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Abstract

We apply the Iterative Feedback Tuning (IFT) method to the tuning of PID param-
eters in applications where the objective is to achieve a fast response to set point
changes. We compare the performance of these IFT-tuned PID controllers with the
performance achieved by four classical PID tuning schemes that are widely used
in industry. Our simulations show that IFT always achieves a performance that is
at least as good as that of the classical PID tuning schemes, and often dramati-
cally better: faster settling time and less overshoot. In addition, IFT is also optimal
with respect to the presence of noise, whereas the other schemes are designed for
noise-free conditions. The IFT method used here is a variant of the initial IFT
scheme, in which no weighting is applied to the control error during a time window
that corresponds to the transient response, and where the lenght of this window is
progressively reduced. This method was initially proposed in (Lequin, 1997), and
elaborated on in (Lequin et al., 1999).
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1 Introduction

The Iterative Feedback Tuning method is a model-free technique for the op-
timization of the parameters of a controller of fixed structure using only sig-
nal information on the closed-loop system. The method was initially derived
in (Hjalmarsson et al., 1994) and has quickly proved its efficiency in both
laboratory and industrial applications: see e.g. (Hjalmarsson et al., 1995),
(Lequin, 1997). A complete presentation of the theory, as well as applications
to controller tuning for mechanical systems and chemical plants, can be found
in (Hjalmarsson et al., 1998).

In its initial formulation, as developed in (Hjalmarsson et al., 1994), IFT was
derived for any two degree of freedom linear controller C = [Cr, Cy], applied
to an unknown linear time-invariant system: see Figure 1. Here r, u, and y are
the reference, the control signal and the output signal, respectively, while v is
an unknown disturbance.
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Fig. 1. Actual closed loop system

The following quadratic criterion was adopted in (Hjalmarsson et al., 1994):

J(ρ) =
1

2N
E

[

N
∑

t=1

(Lyỹt(ρ))2 + λ
N

∑

t=1

(Luut(ρ))2

]

(1)

Here ρ is the vector of controller parameters to be optimized, ỹt(ρ) is the er-
ror between the output yt(ρ) of the actual system controlled by the controller
C(ρ) = [Cr(ρ), Cy(ρ)] and a desired output signal yd, ut(ρ) is the control
signal, Ly and Lu are frequency weighting filters, λ expresses the relative im-
portance of the penalty on the control signal versus the tracking error, N is the
number of data points, and E stands for expected value. The output and the
control signal of the actual system are functions of the controller parameter
vector ρ; hence the notations yt(ρ) and ut(ρ) to make this dependence trans-
parent. The main contribution of (Hjalmarsson et al., 1994) was to show that
one can compute an unbiased estimate of the gradient of this cost function
without knowledge of the system, by applying a special “feedback” experiment
to the actual system and by using signal information only. A (local) minimum
of the cost function can then be reach by iterative computations of this gra-
dient ∂J

∂ρi

and the use of a stochastic approximation algorithm for the update
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of the controller parameter vector ρi:

ρi+1 = ρi − γiR
−1
i

∂J

∂ρ
(ρi). (2)

Here Ri is some appropriate positive definite matrix, typically a Gauss-Newton
approximation of the Hessian of J , while γi is a positive real scalar that de-
termines the step size. The sequence {γi} must obey some constraints for
the algorithm to converge to a local minimum of the cost function J(ρ): see
(Hjalmarsson et al., 1994).

In this paper we present a variant of this criterion in which the signals ỹt(ρ) and
ut(ρ) (or their frequency weighted versions) are time weighted by weightings
wy(t) and wu(t), respectively. This idea was initially suggested in (Lequin,
1997), where it was suggested that the criterion (1) could be replaced by the
following time-weighted criterion:

Jw(ρ) =
1

2N
E

[

N
∑

t=1

wy(t)(Lyỹt(ρ))2 + λ
N

∑

t=1

wu(t)(Luut(ρ))2

]

, (3)

where wy(·) and wu(·) are any nonnegative numbers. The flexibility offered by
the time weightings wy(t) and wu(t) is that they allow one to put different
weightings on different parts of the time responses.

A particularly interesting application, presented and discussed in (Lequin et
al., 1999), is when zero weightings are put on the transient part of the output
error in response to a step change in the reference signal, i.e. when the following
criterion is used:

Jm(ρ) =
1

2N
E





N
∑

t=t0

(Lyỹt(ρ))2 + λ
N

∑

t=1

(Luut(ρ))2



 . (4)

We say in such case that a mask of length t0 is put on the transient response
of the tracking error. As explained in (Lequin et al., 1999), the motivation for
the use of such masks is as follows.

One of the frequent practical uses of controller design is to tune a controller
of fixed structure (for example a PID controller) in such a way that the step
response of the closed-loop system has a minimal settling time with a small
overshoot. The objective in such applications is to move the output of the
closed-loop system quickly from one reference value to another one; however,
the particular shape of the transient response from the initial reference value
to the final value is of no importance, provided that it does not have large
overshoots. In addition, without knowledge of the actual system (which is a
major reason for using IFT) it is not known in advance how fast a settling
time can be achieved for this particular system with this particular controller
structure.
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By imposing the entire response of the closed-loop system through a specific
choice of a desired transient response yd, rather than just the endpoint of this
transient response, the classical IFT criterion leads to controller parameters
that realize a compromise between fitting the imposed transient response and
fitting the new reference value, even though the user does not care about the
exact shape of the transient response, as long as it is not oscillatory. Instead,
by imposing a “mask” (i.e. a zero error weighting) on the transient response,
the criterion (4) will tune the controller parameters in such a way as to achieve
the new desired reference value without focusing on a particular pre-imposed
transient response that is perhaps not naturally achieved by the closed loop
system. In other words, by imposing a mask on the transient response one
does not waste the available degrees of freedom in the controller parameters
on the matching of a specific and entirely arbitrary transient response. Instead
one can focus these parameters entirely on achieving a fast settling time. By
the optimality principle, the cost achieved after the masked interval is always
smaller than when no mask is used.

In (Lequin et al., 1999) the advantages of using a mask with zero weighting on
the output error were demonstrated. In addition, a very simple procedure was
proposed for the minimization of the settling time in response to a step change
in the setpoint using the IFT scheme with a succession of masks of decreasing
lengths. This procedure consists of imposing initially a rather large mask (i.e.
a rather large zero-weighting time interval), and then to progressively reduce
the size of the mask until oscillations start to appear in the transient response.
This allows one to choose the mask of appropriate length, and hence to design
the controller that achieves the smallest settling time without oscillations.

In this paper we apply this idea to the tuning of simple PID controllers.
To illustrate the effectiveness of the method, we shall compare the closed
loop response to a step change of a number of simulated systems, where the
controller parameters are adjusted by the modified IFT procedure explained
above, to the closed loop response of these same systems in which the PID
parameters have been tuned by classical PID tuning rules that are widely used
in industrial applications.

2 The competitors

In this section, we pose the problem and we briefly explain the specific PID
parameter tuning methods of three different competing schemes. The PID
controller structure used is one where there is no derivative action on the ref-
erence signal, as is most often the case in industrial applications. This has the
advantage of avoiding large control signals when the reference signal contains
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a step change. Thus, we consider the blockdiagram of Figure 1, where

Cr = K(1 +
1

Tis
), (5)

Cy = K(1 +
1

Tis
+ Tds). (6)

The PID parameters can be collected in a vector ρ:

ρ = [K, Ti, Td]
T . (7)

In this paper, we compare the performance of IFT for PID parameter tuning
to those of three widely used PID controller tuning methods: the Ziegler-
Nichols (ZN) tuning rules, the Internal Model Control (IMC) method and
the Integral Square Error (ISE) method. One might of course question this
particular selection of alternative PID tuning methods for our comparison with
IFT. Clearly, we could have chosen a number of other methods, including some
more recent ones. However, these three methods (and in particular ZN) are
probably still the most widely used in industrial applications.

2.1 The Ziegler-Nichols (ZN) tuning rules

The Ziegler-Nichols tuning rules are based on what is called the “ultimate
sensitivity method” (Åström and Wittenmark, 1997). It consists of deter-
mining the point where the Nyquist plot of the open loop system intersects
the negative real axis. This point is obtained by connecting a purely propor-
tional controller to the system, and by increasing the controller gain until the
closed-loop system reaches the stability limit, at which oscillations occur. The
oscillation period is denoted Tc and the corresponding critical gain by Kc. The
Ziegler-Nichols choice for the three PID parameters is then

K =
Kc

1.7
, Ti =

Tc

2
, Td =

Tc

8
. (8)

There exist other more recent variants of the Ziegler-Nichols tuning scheme.
In our simulations, we have also implemented a recent variant proposed in
(Kristiansson and Lennartson, 2000). However, the results were not signifi-
cantly different for our four simulated systems than those obtained with the
classical ZN scheme.
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2.2 The Internal Model Control (IMC) method

The principle of this method is explained on pp. 163–164 in (Åström and
Hägglund, 1995). The system is approximated by a model of the form

G(s) =
Kp

1 + sT
e−sL. (9)

If the actual system is unknown, the static gain Kp, the apparent time con-
stant T and the apparent deadtime L are determined from an open loop step
response, from which an IMC controller is then computed. The controller given
by the IMC method can be interpreted as a PID controller with the following
choices

K =
2T + L

2Kp(Tf + L)
, Ti = T +

L

2
, Td =

TL

2T + L
, (10)

where the design parameter Tf corresponds to the desired closed-loop time
constant. In each of our four simulations, we have optimized over this design
parameter to achieve an IMC controller with minimum settling time. This
optimization was performed by trial and error.

There are other variants of the IMC method, including some that can handle
more general classes of model structures than (9): see e.g. (Rivera and Morari,
1987) and (Isaksson and Graebe, 1999). In order to compare methods that are
of the same complexity, all our simulations in this paper are performed with
an IMC method that adopts the model structure (9).

2.3 The Integral Square Error (ISE) method

The Integral Square Error method consists in adjusting the PID parameters
in such a way as to minimize the following criterion

ISE =
∫

∞

0

e2
t dt =

1

2πi

∫ i∞

−i∞

E(s)E(−s)ds, (11)

where et is the error between the actual response yt and the desired response
yd

t . The integral is calculated recursively using Åström’s integral algorithm
(Åström, 1970), and minimized with respect to the PID parameters.

2.4 The Iterative Feedback Tuning (IFT) method

For the simulations presented in the next section, the IFT method with mask
was applied, with a mask of length t0. Unless otherwise specified, no weighting
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was applied to the control input in the criterion. Thus, the following criterion
was minimized:

J(ρ) = E
{ N

∑

t=t0

(

yt(ρ) − yd
t

)2
}

. (12)

The initial values of the PID parameters were chosen in such a way as to give
an initial response that was very slow, and with no overshoot. The length t0
of the mask was initially chosen to correspond with the settling time of this
very slow response. This length was then successively reduced until oscillations
appeared in the closed loop step response.

3 Simulations

The three classical PID tuning methods and the IFT method have been tested
on the following four simulated systems. Except when otherwise stated, no
noise has been added to the output; thus v = 0 in Figure 1.

G1(s) =
1

1 + 20s
e−5s, (13)

G2(s) =
1

1 + 20s
e−20s, (14)

G3(s) =
1

(1 + 10s)8
, (15)

G4(s) =
1 − 5s

(1 + 10s)(1 + 20s)
(16)

Note that G4 has a nonminimum phase zero. Note also that the systems G1(s)
and G2(s) are exactly of the form (9), and that the IMC controller is tailored
for such systems. It also follows from Section 2.9 in (Åström and Hägglund,
1995) that the systems G3(s) and G4(s) can be approximated by the same
form.

The sampling time chosen for the discretised simulations is equal to 0.01 s. A
third order Padé approximation is used for time delays. For the starting values
of the PID parameters in the iterative minimization of the ISE criterion we
have taken the parameters obtained by the Ziegler Nichols method.
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3.1 Simulation 1

The simulated system is

G1(s) =
1

1 + 20s
e−5s.

The closed loop step responses obtained by the four PID tuning methods for
system G1 are shown in Figure 2. For the IMC method, the best value of the
design parameter Tf was found to be 1.3. For the IFT method, t0 has been
decreased from 70 secs to 10 secs in steps of 20 secs.
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Fig. 2. Step responses (left) and corresponding input signals (right) for the closed
loop systems with G1(s) and the PID controllers tuned with the four different
methods.

Observe that the settling time of the controller tuned with IFT is significantly
smaller than that obtained with the ZN and ISE tuning rules, while the over-
shoot with that controller is also much smaller. This is achieved with a control
action that is smaller than that obtained with these other methods. The IMC
method (after optimization of the design parameter Tf ) performs much the
same as the IFT controller; this method is particularly well suited for systems
of the structure of G1(s). The worst response is achieved by the Ziegler Nichols
controller.

The PID parameters produced by the four different tuning methods are given
in Table 1.

Suppose now that noise is acting on the system. The IFT criterion incorpo-
rates a noise rejection as well as a tracking objective. Hence the controller
parameters obtained by the IFT method will take account of the presence of
noise; in fact they realize the optimal tradeoff between noise rejection and
tracking. For the other tuning methods, there is no clear way of tuning the
PID parameters to take account of a noise rejection objective. In addition, for
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Tuning method K Ti Td

ZN 4.0588 9.2500 2.3125

ISE 4.4635 30.5449 2.3231

IMC (Tf = 1.3) 3.6177 22.4300 2.1824

IFT 3.6717 27.7222 2.1056

Table 1
PID parameters obtained with the 4 tuning methods for simulation 1.

the IMC method, the presence of noise makes the estimation of an open loop
model on the basis of a step response more difficult.

In order to evaluate the effect of a noise disturbance, we have performed
simulations where the IFT parameters have been tuned in the presence of
Gaussian noise acting on the output of the system. Two simulations have
been performed; in each case the PID parameters have been tuned by the IFT
method, with the same mask strategy as above.

(1) In the first simulation, a white Gaussian noise, with standard deviation
σ = 0.05, has been added to the output of the closed loop system during
all iterations. The PID parameters obtained under those conditions by the
IFT tuning method are now K = 2.7272, Ti = 28.3081 and Td = 1.3366;
compare with the values given in Table 2 under noise-free conditions.

(2) In the second simulation colored Gaussian noise has been added to the
output. The colored noise was obtained by passing white Gaussian noise,
with standard deviation σ = 0.05, through a low-pass filter H(z) =

1

1−0.8z−1 . The PID parameters obtained under those conditions by the
IFT tuning method are now K = 2.5778, Ti = 30.2147 and Td = 2.5043.

The closed loop responses with the corresponding IFT-tuned regulators, under
the same noise conditions, are shown in Figure 3 (for the case of white Gaussian
noise) and in Figure 4 (for the case of colored noise). In each case, the closed
loop responses are compared with the closed loop response obtained with
the IMC controller of Table 1 under the same noise conditions. These figures
show the clear advantage of having a PID controller tuning method that can
take account of the presence of noise disturbances: the IFT controller clearly
outperforms the IMC controller in the presence of either white or colored noise.
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Fig. 3. Step responses (left) and corresponding input signals (right) for the closed
loop systems with G1(s) and white noise perturbation, for the IFT and IMC con-
troller.
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Fig. 4. Step responses (left) and corresponding input signals (right) for the closed
loop systems with G1(s) and colored noise perturbation, for the IFT and IMC
controller.

3.2 Simulation 2

The simulated system is the same as in the first simulation but with a delay
that is four times longer:

G2(s) =
1

1 + 20s
e−20s.

The closed loop step responses obtained by the four PID tuning methods for
system G2 are shown in Figure 5. For the IFT method, t0 has been decreased
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from 150 secs to 50 secs in steps of 25 secs, while for the IMC method the
design parameter was optimized at Tf = 14.
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Fig. 5. Step responses (left) and corresponding input signals (right) for the closed
loop systems with G2(s) and the PID controllers tuned with the four different
methods.

With this longer delay in the system, the responses of the IFT controller and
the IMC controller with an optimized Tf are almost indistinguishable. Their
superiority over the Ziegler-Nichols and ISE regulators is even more striking.
The IFT and IMC controllers exhibit almost no overshoot, with a control
action that is significantly smoother than for the other two competitors.

The PID parameters produced by the four different tuning methods are given
in Table 2.

Tuning method K Ti Td

ZN 1.3294 30.95 7.7375

ISE 1.3611 36.4409 8.1072

IMC (Tf = 14) 0.9351 30.5400 6.4797

IFT 0.9303 30.0593 6.0553

Table 2
PID parameters obtained with the 4 tuning methods for simulation 2.

3.3 Simulation 3

The simulated system has a single pole of order 8:

G3(s) =
1

(1 + 10s)8
.
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The closed loop step responses obtained by the four PID tuning methods for
system G3 are shown in Figure 6. For the IFT method, t0 has been decreased
from 280 secs to 130 secs in steps of 30 secs, while Tf was optimized at 42 for
the IMC method.
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Fig. 6. Step responses (left) and corresponding input signals (right) for the closed
loop systems with G3(s) and the PID controllers tuned with the four different
methods.

The settling time of the IFT controller is significantly shorter than that
achieved by the three other schemes, while the control action of IFT and
IMC is much smaller than that of ZN and ISE.

The PID parameters produced by the four different tuning methods are given
in Table 3.

Tuning method K Ti Td

ZN 1.1000 75.9000 18.9750

ISE 1.2606 74.1044 26.3030

IMC (Tf = 42) 0.7604 64.6850 14.3655

IFT 0.6641 53.9791 18.2139

Table 3
PID parameters obtained with the 4 tuning methods for simulation 3.

3.4 Simulation 4

The simulated system has a nonminimum phase zero:

G4(s) =
1 − 5s

(1 + 10s)(1 + 20s)
.

The closed loop step responses obtained by the four PID tuning methods for
system G4 are shown in Figure 7. For the IFT method, t0 has been decreased
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from 110 secs to 30 secs in steps of 20 secs, while Tf was optimized at 0.2 for
the IMC method.
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Fig. 7. Step responses (left) and corresponding input signals (right) for the closed
loop systems with G4(s) and the PID controllers tuned with the four different
methods.

We observe that IFT produces by far the best closed loop step response. How-
ever, this is achieved through application of a control action that is initially
much larger than with the other methods. In order to reduce this large control
action, we have recomputed the PID parameters using the IFT method, but
with a penalty added on the control effort. Thus the following criterion has
been adopted:

J(ρ) = E
{ N

∑

t=t0

(

yt(ρ) − yd
t

)2

+ λ
N

∑

t=0

(ut(ρ))2

}

, (17)

where λ = 1 · 10−7. The width of the mask, t0, was again decreased from 110
secs to 30 secs in steps of 20 secs. The results are shown in Figure 8.

Thanks to the penalty on the control effort in the IFT criterion, the control
action is now never larger than that obtained with the classical controllers. In
addition, the control signal settles faster than with the other controllers. Per-
haps somewhat surprisingly, the closed loop step response has also improved
with respect to the IFT controller obtained without penalty on the control ac-
tion: the output settles to its new steady-state value in a minimum time and
without any overshoot. Finally, note that better results could have possibly
been obtained with the IMC method if a more complex model structure had
been adopted than (9); however, this would require more modeling work.

The PID parameters produced by the four different tuning methods are given
in Table 4.
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Fig. 8. Step responses (left) and corresponding input signals (right) for the closed
loop systems with G4(s) and the PID controllers tuned with the three classical
methods, and with IFT with weighting λ = 1 · 10−7.

Tuning method K Ti Td

ZN 3.5294 16.8000 4.2000

ISE 3.5300 28.7450 4.200

IMC (Tf = 0.2) 3.3926 31.5850 3.8981

IFT (λ = 1 · 10−7) 3.0279 46.3178 6.0793

Table 4
PID parameters obtained with the 4 tuning methods for simulation 4.

4 Robustness to model errors

One of the important properties of any controller tuning method is its ro-
bustness to model errors. In order to evaluate the robustness of IFT and to
compare it with that of the three classical tuning methods, we have evaluated
the closed loop responses achieved by the four PID controllers listed in Table 4
when these controllers are applied to a model that is slightly different from
the model G4(s) with which these controllers were computed.

In Figure 9, we present the closed loop outputs and control inputs achieved
by these four controllers when applied to the following perturbed system, in
which the steady state gain of G4(s) has been increased by 50%:

G4a(s) =
1.5(1 − 5s)

(1 + 10s)(1 + 20s)
. (18)

In Figure 10, we present the closed loop outputs and control inputs achieved
by these controllers when applied to the following perturbed system, in which
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Fig. 9. Step responses (left) and corresponding input signals (right) achieved by the
four PID controllers of Table 4 when applied to the perturbed system G4a(s).

the slow time constant of G4(s) has been changed from 20 to 25:

G4b(s) =
1 − 5s

(1 + 10s)(1 + 25s)
. (19)
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Fig. 10. Step responses (left) and corresponding input signals (right) achieved by
the four PID controllers of Table 4 when applied to the perturbed system G4b(s).

In Figure 11, we present the closed loop outputs and control inputs achieved
by these controllers when applied to the following perturbed system, in which
a delay of 3 seconds has been added to G4(s):

G4c(s) =
(1 − 5s)

(1 + 10s)(1 + 20s)
e−3s. (20)

All four controllers are rather robust to these modeling errors, except when
the mismatch is on the delay, which causes an increase in the settling time.
However, this increase is rather more moderate with the IFT controller.
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Fig. 11. Step responses (left) and corresponding input signals (right) achieved by
the four PID controllers of Table 4 when applied to the perturbed system G4c(s).

5 Comments and observations

In performing these and other simulations, we have made a number of recur-
rent observations.

Very few iterations are needed for the IFT method when the sampling interval
is large. More iterations seem to be needed for smaller sampling intervals, but
the result will be about the same.

It is always advisable to start the IFT iterations with a large mask and to
reduce the size of the mask in successive steps. The final mask size is roughly
equal to the rise time that can be achieved with minimal or no overshoot.
However, even if one knew a priori which rise time can be achieved with-
out significant overshoot, it would be wrong to use a mask of corresponding
length straight away. This has been illustrated in the following example, first
presented in (Lequin et al., 1999).

Consider the plant y(t) = G(s)u(t) + H(s)e(t), with

G(s) =
1

s2 + 0.1s + 1
, H(s) =

1

s + 1
,

where e(t) is white noise with variance σ2 = 0.0025. One wishes to tune a PID
controller in order to achieve a settling time of 20 seconds for the closed loop
system. The initial PID parameter values are taken as K = 0.025, Ti = 2 and
Td = 1. This yields the very sluggish response shown in Figure 12.

The application of the IFT criterion with a fixed mask of width t0 = 20 seconds
with these initial parameters leads to the closed loop response of Figure 13.
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Fig. 12. Closed loop step response with initial PID parameters

Fig. 13. Optimal closed loop step response obtained with the IFT criterion using a
mask of length 20

A mask of decreasing length was then used, with an initial length of 80 seconds,
and with the same initial parameters again. At every iteration of the IFT
scheme, the length of the mask was decreased by 20 seconds, until a mask of
length 20 was reached. This led to the closed loop response shown in Figure 13.

Fig. 14. Optimal closed loop step response obtained with the IFT criterion using
masks of decreasing length

Observe the dramatic improvement of the response of Figure 13 vis-à-vis the
response of Figure 12, even though in both cases the final criterion is identical
(i.e. the criterion Jm(ρ) of (4) with a mask of length t0 = 20), and even
though the starting values used for ρ0 were identical in both simulations.
The improvement is due to the use of masks of decreasing lengths in the
last simulation, leading to a sequence of cost criteria (rather than a one-shot
criterion), and to a different sequence of ρi parameter vectors than resulted
with the direct use of a mask of length t0 = 20. Even though the final criteria
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are identical, the minima that are reached by the two approaches are quite
different. Our interpretation is as follows. In the case when the final criterion
(with a mask length of t0 = 20) is adopted from the start, the initial parameter
vector ρ0 is very far from the optimal parameter ρ? that yields the global
minimum of the cost criterion. As a result, there is a great risk that the
sequence of parameters ρi produced by the iterative method gets stuck into a
local minimum. In the case where the mask length is progressively reduced, one
minimizes a sequence of criteria that are not too different from one another.
For each of these minimization problems, the initial parameter vector is not
too distant from the global minimum of the criterion that is minimized, and
hence the risks of getting stuck in a local minimum are significantly reduced.

6 Conclusions

We have developed a simple and efficient method to tune simple controllers,
such as PID controllers, in order to achieve minimum settling time with no
overshoot or with minimal overshoot. The scheme consists in computing the
controller parameters iteratively using a variant of the IFT scheme in which
no control error weighting is applied during the transient phase of the closed
loop step response. The width of this zero-weight window is initially taken
much larger than the settling time that one expects to achieve. This leads to
an initial closed loop response that is very sluggish. The window width is then
progressively reduced until oscillations start occurring.

We have illustrated the performance of this optimal tuning method for the
tuning of PID controllers, through four simulation examples representative of
different situations, including a long time delay, or a non-minimum phase zero.
On these four examples, we have compared it with three classical PID tuning
methods: the new variant of the IFT scheme performs significantly better than
the ZN and ISE controllers, and is comparable with the IMC controller. It has
the advantage over IMC that it is not necessary to open the loop, and that a
noise rejection objective is built in the design process. However, note that the
IFT method with masks presented here requires a starting value for the PID
parameters. Thus, it must be seen as complementary to one-shot PID design
methods. It would be interesting to use the IFT tuning method presented
in this paper as a second step (for optimization purposes) of the recently
developed Virtual Reference Feedback Tuning (VRFT) method (Campi et
al., 2000).
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