 0 such that for any

τ ∈ [τ
(0)
opt − ε, τ

(0)
opt) the matrix F0 + γ

(0)
optF1 + τR is strictly positive definite.

Thus the restriction on V 0 of the quadratic form R is neither strictly positive nor

strictly negative definite if τ
(0)
opt > 0 and it is negative semidefinite if τ

(0)
opt = 0. This

proves the first part of the proposition.
Now let v ∈ V 0 be a unit length vector satisfying the conditions of Proposition

5.2. Let g ∈ Rn be given componentwise by gi = −vTRiv. Let x ∈ Xc be a vector
satisfying the inequality gT (x− x(0)) ≥ 0. Let τ be a nonnegative number and let γ

be strictly less than γ
(0)
opt.

By assumption we have vT (F0 + γ
(0)
optF1 + τ

(0)
optR(x(0)))v = 0. We obtain

vT (F0 + γF1 + τR(x))v = vT ((γ − γ
(0)
opt)F1 + τ(R(x) −R(x(0))) + (τ − τ

(0)
opt)R(x(0)))v

= (γ − γ
(0)
opt)v

TF1v + (−τgT (x− x(0))) + (τ − τ
(0)
opt)v

TR(x(0))v ≤ 0.
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The last inequality follows from the fact that none of the three terms on the left-hand
side exceeds zero. The first term is nonpositive because F1 is positive semidefinite.
The second term does not exceed zero by assumption on x. The third term is not
greater than zero because by assumption on v we have vTR(x(0))v ≤ 0 and the

condition τ − τ
(0)
opt < 0 yields τ

(0)
opt > 0 and hence vTR(x(0))v = 0. If the inequality is

strict, then F0 + γF1 + τR(x) is not positive semidefinite.
Now assume that vT (F0 + γF1 + τR(x))v = 0. Then we have vTF1v = 0 and v

is an element of the nullspace of F1. By Lemma A.1, part iv), it is also an element
of the nullspace of F0 + F1. Note that vTR(x(0))v ≤ 0. By Lemma A.1, part v) we

then have τ
(0)
opt = 0 and by part vi) γ

(0)
opt = 1. Further we have either τ = τ

(0)
opt or

vTR(x(0))v = 0.

If τ = τ
(0)
opt = 0, then by Lemma A.1, parts iii) and iv), the matrix F0 + γF1 =

F0 + γF1 + τR(x) is not positive semidefinite.
If τ > 0, then vTR(x(0))v = 0 and vTR(x)v = vT (R(x) − R(x(0)))v = −gT (x −

x(0)) ≤ 0. Since v belongs to the nullspace of F0 + F1, by Lemma A.1, part v) we
have τopt(x) = 0 and by part vi) γopt(x) = 1 > γ. Hence the pair (γ, τ) is again not
feasible for GEVP (4.1),(4.2) at x.

Thus in any case γopt(x) is not less than γ
(0)
opt and the vector g, if nonzero, defines

a cutting plane for γopt and hence for J1.
If g = 0, however, then any x satisfies the relation gT (x − x(0)) ≥ 0 and

γ
(0)
opt does not exceed γopt at any other point x ∈ Xc. Hence we have J1(x) ≥
κWC(G(ejω

(0)

, θ̂),D) =
√

γopt(x) ≥
√

γ
(0)
opt = J1(x

(0)) and J1 attains a minimum

at x(0).
This concludes the proof of the second part of Proposition 5.2. 2


