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Abstract

This paper considers Prediction Error identification of linearly parametrized models
in the situation where the system is in the model set. For such situation it is easy to
construct a confidence ellipsoid in parameter space in which the true parameter lies
with an a priori fixed probability level, α. Surprisingly perhaps, the construction of
a corresponding uncertainty set in the frequency domain, to which the true system
belongs with probability α, is still an open problem. We show in this paper how to
construct such frequency domain uncertainty set with a probability level of at least α.

Keywords: Prediction Error Identification, error bounds, confidence region, identification for con-

trol.

1 Introduction

We consider Prediction Error (PE) identification of model structures G(z, θ) that are linear
in the parameter vector θ ∈ Rk: G(z, θ) = Λ(z)θ, where Λ(z) is a set of independent rational
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basis functions. The identification is performed using N input-output data collected on a
“true” system y(t) = G0(z)u(t) + v(t), where v(t) is additive (colored) Gaussian noise. We
further assume that the true system can be parametrized exactly within the chosen model
structure for some parameter vector θ0: G0(z) = G(z, θ0). Our results also hold for more gen-
eral model structures, modulo a linearization of these structures around the identified model.

Under the assumptions made above, a Prediction Error identification experiment based
on N input-output data delivers an estimate θ̂ of the parameter vector θ0, which is a Gaussian
random variable1 with mean θ0 and a covariance matrix Pθ that can be estimated from the
data: θ̂ ∼ N (θ0, Pθ); see [6] for details. As a result, the random variable (θ̂−θ0)

T P−1
θ (θ̂−θ0)

has a χ2(k) distribution, and one can therefore construct an ellipsoidal confidence region in
parameter space to which the true θ0 belongs with some a priori chosen probability level α.
Specifically, this ellipsoidal region is defined as

Uθ(χk) = {θ | (θ − θ̂)T P−1
θ (θ − θ̂) ≤ χk}, (1)

where, for a desired probability level α, χk is obtained from the χ2 distribution as the value

for which Pr(χ2(k) < χk)
∆
= α.

In many applications, and in particular in identification for control applications, it is
much more useful to characterize the uncertainty on the estimated model in the frequency
domain (i.e. in the Nyquist plane) rather than in parametric domain. Thus, the object of
this paper is to construct an uncertainty region L in the frequency domain, to which the
true system G0(e

jω) must belong with a probability level of at least α for all ω, using the
parametric confidence region obtained by PE identification as a starting point.

This problem appears very simple. Indeed, by the linearity of the model structure, the
estimated model G(z, θ̂) is also Gaussian with mean G0(z). If we represent the frequency
response of the model G(z, θ) by a vector g(ejω, θ) containing its real and imaginary parts

g(ejω, θ)
∆
=

(
Re(G(ejω, θ))
Im(G(ejω, θ))

)
=

T (ejω)︷ ︸︸ ︷(
Re(Λ(ejω))
Im(Λ(ejω))

)
θ, (2)

we then have
ĝ(ejω)

∆
= g(ejω, θ̂) ∼ N (g(ejω, θ0), P (ω)) (3)

with P (ω)
∆
= T (ejω)PθT (ejω)T ∈ R2×2. (4)

Just as was done for the parameter estimate θ̂, the normal distribution of the 2-vector
g(ejω, θ̂) allows one to build elliptic confidence regions U(ω, χ2) at each frequency in the
Nyquist plane, that are guaranteed to contain the true frequency response g(ejω, θ0) at a
prescribed probability level α. The elliptic region at frequency ω is defined as

U(ω, χ2) = {g ∈ R2 | (g − ĝ(ejω))T P (ω)−1(g − ĝ(ejω)) ≤ χ2} (5)

1The Gaussian assumption on v(t) is not essential for the PE framework; it can be replaced by an

assumption of quasistationarity on v(t), in which case the estimated parameter vector θ̂ is asymptotically
Gaussian.
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where, for a desired probability level α, χ2 is obtained from the χ2 distribution as the value

for which Pr(χ2(2) < χ2)
∆
= α.

Examples of the use of such frequency domain confidence regions, derived from the cor-
responding parametric ellipsoidal regions of the PE identification framework, abound in the
literature (see e.g. [3, 1, 11, 4, ?]). Such elliptic regions have also been used abundantly for
model structures that are not linear in the parameters, using a first order approximation for
the mapping from θ-space to g(ejω)-space (see e.g. [10, 9], or [5]-[7] for the special case where
a Model Error Modeling approach is used). These frequency domain uncertainty regions can
actually be computed by the System Identification Toolbox of Matlab2 .

We show in this paper that such procedure may lead to misleading conclusions. Indeed,
the construction of the elliptic uncertainty set U(ω, χ2), as described above, only guarantees
that the true g(ejω, θ0) belongs to U(ω, χ2) at frequency ω with probability α. It does
by no means imply that the whole frequency response g(ejω, θ0) belongs, with probability

α, to the set L(χ2)
∆
= {g(ejω, θ) | g(ejω, θ) ∈ U(ω, χ2) ∀ω } obtained by connecting the sets

U(ω, χ2) for all ω. In fact, we shall illustrate later that Pr(g(ejω, θ0) ∈ U(ω, χ2) ∀ω) can
be much smaller than α for model structures of reasonable complexity. Several authors who
have used the elliptic frequency domain uncertainty sets U(ω, χ2) were aware of the fact that
one could not claim to have an α-level confidence region for the whole frequency response
by connecting together α-level confidence regions at each frequency. Some authors have also
discussed the difficulty of constructing a frequency domain uncertainty set on the basis of
the sets U(ω, χ2) to which the true frequency response G0(e

jω) belongs with a prescribed
confidence level α. Others have used the frequency domain ellipses U(ω, χ2) for robust con-
trol design without apparently fully realizing that the confidence level attached to each set,
at a particular frequency, could not be extrapolated to the whole set obtained by ‘gluing’
these sets together.

The confidence ellipses U(ω, χ2) were apparently first used, in the context of ‘linear in
the parameter models’, in [3]. In that paper, models of restricted complexity are handled,
and the bias error is treated on an equal footing as the variance error using the stochastic
embedding approach. Thus, the confidence ellipses take account of both bias and variance
error on the estimated transfer function. The authors construct their U(ω, χ2) confidence
ellipses using the χ2 distribution with two degrees of freedom, and conclude that one can
use these sets “to give confidence ellipses in the complex plane for the frequency response
estimate G(ejω, θ̂).” Even though no specific statement is made about the confidence level
obtained this way for the whole frequency response, that statement could certainly induce
erroneous interpretations. In [1, 11] the uncertainty bounds obtained by the stochastic em-
bedding approach of [3] were used for the design of a robust controller in an application of
water pressure control in a pump. The design was based on an uncertainty set around the
frequency function G(ejω, θ̂) obtained from the confidence ellipses U(ω, χ2). A similar usage
is made of these confidence ellipses in [?], where an identification for robust control proce-
dure is proposed based on a mixed H2/H∞ approach. Such approach leads to a controller

2However, in the Matlab Identification Toolbox these uncertainty regions are represented in a Bode plot
as uncertainty bands around the magnitude and the phase.
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which could be thought to achieve the required performance with G0(z) with probability α.
However, as shown in this paper, this probability is always smaller than α.

In [2, 4] uncertainty sets are estimated for linear-in-the-parameter models that take ac-
count of variance error, bias error, and initial condition effects. Confidence levels are given
for these uncertainty sets at a particular frequency, but no statements are made about the
confidence level for the set obtained by connecting all frequencies.

The difficulty of extrapolating the confidence level α obtained for the individual un-
certainty sets U(ω, χ2) to a confidence level for the uncertainty region L(χ2) obtained by
connecting these sets together was fully recognized by Tjärnström [9]. We quote from his
paper: “It should be noted that the different regions are dependent through the estimate
of a parametric model and it is thus not possible to say much about the simultaneous con-
fidence degree.3 This follows from the Bonferroni inequality [8].” This inequality gives a
lower bound for the simultaneous confidence level as max(0, 1 − d(1 − β)), where d is the
number of individual confidence regions and β the probability level of one region. This lower
bound thus decreases rapidly with the number of different frequency regions U(ω, χ2), and it
is equal to zero if we construct an uncertainty band for the whole frequency range (d = ∞).
To obtain an overall confidence region for the true G0(z) with a predefined confidence level,
Tjärnström proposes a method based on the bootstrap technique developed in statistics in
the seventies. In a nutshell, it consists of estimating the probability distribution of the pre-
diction errors, and then generating a large number of simulated input-output data sets from
the known inputs and residuals drawn from the estimated distribution function. For each
of these data sets, a model is identified. An uncertainty set with prespecified confidence
level can then be computed experimentally from the large number of estimated models. The
procedure is interesting, but very heavy on computer time.

The problem addressed in the present paper is the same as the one addressed by Tjärnström,
namely how to construct an uncertainty region for the whole transfer function G0(e

jω) with
a prespecified confidence level, when this transfer function is obtained by Prediction Error
Identification. We propose a much simpler procedure based on the commonly used elliptic
uncertainty sets U(ω, χ). More precisely, we solve the following problem: “How should one
choose the size χ of the ellipses U(ω, χ) in such a way that the probability that G0(z) ∈ L(χ)
is at least equal to some prespecified level α?”. We shall show that a practical solution is
simply to choose frequency domain uncertainty ellipses U(ω, χk), rather than U(ω, χ2) as is
commonly done, where k = dim(θ) and χk is obtained from the χ2 distribution as the value

for which Pr(χ2(k) < χk)
∆
= α. By doing so, the set L(χk) obtained by gluing together the

ellipses U(ω, χk) will have a confidence level of at least α. Examples will illustrate the dif-
ference between the confidence level for the sets L(χ2) and L(χk), respectively, for different
values of k = dim(θ).

An additional contribution of our paper will be to clarify the relationship between the
ellipsoidal parameter uncertainty set and the transfer function uncertainty set, and their

3By simultaneous confidence degree Tjärnström means the probability that the true G0 belongs to the
set L(χ2) obtained by connecting together all individual sets U(ω, χ2).
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corresponding probability levels. In passing, we will demonstrate a rather intriguing prop-
erty of this mapping: the set L(χk) obtained by gluing together the ellipses U(ω, χk) may
contain models G(z, θ) for some θ that are not in the original ellipsoid Uθ(χk) of which the
ellipses U(ω, χk) are the images by the linear mapping (4).

The material in the paper develops as follows. In Section 2 we define the relevant sets
and state the problem of constructing a frequency domain uncertainty set with a guaranteed
probability level. Section 3 presents some algebraic results on mappings between ellipsoidal
sets of different dimensions. In Section 4, we show that the traditional procedure of con-
structing a frequency domain uncertainty region by gluing together the uncertainty ellipses
U(ω, χ2) to which G0(ω) belongs with probability α leads to a set L(χ2) with a confidence
level smaller than α. In Section 5 we present our main result: we show that by constructing
the uncertainty region L on the basis of the ellipses U(ω, χk) rather than U(ω, χ2) we can
guarantee for L(χk) a prescribed probability of containing the true system. In Section 7
we compare the probability levels obtained for the whole uncertainty region L by these two
approaches for some standard low order model structures. Some brief conclusions are offered
in Section 8.

2 Definitions and problem statement

We consider that the true system has an input-output relation given by

y(t) = G0(z)u(t) + v(t), (6)

where v(t) is a zero-mean Gaussian process, and where G0(z) can be parametrized, for some
parameter vector θ0 ∈ Rk, in the following linearly parametrized model structure M:

M = { G(z, θ) = Λ(z)θ with θ ∈ Rk } (7)

Λ(z) =
(

Λ1(z) Λ2(z) ... Λk(z)
)

with Λi(z) = b(z)Ai(z). (8)

The Λi(z) (i = 1...k) are rational basis functions [?, ?, ?] of the form b(z)Ai(z), where
b(z) is a given transfer function and A(z) is an all-pass filter, i.e. |A(ejω)| = 1 ∀ω.4 Thus
G0(z) = Λ(z)θ0.

As stated in the introduction, the parameter estimate θ̂ obtained from N input-output
data by PE identification is then a Gaussian random variable with mean θ0 and with a
covariance matrix Pθ ∈ Rk×k that can be estimated from the data [6]. Thus,

θ̂ ∼ N (θ0, Pθ). (9)

It follows that
(θ̂ − θ0)

T P−1
θ (θ̂ − θ0) ∼ χ2(k). (10)

For any given level α, one can therefore construct the uncertainty set Uθ(χk) defined in
(1), to which the true θ0 belongs with probability α if χk is chosen as the value for which

4Λi(z) = z−i is a particular case of (8).
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Pr(χ2(k) < χk)
∆
= α.

By linearity of the model structure, the frequency response of the identified model, rep-
resented by the 2-vector g(ejω, θ̂) (see (2)), is then also Gaussian with mean g(ejω, θ0) and
variance P (ω): see (3)-(4). It follows that

(ĝ(ejω) − g(ejω, θ0))
T P (ω)−1(ĝ(ejω) − g(ejω, θ0)) ∼ χ2(2). (11)

Thus, at frequency ω, the true frequency response g(ejω, θ0) belongs with probability α
to the uncertainty ellipse U(ω, χ2) defined in (5) if χ2 is chosen as the value for which

Pr(χ2(2) < χ2)
∆
= α.

We now consider the frequency domain uncertainty region defined as follows:

L(χ) = {G(z, θ) | g(ejω, θ) ∈ U(ω, χ) ∀ω} where (12)

U(ω, χ) = {g ∈ R2 | (g − ĝ(ejω))T P (ω)−1(g − ĝ(ejω)) ≤ χ}. (13)

The uncertainty region L(χ) is thus the set of systems G(z, θ) whose frequency response is
constrained to lie at each frequency ω in the ellipse U(ω, χ) which is centered at the fre-
quency response ĝ(ejω) of the identified model.

A special case of L(χ) is L(χ2), constructed from the sets U(ω, χ2) defined in (5). The set
L(χ2) has been used in previous work, as noted in the introduction. The main contribution
of this paper will be twofold:

• show that, if χ2 is chosen such that Pr(χ2(2) < χ2)
∆
= α, then Pr(G(z, θ0) ∈ L(χ2)) 6=

α, and this probability is actually always smaller than α; this will be shown in Section 4.

• show which value of χ must be selected in the construction of the uncertainty ellipses
U(ω, χ) in such a way that Pr(G(z, θ0) ∈ L(χ)) is at least equal to α. This will be the
object of Section 5.

In order to understand the first problem, let it suffice at this point to observe that there
is a strong difference between the following two problems:

1. choose χ such that, at each ω, Pr(g(ejω, θ0) ∈ U(ω, χ)) = α;

2. choose χ such that Pr(G0(z) ∈ L(χ)) = Pr(g(ejω, θ0) ∈ U(ω, χ) ∀ω) = α.

The solution to the first problem, as we have shown above, is χ = χ2 where χ2 is such that
Pr(χ2(2) < χ2) = α (e.g. χ2 = 5.99 when α = 0.95). A generic example in Section 6 will
illustrate that the confidence level of the corresponding uncertainty region L(χ2) can then
be much smaller than α indeed.

Our approach to solve the above two problems is to first analyze the mapping (2) that
connects the ellipsoidal parametric uncertainty set Uθ(χ) to the elliptic transfer function un-
certainty set U(ω, χ), as well as its inverse mapping. This will enable us, in a second step, to
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analyze the connection between the parameter uncertainty set Uθ(χ) and the transfer func-
tion uncertainty set L(χ). To analyze these mappings, we introduce two new parameter sets.

The parameter set Cθ(U(ω, χ)) is defined, at each frequency ω, as the set of parameters
θ such that the frequency response g(ejω, θ) lies in U(ω, χ) at frequency ω:

Cθ(U(ω, χ)) = {θ | g(ejω, θ) ∈ U(ω, χ)}. (14)

We show that Cθ(U(ω, χ)) is a different parameter set at each frequency, and that
each of these sets has infinite size. To establish these results, we shall present in Section 3
some linear algebra theorems about the properties of mappings of the form of the mapping
T (ejω) of (2).

We also define the parameter set Cθ(L(χ)) as the set of parameters θ such that G(z, θ)
lies in L(χ):

Cθ(L(χ)) = {θ | G(z, θ) ∈ L(χ)}, (15)

where L(χ) has been defined through (12)-(13). This set will play an important role in the
computation of the confidence level for the uncertainty set L(χ) since, by its very definition,
Pr(G0(z) ∈ L(χ)) = Pr(θ0 ∈ Cθ(L(χ))). It follows further from the last two definitions and
the definition (12)-(13) of L(χ) that

Cθ(L(χ)) = {θ | g(ejω, θ) ∈ U(ω, χ) ∀ω} =
⋂

ω∈[0 π]

Cθ(U(ω, χ)). (16)

The set Cθ(L(χ)) is thus the intersection over all frequencies of the sets Cθ(U(ω, χ))
which are the inverse images in θ-space of the ellipses U(ω, χ), via the mapping (2). We now
analyze some key properties of this mapping.

3 Linear algebra preliminaries

Let us consider two real linear spaces of size n and k, (n < k), linked by a linear transfor-
mation T . This mapping has the following expression

x = Ty (17)

where y ∈ Rk, x ∈ Rn (n < k) are real vectors, and T ∈ Rn×k is a real matrix of rank n.
Our interest lies in the situation where x and/or y are constrained to lie in an ellipsoid.

Theorem 3.1 Consider the mapping T defined in (17) and an ellipsoid Uy with size param-
eter χ in the y-space:

Uy = {y | yTP−1
y y ≤ χ}, (18)

with Py ∈ Rk×k a symmetric positive definite matrix. The image Ux of Uy under the mapping

T , i.e. Ux
∆
= {x | x = Ty with y ∈ Uy}, is an ellipsoid given by

Ux = {x | xT P−1
x x ≤ χ}, (19)

with Px = TPyT
T ∈ Rn×n.

Proof. See [?] or Appendix A.
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Theorem 3.2 Consider the mapping T defined in (17) and an ellipsoid Ux with size pa-
rameter χ in the x-space: Ux = {x | xT P−1

x x ≤ χ}, with Px ∈ Rn×n a symmetric positive
definite matrix. Define the inverse image Cy of Ux using the mapping T as

Cy
∆
= {y | x = Ty ∈ Ux}, (20)

Then Cy is a volume given by
Cy = {y | yTRy ≤ χ}, (21)

with R = T TP−1
x T , a singular matrix ∈ Rk×k. Moreover, the matrix R defining Cy has rank

n, i.e. it has k − n zero eigenvalues. The volume Cy therefore has k − n infinite principal
axes. The directions yi (i = 1, ..., k − n) of these infinite principal axes are the eigenvectors
corresponding to the null eigenvalues of R. Moreover, these eigenvectors yi belong to the null
space of T , i.e. Tyi = 0.

Proof. See [?] or Appendix B.

4 The uncertainty region based on ellipses of size χ2

In this section we show that if χ2 is chosen such that Pr(χ2(2) < χ2)
∆
= α, then Pr(G(z, θ0) ∈

L(χ2)) < α. In other words, if the elliptic uncertainty sets U(ω, χ2) are scaled in such a way
that the true transfer g(ejω, θ0) belongs at frequency ω to U(ω, χ2) with probability 95%,
say, then the probability that the whole transfer function G(z, θ0) belongs to the set L(χ2)
obtained by “gluing together” these ellipses, will be strictly smaller than 95%.

Thus, assume that χ2 is chosen such that Pr(χ2(2) < χ2)
∆
= α. Then, by the definitions

of U(ω, χ) and of Cθ(U(ω, χ)) (see (13) and (14) respectively), it follows that Pr(θ0 ∈

Cθ(U(ω, χ2))) = Pr(g(ω, θ0) ∈ U(ω, χ2))
∆
= α. We analyze the structure of these sets

Cθ(U(ω, χ2)). It follows from Theorem 3.2 and from the definition (13) of U(ω, χ) that, at
any fixed but arbitrary frequency ω, the set Cθ(U(ω, χ2)) is a volume in θ-space centered at
θ̂ with k−2 infinite axes in the direction of the vectors belonging to the null-space of T (ejω):

Cθ(U(ω, χ2)) = {θ ∈ Rk | (θ − θ̂)T R(ω)(θ − θ̂) ≤ χ2}. (22)

where R(ω) = T (ejω)T P (ω)−1T (ejω). Key points here are that

• the sets Cθ(U(ω, χ2)) are different at each frequency since the matrices R(ω) are dif-
ferent at each frequency

• due to the independence of the basis functions defining Λ(z) and hence T (ejω), there
cannot exist any particular direction that is an infinite axis of Cθ(U(ω, χ2)) at every
frequency.
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Now remember that Cθ(L(χ2)) = ∩ω∈[0 π]Cθ(U(ω, χ2)): see (16). The set Cθ(L(χ2))) is
therefore a bounded set (i.e. with no infinite axis) and is thus clearly smaller than any one
of the sets Cθ(U(ω, χ2)) for any frequency. Thus at each ω we have a strict inclusion:

Cθ(L(χ2)) ⊂ Cθ(U(ω, χ2)). (23)

This has the following consequence on the probability level Pr(G(z, θ0) ∈ L(χ2)).

Theorem 4.1 Consider the identification of a true system G0(z) = G(z, θ0) (θ0 ∈ Rk, k >
2) in a full-order model structure as presented in Section 2, and the uncertainty region L(χ2)
defined in (12)-(13), where χ2 is such that Pr(χ2(2) < χ2) = α. Then

Pr(G(z, θ0) ∈ L(χ2)) < α. (24)

Proof. The result follows directly from the strict inclusion (23) and the fact that Pr(G0(z) ∈
L(χ2)) = Pr(θ0 ∈ Cθ(L(χ2))) and that Pr(θ0 ∈ Cθ(U(ω, χ2))) = α.

In Section 6, a generic example will show that Pr(G0(z) ∈ L(χ2)) can in fact be much
smaller than the desired confidence level α when k is moderately large. This is to be expected
since Cθ(U(ω, χ2)) = {θ | g(ejω, θ) ∈ U(ω, χ2)} is an infinite set (in k − 2 directions) while
Cθ(L(χ2)) = {θ | G(z, θ) ∈ L(χ2)} is a bounded set included in Cθ(U(ω, χ2)) for every ω.

5 Constructing an uncertainty region with guaranteed

confidence level

In this section, we present the main result of our paper. We show that we can guarantee
that Pr(G(z, θ0) ∈ L(χ)) is at least as large as some predefined level α if we use L(χk) with

χk defined as the value for which Pr(χ2(k) < χk)
∆
= α. In other words, we construct L(χk)

on the basis of the ellipses U(ω, χk), rather than the smaller ellipses U(ω, χ2) as is commonly
done.

To show this, we first observe that Pr(G(z, θ0) ∈ L(χ)) = Pr(θ0 ∈ Cθ(L(χ)), and we
analyze the connection between the parameter sets Uθ(χk) and Cθ(L(χk)): see (1) and (16),
respectively. By definition of Uθ(χk), we have Pr(θ0 ∈ Uθ(χk)) = α. Now, using Theorem 3.1
and (4) we have the following alternative characterization of the sets U(ω, χk):

U(ω, χk) = { g(ejω, θ) | θ ∈ Uθ(χk) }. (25)

It then follows from the definition (14) of Cθ(U(ω, χk)) that Uθ(χk) ⊆ Cθ(U(ω, χk)) for each
ω. In addition, since Cθ(U(ω, χk)) has been shown to contain infinite axes (see Section 4)
while Uθ(χk) is a bounded ellipsoid, it follows necessarily that, at each ω,

Uθ(χk) ⊂ Cθ(U(ω, χk)). (26)

Combining (26) and (16), we have that Uθ(χk) ⊆ Cθ(L(χk)). The following proposition,
proved in Appendix C, actually shows that Cθ(L(χk)) \ Uθ(χk) 6= ∅, i.e. the inclusion is
strict:

Uθ(χk) ⊂ Cθ(L(χk)). (27)

9



Proposition 5.1 Consider the identification of a true system G0(z) = G(z, θ0) (θ0 ∈ Rk,
k > 2) in a full-order model structure as presented in Section 2, the frequency domain uncer-
tainty region L(χ) of size χ defined in (12)-(13), and the sets Cθ(L(χ)) and Uθ(χ) defined
in (15) and (1), respectively. Then Cθ(L(χ)) \ Uθ(χ) 6= ∅.

Proof: see Appendix C.

It follows from (27) and the property Pr(θ0 ∈ Uθ(χk)) = α that

Pr(θ0 ∈ Cθ(L(χk)) > α. (28)

Collecting all these results, we have the following theorem concerning Pr(G0 ∈ L(χk)).

Theorem 5.1 Consider the identification of a true system G0(z) = G(z, θ0) (θ0 ∈ Rk,
k > 2) in a full-order model structure, as presented in Section 2, and the frequency domain
uncertainty region L(χk) of size χk defined in (12)-(13). Then we have the following relations
between the uncertainty sets defined earlier:

Uθ(χk) ⊂ Cθ(L(χk)) ⊂ Cθ(U(ω, χk)). (29)

If α is the desired probability level and χk is such that Pr(χ2(k) < χk) = α with k = dim(θ0),
then we have in particular

Pr(χ2(k) < χk) = α < Pr(G(z, θ0) ∈ L(χk)) < Pr(χ2(2) < χk). (30)

Proof. The lower bound in (29) has been shown above, while the upper bound fol-
lows by substituting χk for χ2 in (23)5. The inequalities in (30) follow from Pr(θ0 ∈
Uθ(χk)) = Pr(χ2(k) < χk) = α, Pr(G(z, θ0) ∈ L(χk)) = Pr(θ0 ∈ Cθ(L(χk)), and Pr(θ0 ∈
Cθ(U(ω, χk)) = Pr(χ2(2) < χk), respectively. The last part follows from the definitions of
Cθ(U(ω, χk)) and U(ω, χk) (see (14) and (5), respectively) and the property (11).

The inequalities (30) summarize the main technical results of this paper. They hold of
course for any value χ in lieu of χk. They state that the probability Pr(G0(z) ∈ L(χ)) is
larger than the probability that the true parameter vector θ0 lies in Uθ(χ), but smaller than
the probability that g(ejω, θ0) lies in the ellipse U(ω, χ) at any single frequency ω. Observe
that, for k > 2, we have χk > χ2 and hence Pr(χ2(2) < χk) > Pr(χ2(2) < χ2).

The theorem offers a simple procedure for the construction of a frequency domain uncer-
tainty region with confidence level of at least α, derived from a PE identification experiment:
if dim(θ) = k, then construct the uncertainty region L(χk) obtained by gluing together the
ellipses U(ω, χk) of size χk where, as usual, χk is the value for which Pr(χ2(k) < χk) = α.
The procedure is significantly simpler and faster than that proposed in [9]; the penalty for
this simplicity is that the delivered probability is larger than the desired level α. Our exam-
ple in the next section will illustrate how conservative this bound can be.

5Note that (23) is expressed in terms of χ2, but it holds for any value of χ.
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Final comments. We have shown that, to construct a confidence region L(χ) with proba-
bility α by gluing together the frequency ellipses U(ω, χ), we need to work with the ellipses
U(ω, χk) rather than U(ω, χ2), where k = dim(θ). Both ellipses have, at each ω, the same
center ĝ(ω) = g(ejω, θ̂) and the same axes, but U(ω, χk) is a dilated version of U(ω, χ2)
(for k > 2) since χk > χ2. A schematic view of this is given in Figure 1 at an arbi-
trary frequency ω. As an example, when α = 0.95 and k = 6, we have χ6 = 12.6 and
Pr(g(ejω, θ0) ∈ U(ω, χk)) = 0.999, whereas χ2 = 5.99 and Pr(g(ejω, θ0) ∈ U(ω, χ2)) = 0.95.

..
U(ω,χ�)

U(ω,χk)

Figure 1: U(ω, χ2) and U(ω, χk). The dot “.” represents the center ĝ(ω).

6 Numerical illustration

Recall the identification experiment of Section 2, and consider here for simplicity that v(t)
and u(t) in (6) are realizations of white noise signals of variance σ2

e and σ2
u, respectively, and

that the transfer functions Λi(z) in (8) are given by z−i (i = 1, ..., k). Then the covariance
matrix Pθ of the identified parameter vector θ̂ in (9) is the following diagonal matrix:

Pθ =
1

N

σ2
e

σ2
u

Ik, (31)

where k is the size of the vector θ0 and N the number data used in the identification. The
results presented in the sequel are independent of the values of θ0, θ̂, N , σ2

e and σ2
u.

Suppose that we want to construct an uncertainty set for G(z, θ0) with probability level
α = 0.95. Using the expression of Pθ given in (31), we have computed Pr(G(z, θ0) ∈
L(χ)) = Pr(θ0 ∈ Cθ(L(χ))) by approximating Cθ(L(χ)) as the intersection of the volumes
Cθ(U(ω, χ)) at a number of different frequencies and by using a grid of points in this intersec-
tion to integrate the probability density function (9). We have done this for k = 3, 4 and 6,
and for χ = χ2 = 5.99, and χ = χk. For computational reasons we could not consider larger
values for k since the number of points in the grid grows exponentially with k. The results
for k = 3, 4 and 6 are presented in Tables 1, 2 and 3, respectively. Note that, in these tables,
we compare the estimated Pr(G(z, θ0) ∈ L(χ)) with its upper and lower bound given in (30).

From these tables, we see how wrong it would be to choose χ = χ2 = 5.99 as the size pa-
rameter for the construction of an uncertainty set L(χ) for which Pr(G0(z) ∈ L(χ)) = 0.95.
Indeed, Pr(G0(z) ∈ L(χ2)) is only 0.74 when k = 6. In this generic example, we can also
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χ Pr(χ2(k = 3) < χ) Pr(G0(z) ∈ L(χ)) Pr(χ2(2) < χ)

χ2 = 5.99 0.89 0.90 0.95
χk=3 = 7.81 0.95 0.96 0.98

Table 1: k = 3

χ Pr(χ2(k = 4) < χ) Pr(G0(z) ∈ L(χ)) Pr(χ2(2) < χ)

χ2 = 5.99 0.80 0.85 0.95
χk=4 = 9.49 0.95 0.97 0.99

Table 2: k = 4

see that this phenomenon worsens when k increases: Pr(G0(z) ∈ L(χ2)) = 0.90 when k = 3,
0.85 when k = 4, and only 0.74 when k = 6.

As expected by Theorem 5.1, for each considered k, the choice χ = χk delivers an
uncertainty region L(χk) containing G0 with a probability of at least 0.95. In this generic
example, even though this probability Pr(G0(z) ∈ L(χk)) is never relatively much larger
than 0.95, we nevertheless notice that it increases when k increases: Pr(G0(z) ∈ L(χk)) is
equal to 0.96 when k = 3, 0.97 when k = 4 and 0.98 when k = 6. Note also that, since χk

increases when k increases, the probability Pr(g(ejω, θ0) ∈ U(ω, χk)) = Pr(χ2(2) < χk) also
increases when k increases: it is equal to 0.98 when k = 3, 0.99 when k = 4 and 0.999 when
k = 6.

7 Conclusions

We have developed a procedure, suitable for PE identification of ‘linear in the parameter
models’, for the construction of a frequency domain uncertainty region to which the true
system is guaranteed to belong with a probability level that is at least equal to some a
priori fixed level α. The frequency region is based on the commonly used frequency domain
ellipses, obtained at each frequency. Our main contribution has been to show how to choose
the size of the ellipses in order to guarantee the required level α for the whole region.

χ Pr(χ2(k = 6) < χ) Pr(G0(z) ∈ L(χ)) Pr(χ2(2) < χ)

χ2 = 5.99 0.58 0.74 0.95
χk=6 = 12.6 0.95 0.98 0.999

Table 3: k = 6
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A Proof of Theorem 3.1

Let us first prove the following lemma that will be useful to prove Theorem 3.1.

Lemma A.1 Consider the partitioned symmetric positive definite matrix P ∈ Rk×k:

P =

(
P11 P12

P T
12 P22

)

with P11 ∈ Rn×n, P12 ∈ Rn×(k−n) and P22 ∈ R(k−n)×(k−n). Consider also two real vectors
x ∈ Rn and x̄ ∈ R(k−n) and an ellipsoid Uxx̄ defined as:

Uxx̄ =

{ (
x
x̄

)
|

(
x
x̄

)T

P−1

(
x
x̄

)
≤ 1

}
.

Then the set Ux

Ux = {x |

(
x
x̄

)
∈ Uxx̄} (32)

is also an ellipsoid given by
Ux = {x | xT P−1

11 x ≤ 1} (33)

Proof. The inverse of the block matrix P can be written (see e.g. [?, page 22])

P−1 =

(
K11 K12

KT
12 K22

)

where K11 = P−1
11 + P−1

11 P12∆
−1P T

12P
−1
11 , K12 = −P−1

11 P12∆
−1, K22 = ∆−1 and ∆ = P22 −

P T
12P

−1
11 P12. Using these notations and introducing the vector z = K−1

22 KT
12x+ x̄, we have the

following equivalences:
(

x
x̄

)T

P−1

(
x
x̄

)
≤ 1 ⇐⇒ xT (K11 − K12K

−1
22 KT

12)x + zT K22z < 1

⇐⇒ xT P−1
11 x + zT K22z ≤ 1 (34)

Using this last expression, we can now write that

14



1. if (xT x̄T )T ∈ Uxx̄, then xT P−1
11 x < 1. Indeed

(
x
x̄

)T

P−1

(
x
x̄

)
< 1 =⇒ xT P−1

11 x < (1 − zT K22z) < 1

2. if xT P−1
11 x ≤ 1 then there exists x̄ such that (xT x̄T )T ∈ Uxx̄. Indeed, take as x̄ the

vector x̄ such that z = 0 (i.e. x̄ = −K−1
22 KT

12x). Then

(
x

−K−1
22 KT

12x

)
∈ Uxx̄.

This completes the proof.

Proof of Theorem 3.1. Let us first complete the mapping T with a matrix T ∈ R(k−n)×k

to generate a nonsingular mapping T̃ :

(
x
x̄

)
=

eT︷ ︸︸ ︷(
T
T

)
y (35)

such that T̃ ∈ Rk×k has rank k. Using T̃ , we have

yT P−1
y y ≤ χ ⇐⇒

(
x
x̄

)T
P−1

︷ ︸︸ ︷
T̃−T P−1

y T̃−1

(
x
x̄

)
≤ χ (36)

Proving Theorem 3.1 is thus equivalent to proving that (19) is the domain where x is
constrained to lie when (36) holds. This follows immediately from Lemma A.1, noting that

if P = T̃ PyT̃
T , then Px = P11 = TPyT

T .

B Proof of Theorem 3.2

We first prove that the inverse image of Ux by the mapping (17) is given by (21). This
follows directly from:

xT P−1
x x < χ ⇐⇒ yTT TP−1

x Ty ≤ χ. (37)

The volume Cy is thus the inverse image of Ux since y has to satisfy the right-hand side
of (37) in order to have x in Ux. It follows then from R = T TP−1

x T ∈ Rk×k with T of rank
n < k that R has k − n null eigenvalues and that the corresponding eigenvectors are in the
null-space of the mapping T .

C Proof of Proposition 5.1

Let us first prove the following lemma that will be useful to prove this proposition.
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Lemma C.1 Let a be a real constant, Pθ ∈ R3×3 be a symmetric positive definite matrix
and T ∈ R2×3 be of rank 2. Then the intersection of

xT P−1
θ x = a (38)

and xT T T (TPθT
T )−1Tx = a (39)

is the contour of an ellipse.

Proof. Let us decompose Pθ in Pθ = UT DU , where U is orthogonal and D diagonal, and

let us define z
∆
= D−

1

2 Ux and R
∆
= TUT D

1

2 . Then, (38) and (39) become zT z = a and
zT RT (RRT )−1Rz = a, respectively. This implies that

zT

∆
=A︷ ︸︸ ︷(

I3 − RT (RRT )−1R
)
z = 0. (40)

The matrix A is easily seen to be nonnegative and of rank 1 (i.e. since ART = 0). Hence, A
can be decomposed in A = ααT for some vector α 6= 0 of dimension 3. Then, from (40), we

have αTz = αT D−
1

2 Ux = 0. This shows that the intersection of (38) and (39) lies in a plane
and this plane intersects (38) and (39), obviously as the contour of an ellipse.

Proof of Proposition 5.1. We will establish that Cθ(L(χ))\Uθ(χ) 6= ∅ for k = dim(θ) > 2
in two steps. First, we analyze the case where the size k of the parameter vector θ is 3.

Step 1. When k = 3, the set Cθ(U(ω, χ)) given in (22) is, at each ω, a cylinder containing
Uθ(χ) and with an infinite axis in the direction θnull(ω) which is the eigenvector corresponding
to the null eigenvalue of T (ejω) ∈ R2×3. Using (8) and (2), it is easy to see that

θnull(ω) =
(

1 −2cos(φ(ω)) 1
)T

(41)

where φ(ω) is the phase of the all-pass filter A(ejω). Note also that, according to Lemma C.1,
the intersection Ei(ω, χ) between the surface of Cθ(U(ω, χ)) and the surface of Uθ(χ):

Ei(ω, χ) = {θ | (θ − θ̂)T P−1
θ (θ − θ̂) = χ}

⋂
{θ | (θ − θ̂)T R(ω)(θ − θ̂) = χ} (42)

is the contour of an ellipse centered at θ̂.

We will prove the existence of vectors θout ∈ Cθ(L(χ)) \Uθ(χ) by contradiction. For this
purpose, note that there would not exist such θout if and only if each parameter vector θs

on the surface of Uθ(χ) (i.e. each parameter vector θs such that (θs − θ̂)T P−1
θ (θs − θ̂) = χ)

belongs to the surface of (at least) one Cθ(U(ω, χ)) 6. Consequently, there would not exist
such θout if and only if the union ∪ω∈[0 π]Ei(ω, χ) (see (42)) is equal to the surface of Uθ(χ).
This last condition is only possible if the axes of the different cylinders Cθ(U(ω, χ)), when

6Indeed, under this condition, each θout 6∈ Uθ(χ) is also (at least) outside the cylinder Cθ(U(ω, χ)) to the

surface of which the vector θs − θ̂ in the same direction as θout − θ̂ belongs. The vector θs − θ̂ in the same
direction as θout − θ̂ is the vector on the surface of Uθ(χ) such that θs − θ̂ = β(θout − θ̂) for some constant
α (0 < β < 1).
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ω goes from 0 to π, are sufficiently different.

The direction of the axis of the cylinder Cθ(U(ω, χ)) at a particular ω is given by the
vector θnull(ω). By inspecting (41), we see that θnull(ω) always takes its value in one section
of a plane delimited by (1 − 2 1)T and (1 2 1)T . The angle between these two extreme
vectors is 1.91 radians (< π radians). The axes of the cylinders Cθ(U(ω, χ)) can therefore not
cover an angle of more than 1.91 radians when ω goes from 0 to π. This makes it impossible
that ∪ω∈[0 π]Ei(ω, χ) equals the total surface of Uθ(χ). Consequently, Cθ(L(χ)) \ Uθ(χ) 6= ∅
for k = 3.

Step 2. We will now extend the proof to the case where k > 3 by using the fact that
the strict inclusion has been proven for the case k = 3. In this second step we will also
use the following equivalence: θout ∈ Cθ(L(χ)) \ Uθ(χ) ⇔ θout 6∈ Uθ(χ) and there exists, at
each frequency7, a θin in Uθ(χ) such that G(ejω, θout) = G(ejω, θin). This equivalence is a
consequence of the relations (16) and (25).

Let us first introduce some notations: we partition the inverse of the matrix Pθ ∈ Rk×k

defining Uθ(χ) as follows

P−1
θ =

(
P−1

11 P−1
12

P−T
12 P−1

22

)
(43)

where P−1
11 ∈ R3×3, P−1

12 ∈ R3×(k−3) and P−1
22 ∈ R(k−3)×(k−3). Note that, since P−1

θ is a sym-
metric positive-definite matrix, the matrix P−1

11 is also a symmetric positive-definite matrix.

We also partition the identified vector θ̂ into θ̂ =
(

ξ̂ η̂
)T

with ξ̂ ∈ R3 and η̂ ∈ R(k−3);

and Λ(z) into Λ(z) =
(

Λξ(z) Λη(z)
)

with Λξ(z) and Λη(z) containing 3 and k − 3 basis
functions, respectively.

Consider now the following system description in ξ and the following ellipsoid defined by
P−1

11 ∈ R3×3 and the vector ξ̂:

G(z, ξ) = Λξ(z)ξ Uξ(χ) = {ξ | (ξ − ξ̂)T P−1
11 (ξ − ξ̂) ≤ χ}

where ξ ∈ R3 is a new parameter vector of dimension 3. Using the result of Step 1 and
the equivalence given in the beginning of Step 2, we know that there exist vectors ξout (in-
dependent of frequency) having all the following property: ξout 6∈ Uξ(χ) and G(ejω, ξout) =
G(ejω, ξin) for some ξin at each frequency, with ξin in general frequency-dependent.

For each vector ξout of dimension 3 having the above property, we construct the vector

θout ∈ Rk ∆
= (ξout η̂)T . This vector θout does not lie in Uθ(χ). Indeed, using (43) and

ξout 6∈ Uξ(χ), we have (θout − θ̂)T P−1
θ (θout − θ̂) = (ξout − ξ̂)T P−1

11 (ξout − ξ̂) > χ. Moreover, we

can define, at each ω, a vector θin
∆
= (ξin η̂)T , using the vector ξin corresponding to that ω.

This vector θin lies in Uθ(χ) since (θin − θ̂)T P−1
θ (θin − θ̂) = (ξin − ξ̂)T P−1

11 (ξin − ξ̂) ≤ χ and
has furthermore the property that G(ejω, θout) = G(ejω, θin) since G(ejω, ξout) = G(ejω, ξin).
This shows that Cθ(L(χ)) \ Uθ(χ) 6= ∅ and completes thus the proof for k > 3.

7Note that there is however no single value of θin which applies at all frequencies.
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