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This paper presents the author’s views on the develop-
ment of identification for control. The paper reviews
the emergence of this subject as a specific topic over the
last 15 years, at the boundary between system
identification and robust control. It shows how the
early focus on identification of control-oriented nom-
inal models has progressively shifted towards the
design of control-oriented uncertainty sets. This recent
trend has given rise to an important revival of interest
in experiment design issues in system identification.
Some recent results on experiment design are
presented.

Keywords: Closed-Loop Identification; Identification
for Control

1. Introduction

1.1. Identification and Control: A Brief History

Identification has for a long time been the territory of
mathematicians, statisticians, time-series analysts and
econometricians. The history of system identification
goes as far back as the work of Gauss and Legendre in
the late 18th and early 19th century. An excellent

presentation of the history of system identification can
be found in Ref. [21].
Control theory has always been the territory of

engineers. Until about 1960, control design was
mostly based on the use of Bode, Nyquist or Ziegler–
Nichols plots. It was applied to engineering fields in
which reliable models were available on the basis of
first-principles, such as is the case in electrical,
mechanical or aerospace applications. In the process
industries, very simple ‘‘first order plus time delay’’
models were used. The introduction of state-space
models in 1960, together with the solution of optimal
control and optimal filtering problems in a linear
quadratic gaussian framework [47,48], gave birth to a
tremendous development of model-based control
design methods. Successful applications abounded,
particularly in aerospace, where accurate models were
readily available.
Even though parameter estimation techniques had

been applied for some time to the control of systems
with known structure but unknown or poorly known
parameters, 1965 saw the start of identification of
black-box models in the control community. The
paper [41] set the stage for state space realization
theory which, 25 years later, became the founding
block for what is now called subspace identification.
The paper [4] introduced into the control commu-
nity the maximum likelihood framework for the
identification of input–output models. This gave rise
to the celebrated prediction error (PE) framework [54]�This paper presents research results of the Belgian Programme on
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that has since proven so successful. Undoubtedly, the
advent of identification theory was spurred by a desire
to extend the applicability of model-based control
design to broader and broader fields of applications,
for which no reliable models could be obtained from
first principles.
From 1965 to the late 1980s, model-based control

was applied to ever growing classes of dynamical
systems and processes, with models obtained through
the newly emerging identification techniques. The pre-
vailing habit at that time was to separate the identi-
fication step and the control design step. A model was
identified first using the best available techniques;
subsequently, a model-based control design was per-
formed based on the ‘‘certainty equivalence principle’’,
i.e. the model was treated as if it represented the true
system. Dual control and adaptive control were two
early attempts to address the issue of parametric
uncertainty and model-based control design in a
synergistic way. In dual control, the parameter esti-
mation and the control design mechanism are
obtained as the result of a single but complex opti-
mization problem. In adaptive control, the parameter
adjustment scheme is subsidiary to the control objec-
tive. Both schemes were developed for the case where
the structure of the true system is assumed to be
known, which severely limits their practical applic-
ability. The solution of the dual control problem
proved to be computationally intractable, even in the
simplest cases. As for adaptive control, the major
difficulty is that the parameters of the feedback con-
trol system change at every sampling instant, making
the closed-loop dynamics nonlinear and their stability
analysis extremely complex.

1.2. Identification for Control: It is A Design

Problem

One of the main contributions of the control com-
munity to system identification theory was to consider
identification as an exercise in estimating the best
possible approximate model within some model set,
rather than as a search for the true system. Together
with this effort came the characterization of the
approximate model in terms of bias error and variance
error on the estimated transfer functions.
If the model of a system is exact, it is optimal for all

applications. However, if the model is only an
approximation of the ‘‘true system’’, then the quality
of the model should be dependent on the intended
application. It thus makes sense to tune the identifi-
cation towards the objective for which the model is
to be used, i.e. to ensure that the distribution of
model error is such that it does not deteriorate the

objective too much. This gave rise to the paradigm
of goal-oriented identification and it led one to view
identification as a design problem. Identification for
control has been the major outlet for this new para-
digm. The reasons for this are many: (i) control is very
often the main motivation for model building; (ii) high
performance control can often be achieved with very
simple models, provided some basic dynamical fea-
tures of the system are accurately reflected; (iii) a
powerful robust control theory, based on nominal
models and uncertainty sets, had been developed all
through the eighties, but these models and uncertainty
sets were not data-based for lack of a proper theory;
(iv) identification for control research led to iterative
model and controller tuning tools that were intuitive,
practical and easy to implement by the process
engineers.
One early approach to optimal identification design

for control, which established a direct link between
experimental conditions and controller performance,
was obtained in Ref. [28] by considering variance
errors only, i.e. the system was assumed to be in
the model set. This approach consists, for a given
certainty equivalence control design procedure, of
computing the experimental conditions of the identi-
fication that minimize the average performance
degradation that results from the fact that the con-
troller is computed from an estimated (and hence
random) model rather than from the exact true
system. Like with all optimal experiment design
methods, the optimal experiment depends on the
unknown system: see Section 4. Hence, even though
such results give useful insights, they do not provide
an operational design method for the identification
for control problem. In addition, they are based on a
certainty equivalence controller design mechanism,
rather than on a robust control design.
Except for the methods already mentioned (dual

control, adaptive control, control-oriented optimal
design), which are restricted to the case where the true
system is in the model set, the first contributions in
which identification and control design with restricted
complexity models were looked upon as a combined
design problem appeared only around 1990. The
plenary [26] at the 1991 IFAC Symposium on System
Identification (SYSID 1991) addressed many of the
key issues; however, it was more an agenda for
research than a presentation of solutions. Indeed,
there was very little understanding at that time about
the interplay between system identification and robust
control. The two theories had been developed by
separate communitieswith very little interaction. In the
1990s, the activity in identification for control surged.
In his SYSID 2003 plenary [36], H. Hjalmarsson
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estimated that �1500 papers have appeared on the
topic of identification for control after the SYSID
1991 plenary.

1.3. Where the Quality of the Model Depends

on the Controller

When the application of a model is the design of a
controller, then what really matters is the performance
achieved by this model-based controller on the ‘‘true
system’’, and not the intrinsic quality of the model. We
illustrate this idea with a very simple example inspired
by Ref. [69]. Let a ‘true system’ be represented by
G0ðsÞ ¼ 1=ðsþ 1Þ. Then the ‘model’ ĜGðsÞ ¼ 1=s would
clearly be deemed to be absurd as a model for G0.
However, if the objective is to design a high gain static
output feedback controller, then ĜG would be a per-
fectly acceptable model. Indeed, with a high gain static
output feedback u ¼ �Ky, the closed-loop transfer
functions K=ðsþ 1þ KÞ and K=ðsþ KÞ become
indistinguishable. Thus, whether or not a model is
appropriate for control design depends as much on the
controller that will be implemented as it depends on
the plant/model mismatch.
In practice, the true system is unknown, the model

is unknown at the identification design stage, and the
controller that will be implemented is unknown
because it depends on that model. What is typically
known in control-oriented identification is the control
performance objective. Some prior knowledge about
the true system may also be available. Ideally, the
design of a control-oriented identification procedure
could then be formulated as follows: Given a control
performance objective, design the identification in such
a way that the performance achieved by the model-based
controller on the true system is as high as possible. In a
robust control design framework, this could be
reformulated as follows: Given a control performance
objective, design the identification in such a way that the
worst-case performance achieved by the model-based
controller on the validated uncertainty set of models is
as high as possible. Note that this definition depends
on several mechanisms that are closely inter-
connected: the identification design, the construction
and validation of an uncertainty set, the control
design mechanism. Identification design includes
many choices: input data, feedback configuration
(possibly), data length, model structure, identification
criterion, validation criterion, etc. The identification
design problem is impossible to solve in such gen-
erality. In order to get a handle on the problem, it has
been customary to fix some of the choices; the number
of data is usually taken to be fixed, and so is the model
structure.

1.4. Control-Oriented Nominal Models

by way of Iterative Schemes

In the first half of the 1990s, the research focused on
the bias error distribution, assuming that low com-
plexity models are being used for the controller design.
It produced a string of results on the design of control-
oriented nominal models [3,18,51,66,67,77]. The first
and rather obvious result was to establish that a model
is good for control design if the closed-loop system
obtained by the feedback connection of that model
with the designed controller is close to the system
obtained by the feedback connection of the true sys-
temwith that same controller. Since the ‘to be designed
controller’ is not available at the identification stage,
this led to the necessity of using iterative steps of
controller updates and model updates obtained by
closed-loop identification.
A second important result was that the identifica-

tion criterion should be a function of the control
performance criterion. This led to the observation
that, for most control performance objectives, iden-
tification should be performed in closed loop [24,39].
This triggered a revival of interest for closed-loop
identification, and the emergence of new identification
methods specifically designed for this situation: see
e.g. [23,34,72].
The iterative identification and control design

schemes do not necessarily converge to a stationary
point, corresponding to a stable closed-loop system.
Thus, they must be applied with caution, and a lot of
work has gone into developing tools for safe model
and controller updates [2]. Even so, these iterative
schemes have had a remarkably fast transfer into the
world of applications. There are two main reasons for
this:

� whereas much of the industrial world was still living
with the belief that one should ‘open the loop’ to
perform a valid identification experiment, here was
a theory that showed the benefits of closed-loop
identification; this came as welcome news to process
control engineers who had never really liked the
idea of opening the loop;

� in the process industry, thousands of measurements
flow into the computer; here was a theory that
showed how these data could be used for the design
of a better controller.

As stated above, the work on control-oriented
nominal models focused on the bias error distribution
of the identified model, with the controller computed
from the model in a certainty equivalence framework.
Thus, that work did not incorporate the robust con-
trol concepts developed during the eighties. It focused
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on the design of identification criteria that minimize a
(control-oriented) measure of the model error.

1.5. Towards Control-Oriented Uncertainty Sets

The second half of the 1990s saw a shift towards the
definition and estimation of control-oriented uncer-
tainty sets [13,20,49,56] in order to put the control
design into the framework of robust control design.
The focus turned to shaping the distribution of the
variance error of the identified models, i.e. on
manipulating the shape of the uncertainty set. Indeed,
the paradigm of robust control design is to compute a
controller that achieves the best possible worst-case
performance, i.e. the best possible performance over
all models in an uncertainty set. Such best worst-case
performance depends as much on the controller as it
depends on the uncertainty set, and this set is directly
dependent on the experimental conditions under
which the identification is performed. The study of the
interplay between experimental conditions of the
identification and properties of the robust controller
has been split up into two questions:

(1) What is the connection between a model uncer-
tainty set and the properties of robust controllers
computed from that set and, consequently, how
should one define a control-oriented uncertainty
set?

(2) How should one design the identification experi-
ment in such a way that the uncertainty set around
the identified model has such ‘control-oriented’
property?

Even though many new insights have been gained on
the first question, there is, at this point, no clear view
as to the most operational definition of a ‘control-
oriented uncertainty set’; we shall come back to this in
Section 7. As for the second question, the search for
models that have prespecified error quality distribu-
tions has led to a revival of activity in experiment
design questions.
To summarize this historical account, the work on

identification of the last 15 years has been essentially
developed in four directions: optimal control-oriented
experiment design for identification, the definition
and computation of control-oriented nominal models,
the connection between data-based uncertainty sets
and the properties of robust controllers resulting from
such sets, and the formulation and solution of control-
oriented optimal experiment design problems. The
new questions raised by the topic of identification for
control have generated lots of parallel work on
estimation and validation of uncertainty sets from

data, closed-loop identification, experiment design,
frequency domain identification. Some of the con-
cepts that have emerged from these 15 years of work,
such as the idea of improving the performance of an
existing controller on the basis of closed-loop data
collected with the presently operating controller, have
quickly found their way into practice. However, many
questions remain unsolved, particularly on the opti-
mal tuning of uncertainty sets, and we are still far
from an automatic data-based control design proce-
dure. Let us mention in passing that the automatic
synthesis of control algorithms, with integrated valida-
tion and verification is seen as one of the major future
challenges in control by the panel for future directions
in control [60].
In the remainder of this paper, we explain in

some more detail the specific achievements and
the remaining unsolved questions in the different
subtopics that we have sketched: What is optimal
control-oriented experiment design? What is a con-
trol-oriented nominal model? Why iterative design?
What is a control-oriented uncertainty set? How can
we match experiment design and uncertainty set?
We have chosen to do the presentation of these ideas
in a PE identification framework, because PE identi-
fication is by far the most successful and widely used
identification method. Our presentation focuses on
the ideas and issues, the chronology of developments,
the motivation for the successive steps that were taken
and problems that were addressed. The paper is
probably written more for the systems and control
generalist or the newcomer to the field who wants to
get a good understanding of the key issues in identi-
fication for control than for the expert in this field.
For a superb presentation of the technical issues in
identification for control, we refer to [37], which is
compelling reading for anyone who aims at becoming
an expert in this difficult field. In particular, that
paper contains fascinating new ideas on near-optimal
restricted complexity modelling and on model
validation.
In the next section, we first present the bare

essentials of PE identifcation that are necessary to
understand the remaining issues.

2. Basics on PE Identification

To simplify the presentation, we assume that the
unknown true system can be represented by a single-
input single-output linear time-invariant system:

S : yt ¼ G0ðzÞut þ vt ¼ G0ðzÞut þH0ðzÞet, ð1Þ
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where G0ðzÞ is a linear time-invariant causal operator,
y is the measured output, u is the control input and v is
noise, assumed to be quasistationary, modelled as
the output of a model vt ¼ H0ðzÞet, where e is white
noise. One considers a parametrized model set:
M ¼ fðGðz, �Þ, Hðz, �Þ, � 2 D�  R

dg where Gðz, �Þ
and Hðz, �Þ are typically rational transfer functions,
and D� is a subset of admissible values for the para-
meter vector �. To every � corresponds a one-step
ahead predictor:

ŷytjt�1ð�Þ ¼ H�1ðz, �ÞGðz, �Þut þ ½1�H�1ðz, �Þ�yt,
ð2Þ

and hence a one-step ahead Prediction Error (PE):

"tð�Þ, yt � ŷytjt�1ð�Þ
¼ H�1ðz, �Þ½ðG0ðzÞ � Gðz, �ÞÞut þ vt�: ð3Þ

These PEs can, possibly, be filtered by a data filter
D(z), thus defining the filtered PEs " ft ð�Þ ¼ DðzÞ"tð�Þ.
The least squares PE estimate �̂�N based on N input–
output data is then defined as

�̂�N ¼ arg min
�2D�

VNð�Þ, ð4Þ

where the PE criterion is defined as

VNð�Þ ¼
1

N

XN
t¼1

½" ft ð�Þ�2: ð5Þ

The estimate �̂�N defines the model ĜG ¼ Gðz, �̂�NÞ,
ĤH ¼ Hðz, �̂�NÞ. Under reasonable conditions,
�̂�N

N!1
���! ��, where �� , argmin�2D�

�VVð�Þ, with �VVð�Þ,
E½"ftð�Þ�2 [54].
Two different situations need to be considered. The

first one is when the model structure M has been
chosen sufficiently complex that the true system
belongs to the model set. This is denoted S 2 M, and
means that there exists a value �0 2 D� such that
Gðz, �0Þ ¼ G0ðzÞ and Hðz, �0Þ ¼ H0ðzÞ. In such a
case, under reasonable conditions, �� ¼ �0, which
means that the PE estimates of the transfer func-
tions converge to the true transfer functions:
Gðz, �̂�NÞ N!1

���! G0ðzÞ, Hðz, �̂�NÞ N!1
���! H0ðzÞ. When

S 2 M, the parameter error converges to a Gaussian
random variable:

ð�̂�N � �0Þ N!1
���! Nð0, P�Þ, ð6Þ

where

P� ¼
�2e
N

ð �EEð ðt, �0Þ ðt, �0ÞTÞÞ�1 ð7Þ

with  ðt, �Þ ¼ �ð@"fðt, �ÞÞ=@�. The asymptotic para-
meter covariance P� can be estimated from the data,
and the true parameter vector �0 belongs to an
ellipsoid:

U� ¼ f�jð�� �̂�NÞTP�1
� ð�� �̂�NÞ < 	2g ð8Þ

with probability 
ðd, 	2Þ ¼ Prð	2ðd Þ � 	2Þ, where
	2ðdÞ denotes the 	2 distribution with d degrees of
freedom. Thus, when the system is in the model set,
PE identification delivers a nominal model Gðz, �̂�NÞ,
Hðz, �̂�NÞ, together with an ellipsoidal confidence
region in parameter space. This, in turn, defines an
uncertainty region in the space of transfer functions:

D ¼ fGðz, �Þ j � 2 U�g: ð9Þ

In the more general situation where the system is not
in the model set, limN!1 �̂�N ¼ �� 6¼ �0. In such case,
the transfer function error, G0ðe j!Þ � Gðe j!, �̂�NÞ, at a
given frequency !, can be decomposed as:

G0ðe j!Þ � Gðe j!, �̂�NÞ
¼ G0ðe j!Þ � Gðe j!, ��Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bias error

þGðe j!, ��Þ � Gðe j!, �̂�NÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
variance error

:

ð10Þ

The bias error arises when the model structure is
unable to represent the true system. The variance error
is caused by the noise and the finiteness of the data set;
by definition of ��, it goes to zero asymptotically. In
the mid-1980s, Ljung produced some important for-
mulas for the characterization of bias and variance
errors of the identified transfer functions [53,75]. The
bias was characterized implicitly by representing �� as
the minimizing argument of a frequency integral.
A variance error estimate for the estimated transfer
functions was obtained under an assumption of model
order going to infinity. More recent work has pro-
duced formulas for the estimation of an uncertainty
set D around ĜG, with the property that G0 2 D with
probability 
, where 
 is any desired level close to 1
(e.g. 
¼ 0.95) even in the case where the system is not
in the model set, and for finite model orders: see
Section 6. Finally, we note that the results described in
this section are valid for both open-loop and closed-
loop identification.

3. The Game and the Players

In identification for control, a typical situation is that
we can perform experiments on the true system (1)
with the purpose of designing a feedback controller.
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The system may already be under feedback control, in
which case the task is to replace the present controller
by one that achieves better performance. This situa-
tion is representative of many practical industrial
situations. We then denote the present controller by
Cid and the reference signal, if any, by rt:

ut ¼ CidðzÞ½rt � yt�: ð11Þ

The closed-loop system is then described by

yt ¼
G0ðzÞCidðzÞ

1þ G0ðzÞCidðzÞ
rt þ

1

1þ G0ðzÞCidðzÞ
vt

¼ T0ðzÞrt þ S0ðzÞvt: ð12Þ

Using N data collected on the system, in open loop or
in closed loop, we can compute a model ĜG of the
unknown G0, and possibly also a noise model ĤH ofH0

by PE identification. Since the complexity of a model-
based controller is of the same order as that of the
model, one often performs the identification with a
low order model.
The traditional scenario in model-based robust

control design was: First estimate a model ĜG and an
uncertainty set D, then design a new controller C(z)
that achieves closed-loop stability and meets the
required performance with all models in D, and hence
with the unknown true system G0.
The objective in identification for control is to

replace that traditional scenario by the following. On
the basis of the required performance, and of any
knowledge of the unknown system, design a control-
oriented identification experiment that produces a
model ĜG and an uncertainty set D; then design a new
controller C that achieves closed-loop stability and
meets the required performance with all models in D,
and hence with the unknown true system G0. If neces-
sary, repeat this design procedure, possibly with a
more demanding performance criterion. In some sce-
narios, one first computes a class CðĜG, DÞ of con-
trollers, each of which achieves the required
performance with all models in D; the controller C is
then chosen within this class in such a way as to have
some additional nice features (e.g. low complexity).
The goal of the new scenario is to achieve the same

or better performance based on models (and hence
controllers) of lower complexity. The class C of con-
trollers that achieve the required performance is larger
if the model uncertainty set D can be tuned towards
that aim. The players within this (iterative) identi-
fication and robust control design scenario are
therefore:

� the unknown plant G0,
� Copt for G0,

� the present controller Cid (if any),
� the present model ĜGinit (if any),
� the identified model ĜG ¼ Gðz, �̂�NÞ,
� the uncertainty set of models D around ĜG,
� the set C of controllers that achieve the prescribed
performance and

� the new model-based controller C 2 C

Except for the unknown plant G0 and its corre-
sponding optimal controller C0, the designer has a
handle on all other players. It is the complexity of the
interplay between these players that makes the pro-
blem challenging and interesting. To illustrate the
interplay, it is important to understand that one deals
with five different feedback loops, which impact one
another: see Figs 1–5.
In identification for control, the designer collects

data on the experimental loop of Fig. 1, and estimates
a model ĜG such that the closed-loop system of Fig. 2 is
‘‘as close as possible’’ to the actual closed-loop system
of Fig. 1. Sometimes, one of his design choices is the
choice of a controller Cid and of a reference signal rt in
the experimental loop. On the basis of the identified
model ĜG, possibly with an estimated uncertainty setD,

Fig. 1. Experimental loop.

Fig. 2. Identified system.

Fig. 3. Design loop.

Fig. 4. Achieved loop.

Fig. 5. Optimal loop.
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the designer then computes the new controller CðĜGÞ,
or CðĜG, DÞ: this generates the designed loop of Fig. 3.
However, what really matters is the performance
achieved by this controller with the real system, i.e. the
performance of the achieved loop of Fig. 4. Thus, if
the identifier performs a good job, then the identified
loop will be close to the experimental loop; but what is
really desired is that the achieved performance on the
loop of Fig. 4 is close to the designed performance on
the loop of Fig. 3. If the experimental setup was such
that Cid was identical (or at least close to) the ‘‘to-be-
designed controller’’ C, then closeness of the loops of
Figs 1 and 2 would entail closeness of the loops
of Figs 3 and 4. This explains why it pays to have
experimental conditions that closely match the con-
ditions in which the ‘‘to-be-designed controller’’ will
operate.
The first identification for control results, men-

tioned earlier, were based on a different approach.
The aim was to find the optimal experiment condi-
tions such that the output of the achieved loop of Fig.
4 is as close as possible to the output of the optimal
loop of Fig. 5 that would be obtained if the true
system were known exactly. Because of its historical
precedence, and its intuitive appeal, we first present
this approach in the next section.

4. Optimal Control-Oriented

Identification Design

In this approach an identification experiment design is
called ‘‘optimal’’ if the controller computed from the
estimated model is one that minimizes the average
performance degradation vis-à-vis the performance
that would be achieved with the ideal controller. The
ideal controller is the controller that would be com-
puted if the true system were known. We now explain
this in some more detail.
We denote by J(G,H,C) the control design criter-

ion, and by C ¼ cðG, HÞ the certainty equivalence
mapping that maps a model (G,H) into the corre-
sponding optimal controller by minimization of
J(G,H,C). In particular,

Copt ¼ cðG0, H0Þ ¼ argmin
C

JðG0, H0, CÞ: ð13Þ

We consider PE identification of a parametric model
from N data, and we assume that S 2 M. The control
design mapping then defines a controller ĈCN ¼
cðĜGN, ĤHNÞ for each model ðĜGN, ĤHNÞ.1 The controller

ĈCN is a random variable, because the estimated
parameter vector �̂�N is random, and hence also the
model. Applying ĈCN (rather than Copt) to the true
system results in an achieved cost JðG0, H0, ĈCNÞ �
JðG0, H0, C

optÞ. This results in a ‘‘performance
degradation’’ Jdeg ¼ JðG0, H0, ĈCNÞ � JðG0, H0, C

optÞ,
which is again a random variable.
The problem statement of optimal identification

design for control is then phrased as follows: ‘‘Find the
experimental conditions X that minimize the average
performance degradation’’.2 In view of what precedes,
this can be formulated as:

min
X

EJðG0, H0, cðĜGN, ĤHNÞÞ: ð14Þ

The expected value is taken with respect to the noise,
which affects the model estimate, and hence the con-
troller estimate.
In the context of certainty equivalence control

design, this is probably the most logical (and ideal)
problem formulation for an optimal identification for
control design. However, there are several difficulties
with this formulation (see Chapter 9 in Ref. [1]), the
main one being that the optimal experiment X defined
by (14) necessarily depends on the unknown system
ðG0, H0Þ. This is proper to all experiment design
problems. It does not mean that such results are
meaningless: they give useful guidelines for the iden-
tification design, and they may lead to iterative
schemes that converge to the optimal experiment
design (see e.g. [39]). We shall return to this optimal
control-oriented experiment design problem in
Section 8.

5. Iterative Design for the Nominal Model

In this section we discuss the control-oriented identi-
fication design of the nominal model, and we show
why the pursuit of a control-oriented objective leads
to iterative model and controller updates. This obser-
vation was made independently in the early 1990s
by several research teams, who were using different
combinations of identification method and control
design criterion. To understand the need for iterative
design, consider the closed-loop systems of Figs 3

1Here ĜGN is a shorthand notation for Gðz, �̂�N Þ, and similarly
for ĤHN .

2X denotes the set of all admissible experimental conditions that
have an effect on the quality of the model estimates ðĜGN , ĤHNÞ, such
as use of open-loop or closed-loop data, choice of input spectrum
distribution, of regulator in the case of closed-loop identification,
etc. By ‘admissible’ experimental conditions, we refer to conditions
that obey possible constraints on signal powers or signal
amplitudes.
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and 4, and assume for simplicity that there is no noise
(vt ¼ 0 and v̂vt ¼ 0), i.e. the control objective is reduced
to a tracking performance objective.
The controller is designed on the basis of the model

ĜG and then applied to the system G0. The achieved
performance will therefore be close to the desired
performance if the two closed-loop transfer functions,
or a weighted version of these, are close to one
another. Thus, we want the following error to be
small3 (see Figs 3 and 4):

G0C

1þ G0C
� ĜGC

1þ ĜGC
¼ ðG0 � ĜGÞCS0ŜS ð15Þ

where S0 ¼ 1=ð1þ G0CÞ and ŜS ¼ 1=ð1þ ĜGCÞ. Now,
closed-loop PE identification with a given model
structureM ¼ fGðz, �Þj� 2 D�g, and with a controller
Cid in the loop, will asymptotically deliver a model
Gðz, ��Þ, where �� ¼ arg min�2D�

Vð�Þ, with V(�) given
by

Vð�Þ ¼
Z �

�

jG0 � ĜGð�Þj2jCidS0j2jDj2�r d!: ð16Þ

HereD(z) is the data filter that can be freely chosen by
the user. Observe that, if Cid ¼ C, and if the data filter
was chosen such that jDðe j!Þj2�rð!Þ ¼ jŜSðe j!Þj2, then
the model Gðz, ��Þ obtained asymptotically by such
closed loop PE identification would make the error
(15) small in an H2 sense. By such design, the identi-
fication criterion would be matched with the control
performance criterion. However, there are two diffi-
culties with such design: (i) the controller C in the
design loop of Fig. 3 is a function of the identified
model, C ¼ CðĜGÞ, and it is therefore impossible to
choose Cid ¼ CðĜGÞ at the identification design stage;
(ii) the sensitivity function ŜS is also a function of the
estimated model, ŜS ¼ ŜSðĜGÞ. These observations have
led to the concept of iterative design, where successive
steps of closed-loop identification and model-based
controller design are performed. Thus, at iteration
k, where a model ĜGk has been obtained, select
Cid;k ¼ CðĜGkÞ, and jDkj2�r ¼ jŜSkj2, where ŜSk ¼ 1=
½1þ ĜGkCðĜGkÞ�.
The research work of the early nineties on the

definition and computation of control-oriented nom-
inal models led to several important guidelines, that
can be summarized as follows.

� The identification criterion for the nominal model
should aim at minimizing the distance between the
achieved and the designed loop, where this distance

is measured in a norm determined by the control
performance criterion. An application of this prin-
ciple to LQG control can be found in Ref. [77],
to H1 control in Ref. [67] and to GPC in Ref. [68],
the latter result being based on dual control ideas.
In Ref. [25] a control-relevant parameter estima-
tion criterion is also proposed that is based on a
left fractional transformation of the closed-loop
system. The method is applied to multivariable
systems using a multivariable frequency-weighted
identification approach developed in Ref. [7].

� One of the easiest ways to identify a control-rele-
vant nominal model is to perform the identification
in closed loop, with a specific data filter. The closed-
loop experiment automatically brings into the
identification criterion the frequency weighting by
the unknown sensitivity S0 of the actual closed-loop
system.

� The data filter is model-dependent (i.e. �-dependent).
Thus, one has to resort to iterative model/controller
updates for the practical implementation of this
design.

In summary, in identification for control, the control
performance objective shapes the bias error distribu-
tion of the nominal model. This means that the
nominal model has a bias error that is small in
the frequency areas where it needs to be small for the
design of a better controller, typically around the
present cross-over frequency.
Iterative identification and control schemes flour-

ished in the 1990s, with various combinations of
control criteria and identification criteria. The reader
is referred to [8,27,73] for details and for a survey on
such iterative schemes. Unfortunately, it was found
[40] that these iterative schemes do not generically
converge to the achievable minimum (within the
model/controller set) of the control performance cost.
Despite this, the concept of iterative identification

and control design was rapidly adopted in process
control applications (see e.g. [17,19,42,46,64,67]). One
reason is that it is typical in such applications that
large numbers of closed-loop data are flowing into the
control computer, and it then makes sense to use these
data to replace the existing controller by one that
achieves better performance. The practical impact of
iterative model and controller redesign has been
assessed in Ref. [50], where the following interesting
observations are made on the distinction between this
batch-like mode of operation and the more classical
methods of adaptive control:

� most practical results have shown that the major
improvement in closed-loop performance occurs
after the first identification in closed-loop,

3For simplicity of notation, we omit all !-dependent arguments
whenever there is no risk of confusion.
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which emphasizes the importance of closed-loop
identification for control design;

� iterative identification with controller redesign can
be viewed as as an indirect adaptive control scheme,
but with a time-scale separation between identifi-
cation in closed loop, and controller redesign; this
allows a more performance-oriented analysis
(locally) of the interaction between identification
and controller design.

6. Model Uncertainty Sets and the Robust

Control Paradigm

We have shown how control-oriented nominal models
are obtained by minimization of an identification
criterion that is determined by the overall control
performance criterion. In establishing this result, one
has assumed that the controller is computed from the
estimated model ĜG using the certainty equivalence
paradigm. At no point has the model uncertainty
due to the noise been taken into account. Conversely,
the control design step that has led to the iterative
design schemes developed above is not based on robust
control principles. The paradigm of modern4 robust
control design can be briefly summarized as follows.
One wants to design a controller for an unknown

systemG0. Some prior knowledge aboutG0 allows one
to assume that G0 belongs to some model uncertainty
set D. Most often, a nominal model ĜG of G0 is avail-
able, typically at the centre of D. Some performance
objective is often given in the form of a criterion
J(G,C), to be minimized. If the true system were
perfectly known, the optimal controller would then be
defined as Copt ¼ argmin JðG0, CÞ, where the mini-
mization is performed over some predefined set of
admissible controllers C. In the robust control para-
digm, the true system is unknown, but the information
ðĜG, DÞ is available. One then seeks a robust controller
C with the following properties:

(1) C must stabilize all models in D;
(2) the worst performance achieved by C on any

model in D must be as high as possible.

The robust controller C is often selected as one that
stablizes all models in D and achieves the best worst-
case performance over D, i.e. C is computed as

C ¼ arg min
C2C

sup
G2D

JðG, CÞ: ð17Þ

The uncertainty model setD plays a central role in this
design strategy. In the robust control theory
developed through the 1980s and 1990s, this set is
God-given in that it is based on so-called ‘‘prior
assumptions’’ about the model and its uncertainty.
Many different descriptions of model uncertainty
have been considered. Most often they are expressed
as frequency domain sets, containing both structured
andunstructured components (see e.g.Refs [59,70,79]).
The following are representative examples of com-
monly used uncertainty sets; for simplicity, we con-
sider scalar transfer functions only.

Additive uncertainty set

DA ¼ fG�ðzÞjG�ðzÞ ¼ GðzÞ þ�ðzÞ,
with j�ðe j!Þj <Wðe j!Þ 8!g,

where G(z) is a ‘‘nominal model’’ and Wðe j!Þ is a
frequency weighting function.

Youla–Kucera uncertainty set

DYK ¼ fG�ðzÞjG�ðzÞ

¼ Nx þDc�

Dx �Nc�
, with j�ðe j!Þj <Wðe j!Þ 8!g,

where Nx, Dx, Nc, Dc, � are stable, rational, proper
transfer functions, ĜG ¼ Nx=Dx is a ‘‘nominal model’’,
and C ¼ Nc=Dc is any stabilizing controller of Go.
This uncertainty set, dual of the Youla–Kucera set of
all stabilizing controllers of a given system, was
introduced for the description of model sets in [34].
The new approach, initiated around 1990, was to

consider the estimation of uncertainty sets from data.
Unfortunately, the available PE identification theory
had rather little to offer to the existing robust control
theory, for two reasons: (i) there were no adequate
expressions for the estimation of the total error on an
identified transfer function, or some upper bound on
this error; the main difficulty was the estimation of
the bias error, which could only be characterized by
implicit integral expressions and (ii) the available
uncertainty descriptions were not given as frequency
domain sets. As a result, a wide range of new identi-
fication techniques were developed. New model
assumptions, noise assumptions and identification
criteria were introduced whose main merit was to
deliver computable error bounds on the estimated
models. The survey paper [62] is probably still one of
the best presentations of these alternative methods.
Some of these methods have been shown to lead to
very conservative upper bounds on the uncertainty
set. But clearly, this work has led to important
advances in the characterization of bounds on transfer
function error estimates.

4We refer to modern robust control design as the theory developed
in the 1980s, that is based on model uncertainty sets; in contrast,
the classical robust design theory relies on robustness margins
expressed in Bode, Nyquist or Nichols plots.
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One uncertainty set that was available in PE
identification theory was the set (9) defined through
the ellipsoidal set (8) in parameter space. For open-
loop identification, this set can be described as
follows.

PE uncertainty set

DPE ¼ fGðz, �ÞjGðz, �Þ

¼ Nðz, �Þ
Dðz, �Þ with ð�� �̂�NÞTRð�� �̂�NÞ < 1g:

Here N andD are polynomials parametrized by �, and
R is proportional to the inverse of the estimated
covariance matrix of �̂�N. The difficulty with this PE
uncertainty set is that, in the early 1990s, it could be
computed easily only in the case where the system is in
the model set, and it did not connect with the available
robust control theory and design tools. Thus, all
through the 1990s, a lot of research was produced by
the identification community to

1. extend the use of uncertainty sets in order to
include also the bias error; this was achieved by
either embedding the bias error in a stochastic
framework [32,33], or by estimating the bias error
through a validation step that uses a full order
model [30,55]. In addition, one can now compute
uncertainty sets in the frequency domain, derived
from the ellipsoidal sets in parameter space, to
which the true system is guaranteed to belong with
a priori probability level 
 [9,71].

2. develop a robust control stability and performance
theory for PE uncertainty sets characterized by
ellipsoids in parameter space. We now have a
necessary and sufficient condition for a given
controller C(z) to stabilize all systems within the
uncertainty set DPE using �-analysis; we have the
computational tools to check whether this condi-
tion is satisfied. We can also compute the worst-
case performance achieved by a given controller
C(z) with all systems in that set, for fairly general
performance criteria [14,30].

Many important advances have thus been made, both
in the characterization of bounds on transfer function
error estimates obtained by PE identification, and in
the development of a robust control analysis theory
based on ellipsoidal uncertainty sets obtained by PE
identification. This subject will undoubtedly remain
an object of intense debate and activity for years to
come. In addition, whereas the robust analysis theory
based on PE uncertainty sets has made much progress,
the results on robust control design based on such sets
are still rather scarce.

7. Towards Control-Oriented

Uncertainty Sets?

In the second half of the 1990s, one began to seriously
study the interplay between model uncertainty sets
and robust control objectives, in order to address the
question of building control-oriented uncertainty sets.
The motivation for this is based on the following two
observations.

� It follows from the properties that define a robust
controller (see the previous section) that satisfaction
of these two properties hinges as much on the choice
of the controller C as it does on the uncertainty
set D.

� The shape of a data-based uncertainty set depends
very much on the experimental conditions under
which it is estimated.

Combining these two observations leads to the idea of
constructing control-oriented uncertainty sets by
proper choice of experimental conditions.

7.1. A Gedanken Experiment for Motivation

To illustrate the connection between experiment
conditions and model-based control properties, we
consider a very simple gedanken experiment, pre-
sented in Ref. [29], where we focus attention only on
robust stability. The idea of the gedanken experiment
is to show that, for a particular control design objec-
tive, one set of experimental conditions delivers an
uncertainty set that is much better suited than another
set of experimental conditions.
Consider a ‘‘true system’’ G0 described by the fol-

lowing simple ARX model:

ð1� 1:4z�1 þ 0:45z�2Þyt ¼ z�1ð1þ 0:25z�1Þut þ et,

where e is a unit variance white noise. With a constant
gain feedback law ut ¼ rt � Cyt, the closed-loop
system is stable for C < Cmax ¼ 2:2. Consider now
that we estimate the parameters of this ARXmodel by
PE identification, using the exact structure, and that
the objective of the identification exercise is to esti-
mate the largest possible feedback gain, ĈCmax which,
with probability 95%, will produce a stable closed
loop with the true system.
With PE identification, we can estimate an ellipsoid

in parameter space, to which the true parameters
belong with probability 95%. We can then compute
the proportional output feedback controller with the
highest gain, ĈCmax, that stabilizes all models ĜG whose
parameters lie in that 95% uncertainty set. Let us call
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this controller the ‘‘optimal robust controller’’ for this
problem. In order to show the effect of the experi-
mental setup of the identification on the optimal
robust controller, we have compared, by Monte Carlo
simulations, two experimental conditions:

1. open-loop identification with a unit variance white
noise input signal u;

2. closed-loop identification with a controller ut ¼
rt � yt in the loop during data collection, and a
white noise reference signal r with variance 18.38;
this choice yields the same output variance as in the
open-loop experiment.

Each of these two experiments was run 100 times, each
time with 1000 input-output data. For each run, the
95% confidence ellipsoid was computed in parameter
space, and the gain ĈCi

max of the i-th run was computed
as the largest gain that would stabilize all models in
the corresponding model set. On the basis of 100 runs,
we then computed the average ĈCmax and its variance
for each of the two experimental conditions. The fol-
lowing results were obtained for open-loop (OL),
respectively closed-loop (CL), identification:

OL: ĈCmax ¼ 1:36, �2
ĈCmax

¼ 0:12

CL: ĈCmax ¼ 2:04, �2
ĈCmax

¼ 0:02

Remember that, for the true system G0, we have
Cmax ¼ 2:2. This example clearly shows that the
experimental conditions used in the feedback experi-
ment are more control-oriented than those in the
open-loop experiment, since they lead to a much less
conservative estimate of the limit gain for the robust
controller.

7.2. On the Effect of Experimental Conditions

on Control Performance

The example above serves to illustrate the effect of the
identification experiment on the set of admissible
controllers, through the model uncertainty set that
results from the experiment. In a more realistic setup,
the interplay between the design of the identification
experiment, the corresponding model uncertainty set,
the set of admissible controllers, and the worst-case
control performance, is a lot harder to understand and
analyze. In order to relate the identification design
with the properties of a robust controller, one has
resorted to splitting up the problem into its two
components:

� understanding the interplay between the uncer-
tainty set and the properties of the ensuing robust
controller;

� understanding the effect of experimental conditions
on model quality, or more precisely on the prop-
erties of the uncertainty set.

We elaborate on these two subproblems.

7.3. What Constitutes a Control-Oriented

Uncertainty Set?

The central question for the first problem is: What
constitutes a control-oriented uncertainty set? There is
no clear consensus yet on a good definition. One
possible view is to say that a model uncertainty setD is
‘‘control-oriented’’ if the corresponding set of admis-
sible controllers, C, is large.5 Such track has been
pursued in e.g. [22] where different uncertainty struc-
tures are compared, and in [30] where the worst-case
�-gap has been proposed as a control-oriented mea-
sure of size of D, because it is related to the size of the
corresponding set C of stabilizing controllers. One
criticism one might level at this approach is that
making the set of admissible controllers large does not
necessarily make it easier to design a satisfactory
controller.
Another approach to the definition of a control-

oriented uncertainty set is as follows. Consider an
uncertainty setDwith center ĜG containing the true G0,
and a controller C ¼ CðĜG, DÞ with nominal stability
margin bðĜG, CÞ and nominal performance JðĜG, CÞ.
Then D could be called ‘‘control oriented’’ if C stabi-
lizes all models inD, if the worst case stability margin,
supG2DbðG, CÞ, of C with all models in D is close to
the nominal margin bðĜG, CÞ, and if the worst case
performance, supG2DJðG, CÞ, is close to the nominal
performance JðĜG, CÞ. One criticism of this second
approach is that the control-oriented quality of the
uncertainty set depends very much on the choice of the
particular controller C.
Thus, much work remains to be done on the defi-

nition of control-oriented uncertainty sets, and on the
computation of the corresponding quality measures.
This is certainly one area where one can expect a lot of
research activity in the coming years.
As for the second question, it pertains to the con-

nection between the experiment design conditions
(length of the data set, choice of input signal, open-
loop or closed-loop configuration, controller choice in
the case of closed-loop identification, etc.) and the
quality of the identified model. This topic lies squarely
within the boundaries of identification theory, and a

5By admissible, we mean a controller that stabilizes all models
in the set and achieves with all these models a prespecified
performance level.
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large body of results have been accumulated over the
years that characterize the model quality as a function
of the experimental conditions. However, the new
focus on ‘‘control-oriented’’ identification has very
naturally led the research community to also revisit
the early experiment design results in the light of this
new ‘‘control-oriented’’ objective. This has given rise
to a surge of new activity, which we now describe.

8. The Rebirth of Experiment Design

8.1. The Early Work on Experiment Design

In the 1970s, optimal input design for system identi-
fication was an active area of research, with different
quality measures of the identified model being used
for this optimal design [31,57,78]. The questions at
that time addressed open-loop identification only, and
the objective functions that were minimized were
various measures of the parameter covariance matrix
P�. Important examples are D-optimal design which
minimizes detðP�Þ, or L-optimal design which mini-
mizes trðWP�Þ, where W is a nonnegative weighting
matrix. In open-loop identification, the dependence of
the covariance matrix on the input spectrum is made
apparent by the following expression, which can be
easily derived using (7) and Parseval’s formula (see
e.g. [54]):

P�1
� ¼ N

�2e

1

2�

Z �

��
Fuðe j!, �0ÞFuðe j!, �0Þ��uð!Þ d!

� 	

þ N
1

2�

Z �

��
Feðe j!, �0ÞFeðe j!, �0Þ� d!

� 	
:

ð18Þ

Here, Fuðz, �0Þ ¼ ð�Gðz, �0ÞÞ=ðHðz, �0ÞÞ, Feðz, �0Þ ¼
ð�Hðz, �0ÞÞ=ðHðz, �0ÞÞ, �Gðz, �Þ ¼ @Gðz, �Þ=@� and
�Hðz, �Þ ¼ @Hðz, �Þ=@�. The formula shows that
the data length N and the input spectrum �uð!Þ
appear linearly in the expression of the information
matrix P�1

� , and that, for a given data length N, the
input spectrum is the only design quantity that can
shape the parameter covariance matrix. Zarrop used
Tchebycheff system theory to parametrize the input
spectrum in terms of its so-called ‘‘moments’’ with
respect to the system [78]. The information matrix
M� ¼� P�1

� can then be expressed as a finite linear
combination of these moments.
A classical open-loop input design problem would

be to consider N fixed and to minimize detðP�Þ with
respect to �uð!Þ subject to some constraint on �uð!Þ,
typically of the form

R �
�� �uð!Þ d! � 
 for some pre-

defined 
. This was called D-optimality; many other

variants have been studied. An important result of this
early work was to establish that the minimization of
the classical objective functions of the covariance
matrix, such as detðP�Þ or trðWP�Þ, subject to con-
straints on the input power spectrum led to a convex
optimization problem, and that in addition an optimal
solution could always be obtained in the form of a
discrete power spectrum, i.e. the optimal input can
always be generated as a finite linear combination
of sinusoids (multisine). The number of sinusoids
required depends on the particular model structure
and on the constraints. For example, it was shown in
Ref. [31] that, if a Box–Jenkins model structure is
used with G(z, �) containing 2n parameters, then an
optimal input for the criterion detðP�Þ under a con-
straint on the input power can be achieved with no
more than 2n sinuoids.

8.2. Experiment Design Based on L2 Control

Performance Criteria

The classical experiment design results of the 1970s
were all limited to open-loop identification, and they
were based on parameter covariance formulas; see
(18). The bias and variance formulas for the transfer
function estimates of the mid-1980s [53,75] paved the
way for the formulation of control-oriented experi-
ment design problems. For example, for the vari-
ance of the input-output transfer function estimate
Gðz, �̂�NÞ, the following approximations were obtained
in [53], under the assumption that the model order
n tends to infinity in some appropriate way when the
data length N tends to infinity:

VarðGðe j!, �̂�NÞÞ�
n

N

�vð!Þ
�uð!Þ

in open-loop identification

ð19Þ

VarðGðej!, �̂�NÞÞ�
n

N

�vð!Þ
�r
uð!Þ

in closed-loop identification

ð20Þ
where �r

uð!Þ ¼
� j½Cidðe j!Þ�=½1þCidðe j!ÞG0ðe j!Þ�j2�rð!Þ

is the part of the input spectrum that is caused by the
reference signal (Fig. 1). These formulas explicitly
contain the effect of the experimental conditions (e.g.
number of data, input spectrum, noise spectrum,
feedback configuration, feedback controller Cid, etc.)
on the error measure. This yields the possibility of
optimizing over some relevant experimental design
variable in order to minimize a control-relevant
measure of this error.
Except for dual control (see Section 1), the

first application of optimal experiment design to
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control-oriented identification was in [28], where an
application to Minimum Variance control was treated
in the framework presented in Section 4. The criterion
(14) used for the optimal design was the squared error
between the designed output of Fig. 3 and the output
of the optimal loop of Fig. 5. The results showed that
the optimal experiment consists of performing closed-
loop identification with the unknown optimal
Minimum Variance controller in the loop. The same
approach was later extended to other control perfor-
mance criteria in [24,39]. These results were all based
on the variance formulas of [53] that were derived
under the assumption that the model order tends to
infinity, and it was observed in recent years that the
use of these formulas for finite order models can
sometimes lead to erroneous conclusions. This
observation triggered a revival of interest in variance
expressions for finite order models.
For the estimated parameter vector �̂�N, various

versions of the covariance expression (7) can be used
for experiment design problems, one of which (18) is
most relevant because the design variables appear in a
transparent way. Note that (18) is a specialization of
(7) to open-loop identification. Control-oriented L2-
optimal design criteria can then often be formulated as
a weighted trace optimal input design problem, where
the criterion to be optimized takes the form

min
u

tr½Wð�0ÞP�� ð21Þ

whereWð�0Þ is a weighting function, depending on the
true system, and which reflects the control objective.
This is an L-optimal design problem, for which clas-
sical input design theory could offer a solution only in
very special cases. In [16,17] a linear parametrization
of Gðz, �Þ using orthogonal basis functions is used,
and an L2 control-oriented optimal input design
problem of the form (21) is formulated, where the
optimization is with respect to the finite time input
sequence.
It often makes more sense to optimize over the

input spectrum. One sensible open-loop optimal input
design problem could be formulated as follows:

min
�uðwÞ

tr½Wð�0ÞP�� subject toZ �

��
�uð!Þ d! � 
, and �uð!Þ � 0 8!: ð22Þ

This is still a difficult, infinite dimensional optimiza-
tion problem. However, by the use of Schur
complement, the problem can be reformulated as a
convex optimization problem under linear matrix
inequality (LMI) constraints. The numerical solution
of such problems became possible in the 1990s with

the advent of interior point optimization methods
[15,61]. The problem becomes finite dimensional if
the input spectrum �uð!Þ can be finitely parametrized.
In [52], the same performance criterion as in [28]

was adopted for the optimal input design, but the
authors used the finite order variance formula (18) for
P�1
� and showed how to convert the problem to a

weighted trace optimal design problem as above. The
problem was made finite dimensional by restricting
the input to be FIR filtered white noise. The coeffi-
cients of the FIR filter now become the design
parameters.

8.3. Experiment Design for Robust Control

Robust stability and robust performance criteria are
typically expressed as constraints on frequency
weighted expressions of the variance of the transfer
function error, rather than as L2 performance criteria.
For example, a robust stability constraint is typically
formulated as

VarGðe j!, �̂�NÞ � Wðe j!Þ ð23Þ

where Wðe j!Þ is a frequency weighting function that
takes account of closed-loop properties (e.g. robust
stability condition). In order to formulate optimal
input design problems in terms of control-oriented
quality measures on Gðe j!, �̂�NÞ rather than in terms of
L2 criteria, without using the asymptotic (in model
order) variance formulas, several approaches can be
taken.
One approach is to derive finite order formulas for

the variance of the transfer function estimate. For
model structures that are linear in the parameter
vector �, such as FIR models or rational basis
function models, the covariance P� for �̂�N and the
parametric uncertainty set (8) directly translate to a
variance expression for Gðe j!, �̂�NÞ at any frequency !.
Another commonly used approach to go from
parameter covariance to transfer function covariance
is to use the following first order Taylor series
approximation:

VarGðe j!, �̂�NÞ � �2e
N

@G�ðe j!, �0Þ
@�

P�
@Gðe j!, �0Þ

@�
:

ð24Þ

This approach was adopted in Ref. [43] where it is
shown that several useful H1 design criteria can be
reformulated as weighted trace optimal input design
problems subject to LMI constraints. In order to
obtain a finite dimensional problem, different ways
of approximating the input spectrum by a linear
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finite parametrization are proposed in that paper.
An alternative to the use of the first order approx-
imation (24) is to use the more accurate formulas that
have recently been obtained for the variance of finite
order transfer function estimates [63,76]. For example,
for an Output Error model structure, the open-loop
variance formula (19) is replaced by

VarðGðe j!, �̂�NÞÞ � �nð!Þ
�vð!Þ
�uð!Þ

ð25Þ

where �nð!Þ depends on the poles of the true system.
The use of these new transfer function variance for-
mulas for input design has been advocated in [38], but
one additional difficulty, as the authors point out, is
that the function �nð!Þ depends on the unknown
system.
Another approach to optimal input design for

robust control is to use the results in [14,30], which
connect robust stability and robust performance
measures directly to the parametric ellipsoidal uncer-
tainty region (8) of a finite order model without the
intermediate step of transfer function variance com-
putation. Thus, no Taylor series approximation is
required here. It is worth noting that ellipsoidal
parametric uncertainty regions appear not only in PE
identification, but also in set-membership identifica-
tion; see e.g. [58]. The first open-loop optimal input
design problem for robust control was formulated
in [35] using the ellipsoidal parametric uncertainty set
(8) and the corresponding transfer function set (9),
without any approximation. The robust stability
measure minimized in that paper, with respect to the
input spectrum �uð!Þ, was the worst-case �-gap
�WCðGðz, �̂�NÞ, DPEÞ between the identified model
Gðz, �̂�NÞ and all models in the PE uncertainty set DPE

defined in Section 6:

�WCðGðz, �̂�NÞ,DPEÞ ¼ sup
Gðz;�Þ2DPE

��ðGðz, �̂�NÞ, Gðz, �ÞÞ

ð26Þ

where the �-gap was defined in [74]. One of the merits
of this measure is that it is directly related to the size of
the set of its stabilizing controllers: the smaller the
worst-case �-gap of the uncertainty set DPE, the larger
is the set of controllers that stabilize all models inDPE.
The solution proposed in [35] uses Tchebycheff system
theory: the input spectrum is parametrized in terms of
its n moments with respect to the system, which
appear linearly in the expression of the information
matrix M� [78]. Thus, no approximation is required
here for the parametrization of the input spectrum.
The optimal solution can always be obtained as a
multisine.

8.4. Optimal Experiment Design in Closed Loop

All the results discussed so far are for open-loop
identification, whereas identification for control is
typically performed in closed-loop, often in an itera-
tive way. As it happens, the parameter covariance
formula (18) can easily be extended to closed-loop
identification as follows [10,45]:

P�1
� ¼ N

1

�2e

1

2�

Z �

��
Frðe j!, �0ÞFrðe j!, �0Þ��rð!Þ d!

� 	zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{P�1
r ð�rð!Þ;�0;�2e Þ

þN
1

2�

Z �

��
Feðe j!, �0ÞFeðe j!, �0Þ� d!

� 	zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{P�1
v ð�0Þ

:

ð27Þ

Here, Frðz, �0Þ ¼ CidSidð�Gðz, �0ÞÞ=ðHðz, �0ÞÞ,
Feðz, �0ÞÞ ¼ ð�Hðz, �0ÞÞ=ðHðz, �0ÞÞ � CidSid�Gðz, �0Þ,
�Gðz, �Þ ¼ ð@Gðz, �ÞÞ=@� and �Hðz, �Þ ¼ ð@Hðz, �ÞÞ=
@�. Note that P�1

� is made up of a part depending on
�rð!Þ and a part which does not depend on �rð!Þ.
Both parts are linear in N and both parts depend on
the operating controller Cid. For a given controller Cid

and a fixed data length, we observe that the covar-
iance matrix is again linear in the reference spectrum
�rð!Þ, which is now the design object. Instead of using
a fixed controller, and optimizing over the external
reference spectrum �rð!Þ, closed-loop optimal design
problems can also be formulated with respect to both
the reference spectrum �rð!Þ and the operating con-
troller Cid. It turns out to be easier to use the input
spectrum �uð!Þ and the cross-spectrum �ueð!Þ
as design variables; note that there is a one-to-one
relationship between the pair f�rð!Þ, Cidðe j!Þg and
the pair f�uð!Þ, �ueð!Þg. Such approach has been
proposed in [45].

8.5. Why Do More Work than is Needed?

The traditional approach to optimal input design has
been to optimize some measure of the resulting
uncertainty, subject to a constraint on the input signal
power. Examples are a measure of the parameter
covariance, or a weighted measure of the transfer
function error that is related to stability robustness.
However, in an identification for robust control set-
ting, one should not spend more effort on the identi-
fication than what is needed for the design of a robust
controller, under the constraint that this controller
must achieve stability and a prespecified level of per-
formance with all models in the uncertainty set. This
idea has led to the recent concept of ‘‘least costly
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identification for control’’: [12]. Instead of minimizing
some measure of the uncertainty set, the objective now
is to deliver an uncertainty set that is just within the
bounds required by the robust control specifications,
and to do so at the smallest possible cost. In [11] open-
loop identification is considered and the cost is then
defined as the total input signal power. In [10] a
closed-loop disturbance rejection setup is considered
(with no reference excitation signal in normal opera-
tion), and the identification cost is then defined as the
additional penalty that occurs in the control perfor-
mance cost when an excitation signal is added for the
purposes of doing the identification. The idea of least
costly (or minimum energy) identification experiment
for control has been further developed in an open-
loop framework in [44].
From a practical point of view, the cost of identi-

fication is an issue of major importance. This has been
thoroughly discussed in [65] where the concept of
‘‘plant-friendly’’ identification is presented. It is often
estimated that 75% of the cost associated to an
advanced control project goes into model develop-
ment. Even though the definition of the cost used in
the recent work on ‘‘least costly identification for
control’’ does by no means cover all the practical costs
of modelling, the disruption caused to normal opera-
tion and the time required to arrive at a satisfactory
model are considered to be very significant elements of
this total modelling cost. These two costs are incor-
porated in the ‘‘least costly’’ criterion.

8.6. But is Optimal Design Really

Worth the Effort?

One might wonder whether it pays to perform optimal
input design computations, given that the optimal
solution necessarily depends on the unknown system,
which means that a preliminary model estimate must
be obtained first before an approximately optimal
input signal can be computed. This is sometimes
referred to as adaptive (or iterative) optimal input
design. In [6] the possible benefits of optimal input
design for control have been quantified for two
benchmark problems. One is a process control appli-
cation where the time it takes to obtain a model of a
prespecified quality is the cost to be minimized. The
other is the control of a flexible mechanical structure,
where the desired savings are in terms of the level of
input excitation. In both cases, significant savings are
obtained by the application of a two-step identifica-
tion procedure, where the second step uses an opti-
mally designed input signal computed from a
preliminary model estimate.

While identification for control has for a long time
focused on the selection of control-oriented identifica-
tion criteria and on the definition of control-oriented
uncertainty sets, the most recent focus has been on
experiment design. This is a very natural evolution,
since the experimental conditions have a direct impact
on the quality of the model. It is fair to say that this
area of research is still very much in its infancy. Many
experiment design issues remain to be addressed, let
alone solved. A fundamental issue is the fact that the
optimal experiment depends on the unknown system.
Thus, the practical implementation of optimal input
design results requires that a preliminary model be
estimated quickly on the basis of non-optimal inputs,
after which an estimate of the optimal input can be
computed. This raises the very important issue of the
robustness of the optimal design to model errors, and
of the convergence of such adaptive implementations.
Some preliminary observations and recommendations
on this robustness question issue have been made
in [44].
Other important issues to be addressed are to for-

mulate the input design problem directly in terms of
the properties (robust stability and performance) of
the controller that is designed from the identified
model. Some preliminary results in this direction can
be found in [5].
Finally, the new phase of research results that have

been briefly described here are all based on variance
results for finite order models, under the assumption
that the true system is in the model set. At some point,
one will need to address the situation where under-
modelling is present; this will be a real challenge! As
pointed out in [37], a proper choice of input is even
more important when a restricted complexity model is
used with a particular objective (e.g. control) in mind:
it is then always better that the input excite only those
parts of the system dynamics that need to be modelled.

9. Conclusions

We have attempted to explain the major issues related
to the problem of identification for control, to present
the successive solutions that have been brought to the
overall problem, and to display some major remaining
open problems. Most certainly, the major impact so
far in terms of transfer of technology to the industrial
world has been the iterative schemes of model and
controller updates, which have provided a methodo-
logical background for iterative data-based controller
performance enhancement. As for the synergy of
robust control concepts and identification design
concepts, we believe that most challenges are still
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ahead of us. The main reason is that a full under-
standing of the interplay between identification design
and robust control analysis and synthesis cannot
bypass the role of the uncertainty set, and that the
analysis of this problem is difficult and involves
techniques from several different subdisciplines.
Finally, it is interesting to observe that the most recent
work on identification for robust control has seen a
revival of interest for optimal experiment design.
The optimal input design work of the 1970s was
limited to open-loop identification and to quality
criteria that did not take account of control objectives.
Even in this simple framework, the solution of these
open-loop design problems were computationally
intractable at the time. With the powerful new tech-
niques of convex optimization under linear con-
straints, it has now become realistic to address much
more sophisticated control-oriented optimal design
problems.
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