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Identification and the information matrix:
how to get just sufficiently rich?
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and Ljubiša Mišković

Abstract—In prediction error identification, the information
matrix plays a central role. Specifically, when the system is
in the model set, the covariance matrix of the parameter
estimates converges asymptotically, up to a scaling factor, to
the inverse of the information matrix. The existence of a finite
covariance matrix thus depends on the positive definiteness of the
information matrix, and the rate of convergence of the parameter
estimate depends on its “size”. The information matrix is also the
key tool in the solution of optimal experiment design procedures,
which have become a focus of recent attention. Introducing
a geometric framework, we provide a complete analysis, for
arbitrary model structures, of the minimum degree of richness
required to guarantee the nonsingularity of the information
matrix. We then particularize these results to all commonly used
model structures, both in open loop and in closed loop. In a
closed-loop setup, our results provide an unexpected and precisely
quantifiable trade-off between controller degree and required
degree of external excitation.

Index Terms—Identifiability, information matrix, input rich-
ness, transfer of excitation

I. INTRODUCTION

The problem addressed in this paper is: Given an iden-
tifiable model structure, what are the conditions required
on the data collection experiment that make the information
matrix positive definite? As we shall see, for an open-loop
experiment, the positive definiteness of the information matrix
depends on the richness of the input signal; for a closed-loop
experiment, it depends on the complexity of the controller
and/or on the richness of the externally applied excitation.
Our precise contribution therefore will be to determine the
smallest degree of input signal richness (in open loop), and
the smallest combination of controller complexity and degree
of richness of the external excitation (in closed loop) that
makes the information matrix nonsingular. Our results will
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be expressed as necessary and sufficient conditions on signal
richness and/or controller complexity. Why is this problem of
interest?

The information matrix plays a key role in estimation
theory, and in particular in prediction error identification.
When the system is in the model set, the asymptotic parameter
covariance matrix is, up to a scaling factor, the inverse of the
information matrix. Thus, the existence of a finite covariance
matrix depends on the positive definiteness of the information
matrix, and the rate of convergence towards the global min-
imum of the prediction error criterion depends on the “size”
of this information matrix. When the system is not in the
model set, it can be shown that the positive definiteness of the
information matrix at some parameter vector θ is equivalent
with identifiability and informativity of the data at that θ: see
[1] for details.

Our motivation for the analysis reported in this paper,
however, goes beyond this fundamental role of the information
matrix in prediction error identification. It was driven by the
recent surge of interest in the question of experiment design,
itself triggered by the new concept of least costly identifica-
tion experiment for robust control [2], [3], [4], [5]. Briefly
speaking, least costly experiment design for robust control
refers to achieving a prescribed accuracy of the estimated
model at the lowest possible price, which is typically measured
in terms of the duration of the identification experiment,
the perturbation induced by the excitation signal, or any
combination of these. Central to least costly identification is
the information matrix whose inverse is the covariance of the
parameter estimates when the system is in the model set. It
so happens that the solutions of optimal experiment design
problems are most easily expressed in the form of multisines,
i.e. input (or reference) signals that have a discrete spectrum.
These are precisely the signals that may result in insufficiently
informative data, causing the information matrix to be singular.
The degree of richness of a signal is precisely connected to
the number of points of support of its frequency spectrum.

In this context, questions regarding the minimum excitation,
in the sense of smallest degree of richness, that is necessary
for the information matrix to be positive definite or to achieve
a required level of accuracy become relevant, such as the
following:

1) what is the smallest degree of input signal richness that
is required in an open-loop experiment?

2) assuming that the system operates in closed-loop, when
is noise excitation sufficient?

3) if noise excitation is not sufficient in a closed-loop
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experiment, then how much additional degree of richness
is required at the reference input?

4) assuming that excitation can be applied at different entry
points of a multi-input system operating in closed loop,
is it necessary to excite each input?

Sufficient conditions for a successful identification using
noise excitation only (question 2) have been given, under
different sets of assumptions, in [6], [7], [3]. The key condition
is in terms of the complexity of the feedback controller;
this complexity condition relates the controllability (or ob-
servability) indices of the controller to the controllability
(or observability) indices of the plant. Question 4 has been
addressed in [8] where it is shown that, when identification
cannot be performed using noise excitation only, this does not
imply that all reference inputs must be excited. The effect
on the covariance of the estimated parameters of applying
excitation at one or more entry points has been examined
in [5] for open loop identification and in [9] for closed-loop
identification.

In attempting to address questions 1 and 3 above, we
discovered to our surprise that, whereas the scientific literature
abounds with sufficient conditions on input signal richness,
there appear to be no result on the smallest possible degree
of richness that delivers a positive definite information matrix
in a given identification setup. In other words, necessary and
sufficient conditions on input richness that will guarantee a
full rank information matrix are strangely lacking.

The purpose of this contribution, therefore, is to address the
following two questions:
• assuming open-loop identification with a given model

structure, what is the smallest degree of input signal
richness that is necessary to achieve a positive definite
information matrix?

• assuming closed-loop identification with a given model
structure and assuming that the controller is not suffi-
ciently complex to yield a positive definite information
matrix using noise excitation only, what is then the small-
est degree of reference signal excitation that is necessary
to achieve a positive definite information matrix?

In addressing these questions, we shall proceed through the
following steps.

1) We observe that the information matrix is the covariance
of a regression vector which is the sum of a known
excitation signal (u in open loop, r in closed loop)
filtered by a vector filter of rational functions, and of
white noise filtered by another vector filter of rational
functions.

2) We introduce a geometric framework that allows us
to handle in the same way the kernel of the space
spanned by stationary stochastic regression vectors and
the kernel of the space spanned by vectors of rational
transfer functions. This framework is a convenient tool
to establish results on the transfer of excitation from
input signals to regression vectors through linear time-
invariant vector filters.

3) Our first main result is then to establish necessary and
sufficient conditions on the richness of a scalar input

signal to a vector filter of rational transfer functions so
that the resulting pseudoregression vector is persistently
exciting.

4) This main result is then applied to the classical model
structures (ARX, ARMAX, BJ, OE) to establish neces-
sary and sufficient conditions on the input signal richness
or on the combination of controller complexity and refer-
ence signal richness to guarantee a full rank information
matrix. For the closed-loop case, our results establish
a precise tradeoff between controller complexity and
required reference signal richness.

We note that whereas most of the theory treats the “classical”
model structures, which we also specialize to in Section VI,
our geometric framework allows us to deal with arbitrary
model structures. Our analysis and results will be established
for single input single output systems, but the framework we
develop lends itself naturally to extensions to multiple input
multiple output systems.

The effect of the design parameters of system identification,
such as input signal, reference signal or feedback controller, on
the information matrix has been much analyzed in recent years
in the context of experiment design for system identification
[10], [11], [3], [12]. The geometric approach developed in
this paper, which is based on kernel spaces of vector-valued
stationary stochastic processes analyzed in the time-domain,
is closely related to that developed in [13], [14] for the
computation of the variance of a range of quantities that
depend on the parameter estimates, which is based on inner
products of vector-valued random processes analyzed in the
frequency domain.

The paper is organized as follows. In Section II we set up the
notations and the key tools of the prediction error identification
framework. In Section III, we recall the concepts of identifi-
ability, informative experiments, and the information matrix.
The body of our results is in Section IV where we derive
necessary and sufficient conditions for the positive definiteness
of the information matrix for arbitrary model structures, in
open and closed loop. In Section V we present necessary
and sufficient conditions on the input signal that make a
regressor persistently exciting. In Section VI we particularize
the results of Sections IV and V to the most commonly
utilized model structures, in open loop and in closed loop;
in closed-loop identification, this leads to a remarkable and
somewhat unexpected trade-off between controller complexity
and required degree of richness of the external excitation. Our
theoretical results are illustrated and confirmed by simulations
in Section VII. In line with common practice, we conclude
with conclusions.

II. THE PREDICTION ERROR IDENTIFICATION SETUP

Consider the identification of a linear time-invariant
discrete-time single-input single-output system S :

y(t) = G0(q)u(t) +H0(q)e(t) (1)

In (1) q is the forward-shift operator, G0(q) and H0(q) are
the process transfer functions, u(t) is the control input, and
e(t) is a zero mean white noise sequence with variance σ2

e .
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Both transfer functions, G0(q) and H0(q), are rational and
proper; furthermore, H0(∞) = 1, that is the impulse response
h(t) of the filter H0(q) satisfies h(0) = 1. To be precise, we
shall define S , [G0(q) H0(q)].

This true system may be under feedback control with a
proper rational stabilizing controller K(q):

u(t) = K(q)[r(t)− y(t)]. (2)

The system (1) is identified using a model structure
parametrized by a vector θ ∈ <d:

y(t) = G(q, θ)u(t) +H(q, θ)ε(t). (3)

For a given θ ∈ <d, M(θ) , [G(q, θ) H(q, θ)] is called a
model, while the model structure M is defined as a differen-
tiable mapping from a connected open subset Dθ ∈ <d to a
model set M∗:

M : θ ∈ Dθ −→M(θ) = [G(q, θ) H(q, θ)] ∈M∗. (4)

It is assumed that the loop transfer function G0(q)K(q) has
a non-zero delay, as well as G(q, θ)K(q) ∀θ ∈ Dθ. The true
system is said to belong to this model set, S ∈ M∗, if there
is a θ0 ∈ Dθ such that M(θ0) = S. In a prediction error
identification framework, a model M(θ) uniquely defines the
one-step-ahead predictor of y(t) given all input/output data up
to time t:

ŷ(t|t− 1, θ) = Wu(q, θ)u(t) +Wy(q, θ)y(t), (5)

where Wu(q, θ) and Wy(q, θ) are stable filters obtained from
the model M(θ) as follows:

Wu(q, θ) = H−1(q, θ)G(q, θ), Wy(q, θ) =[1−H−1(q, θ)].
(6)

Since there is a 1 − 1 correspondence between
[G(q, θ), H(q, θ)] and [Wu(q, θ), Wy(q, θ)], the model
M(θ) will in the future refer indistinctly to either one of
these equivalent descriptions. For later use, we introduce the
following vector notations:

W (q, θ) , [Wu(q, θ) Wy(q, θ)], z(t) ,

[
u(t)
y(t)

]
(7)

We shall also consider throughout this paper that the vector
process z(t) is quasistationary (see Definition 2.1 in [15]),
so that the spectral density matrix Φz(ω) is well defined.
Accordingly, we shall also use the notation

Ē[f(t)] , lim
N→∞

1
N

∞∑
t=1

E[f(t)]

where E[·] denotes expectation. The one-step-ahead prediction
error is defined as:

ε(t, θ) , y(t)− ŷ(t|t− 1, θ)
= y(t)−W (q, θ)z(t)
= H−1(q, θ) [y(t)−G(q, θ)u(t)] . (8)

Using a set of N input-output data and a least squares
prediction error criterion yields the estimate θ̂N [15]:

θ̂N = arg min
θ∈Dθ

1
N

N∑
t=1

ε2(t, θ). (9)

Under mild technical conditions on the data set [15],
θ̂N

N→∞−→ θ∗ , arg minθ∈Dθ V̄ (θ), with

V̄ (θ) , Ē[ε2(t, θ)]. (10)

If S ∈ M∗ and if θ̂N
N→∞−→ θ0, then the parameter error

converges to a Gaussian random variable:
√
N(θ̂N − θ0) N→∞−→ N(0, Pθ), (11)

where

Pθ = [I(θ)]−1 |θ=θ0 , (12)

I(θ) =
1
σ2
e

Ē
[
ψ(t, θ)ψ(t, θ)T

]
, (13)

ψ(t, θ) =
∂ŷ(t|t− 1, θ)

∂θ
= ∇θW (q, θ)z(t), (14)

and where ∇θW (ejω, θ) , ∂W (ejω,θ)
∂θ . We shall refer to the

matrix I(θ) as the information matrix at θ, although in the
literature this term usually refers only to its value at θ = θ0.
The matrix I(θ) is positive semi-definite by construction and
will play the central role in this paper. In fact the paper is
dedicated to determinining necessary and sufficient conditions
on the data set to make I(θ) positive definite.

III. IDENTIFIABILITY, INFORMATIVE DATA, AND THE
INFORMATION MATRIX

Several formal concepts of identifiability have been pro-
posed in the scientific literature, and these definitions have
evolved over the years. Here we adopt the uniqueness-oriented
definition proposed in [15], which refers to the injectivity of
the mapping from parameter space to the space of transfer
function models.

Definition 3.1: (Identifiability) A parametric model struc-
ture M(θ) is locally identifiable at a value θ1 if ∃δ > 0 such
that, for all θ in || θ − θ1 ||≤ δ:

W (ejω, θ) = W (ejω, θ1) at almost all ω ⇒ θ = θ1.

The model structure is globally identifiable at θ1 if the same
holds for δ → ∞. Finally, a model structure is globally
identifiable if it is globally identifiable at almost all θ1.

Most commonly used model structures (except ARX) are not
globally identifiable, but they are globally identifiable at all
values θ that do not cause pole-zero cancellations: see Chapter
4 in [15]. We introduce the identifiability Gramian Γ(θ) ∈
<d×d:

Γ(θ) ,
∫ π

−π
∇θW (ejω, θ) ∇θWH(ejω, θ) dω (15)

where for any M(ejω), the notation MH(ejω) denotes
MT (e−jω). The relevance of this matrix (and the name
“identifiability Gramian”) stems from the fact that the posi-
tive definiteness of Γ(θ1) is a sufficient condition for local
identifiability at θ1; see problem 4G.4 in [15].

Proposition 3.1: A parametric model structure M(θ) is
locally identifiable at θ1 if Γ(θ1) is nonsingular.
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Proof: For θ close to θ1 we can write

W (ejω, θ) = W (ejω, θ1)+(θ−θ1)T∇θW (ejω, θ)+σ(|θ−θ1|2)

where limθ→θ1
σ(|θ−θ1|2)
|θ−θ1| = 0. Therefore,∫ π

−π
||W (ejω, θ)−W (ejω, θ1)||2dω (16)

= (θ − θ1)TΓ(θ1)(θ − θ1) + ρ(|θ − θ1|2)

where limθ→θ1
ρ(|θ−θ1|2)
|θ−θ1|2 = 0. The result then follows from

the definition of local identifiability.
Identifiability (local, or global) is a property of the

parametrization of the model M(θ). It tells us that if the
model structure is globally identifiable at some θ1, then there
is no other parameter value θ 6= θ1 that yields the exact same
predictor as M(θ1). However, it does not guarantee that two
different models in the model set M∗ cannot produce the
same prediction errors when driven by the same data, thus
yielding the same value for the prediction error criterion. This
requires, additionally, that the data set is informative enough to
distinguish between different predictors, which leads us to the
definition of informative data with respect to a model structure.

Definition 3.2: (Informative data) [15] A quasistationary
data set z(t) is called informative with respect to a parametric
model set {M(θ), θ ∈ Dθ} if, for any two models W (z, θ1)
and W (z, θ2) in that set,

Ē{[W (z, θ1)−W (z, θ2)]z(t)}2 = 0
=⇒ W (eω, θ1) = W (eω, θ2) at almost all ω. (17)

We observe that the definition of informative data with respect
to a parametric model structure is a global one: (17) must
hold at all pairs of parameter vectors (θ1, θ2) ∈ Dθ. If in
addition, the model structure is globally identifiable at θ1, say,
then the condition on the left hand side of (17) implies that
θ2 = θ1, i.e. there can be no θ2 6= θ1 for which Ē{[W (z, θ1)−
W (z, θ2)]z(t)}2 = 0.

The definition of informative data is with respect to a given
model set, not with respect to the true system, which may or
may not belong to the model set. In an identification experi-
ment, one typically first selects a globally identifiable model
structure; this is a user’s choice. Experimental conditions must
then be selected that make the data informative with respect to
that structure; this is again a user’s choice. However, the data
are generated by the true system, in open or in closed loop.
Thus, the conditions that make a data set z(t) informative with
respect to some model structure depend on the true system and
on the possible feedback configuration.

We now turn to the information matrix defined in (13)
and (14). Combining these expressions and using Parseval’s
relationship yields:

I(θ) =
1

2π

∫ π

−π
∇θW (ejω, θ)Φz(ω)∇θWH(ejω, θ)dω (18)

where Φz(ω) is the power spectrum of the data z(t) generated
by an identification experiment. The expression (18) shows

how the information matrix combines information about the
identifiability of the model structure and about the richness1

of the data (through Φz(ω)). We note that I(θ) > 0 only if
Γ(θ) > 0, but we shall show that the rank of I(θ) can be
lower than the rank of Γ(θ) if the data z(t) with spectrum
Φz(ω) are not “rich enough”. The main contribution of this
paper will be to establish, for a given parametric model
structure, the weakest possible richness conditions on the input
signal u(t) (in open-loop identification) or r(t) (in closed-loop
identification) that make the information matrix full rank at all
θ where the identifiability Gramian Γ(θ) has full rank.

IV. ANALYSIS OF THE INFORMATION MATRIX

The information matrix I(θ) can be positive definite only
at values of θ that are (at least) locally identifiable, i.e. where
Γ(θ) > 0. At those values, the positive definiteness of I(θ)
depends additionally on the data set through Φz(ω). The focus
of the paper, from now on, will be to seek conditions on
the data set under which the information matrix I(θ) > 0
at all values of θ at which Γ(θ) > 0. We will proceed
with a geometric approach to this problem, which allows the
derivation of generic results valid for any model structure.

To simplify all expressions, we assume that σe = 1. The in-
formation matrix is then defined as I(θ) = Ē[ψ(t, θ)ψT (t, θ)]
where ψ(t, θ) = ∇θW (q, θ)z(t) is the gradient of the pre-
dictor, which we call the pseudoregression vector. We first
examine the expressions of this gradient, in open loop and
in closed loop. To improve readability, we delete the explicit
dependence on the variables q and θ whenever it creates no
confusion.

A. Expressions of the pseudoregression vector

In open-loop identification, the data are generated as[
u(t)
y(t)

]
=
[

1 0
G0 H0

] [
u(t)
e(t)

]
Substituting in (5) yields:

ŷ(t|t− 1, θ) = [Wu +WyG0]u(t) +WyH0e(t) (19)

The pseudoregressor is then expressed in terms of the external
signals as

ψ(t, θ) = [∇θWu +∇θWyG0]u(t) +∇θWyH0e(t)

=
1

H2(θ)
[H(θ)∇θG(θ)+(G0−G(θ))∇θH(θ)]u(t)

+
H0

H2(θ)
∇θH(θ) e(t)

, Vuol(q, θ)u(t) + Veol(q, θ)e(t) (20)

In closed-loop identification, the data are generated as[
u(t)
y(t)

]
= S

[
K −KH0

KG0 H0

] [
r(t)
e(t)

]
1The concept of richness of a data set will be precisely defined in Section V.
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where K = K(q) is the controller, and S = S(q) =
1

1+K(q)G0(q) is the sensitivity function. Substituting in (5)
yields:

ŷ(t|t−1, θ) = KS[Wu+WyG0]r(t) +H0S[Wy−KWu]e(t)
(21)

The pseudoregressor is then expressed in terms of the external
signals as

ψ(t, θ) =KS [∇θWu +∇θWyG0] r(t)
+H0S [∇θWy −K∇θWu] e(t)

=KS{ 1
H2(θ)

[H(θ)∇θG(θ)+(G0−G(θ))∇θH(θ)]}r(t)

+
H0S

H2(θ)
{∇θH(θ)−K[H(θ)∇θG(θ)−G(θ)∇θH(θ)]}e(t)

, Vrcl(q, θ)r(t) + Vecl(q, θ)e(t) (22)

We observe that, for both open loop and closed loop identifica-
tion, the pseudoregressor ψ(t, θ) that “feeds” the information
matrix can generically be written as:

ψ(t, θ) = Vw(q, θ)w(t) + Ve(q, θ)e(t) (23)

where w(t) is a known excitation signal (u(t) or r(t)), e(t) is
white noise independent of w(.), while Vw(q, θ) and Ve(q, θ)
are d-vectors of stable rational transfer functions.

B. The range and kernel of quasistationary vector processes

In order to study the rank of the information matrix I(θ)
defined in (13) where ψ(t, θ) takes the form (23), we introduce
the following definitions.

Definition 4.1: Let V (q) : C 7→ Kd(q) be a d-vector of
proper stable rational transfer functions. The left-kernel of
V (q), denoted Ker{V (q)}, is the set spanned by all real-
valued vectors α ∈ <d such that αTV (q) = 0 ∀q ∈ C. Its
dimension is called the nullity and annotated νV . The rank of
V (q) is defined as ρV = d−νV , and V (q) is said to have full
rank if ρV = d.

Definition 4.2: Let ψ(t) : < 7→ <d be a d-vector of
quasistationary processes. The left-kernel of ψ(t), denoted
Ker{ψ(t)}, is the set spanned by all real-valued vectors α ∈
<d such that Ē[αTψ(t)]2 = 0, or alternatively αTΦψ(ω)α =
0 ∀ω where Φψ(ω) is the spectral density matrix of ψ(t). Its
dimension is called the nullity and annotated νψ . The rank of
ψ(t) is defined as ρψ = d− νψ , and ψ(t) is said to have full
rank if ρψ = d.

The analysis of the rank of I(θ) thus reduces to the analysis
of the rank of ψ(t, θ) since, with Definition 4.2, we have
rank{I(θ)} = rank{ψ(t, θ)}. To study the rank of ψ(t, θ),
we need to study
(i) how the rank of the sum of two vector stochastic processes
relates to the rank of each term of the sum;
(ii) how the rank of a pseudoregressor vector ψ(t) generated by
ψ(t) = V (q)u(t) relates to the rank of V (q) and the properties
of the scalar signal u(t) that generates it - we call this problem
“transfer of excitation”.

The solution to these two problems starts with the following
result.

Theorem 4.1: Let ψ(t, θ) ∈ Rd be given as in (23) where
Vw(q, θ) and Ve(q, θ) are d-vectors of stable proper rational
functions, w(t) is quasistationary and e(t) is white noise. Then

(1) Ker{Vw(q, θ)} ⊆ Ker{Vw(q, θ)w(t)} (24)
(2) Ker{Ve(q, θ)} = Ker{Ve(q, θ)e(t)} (25)
(3) ψ(t, θ) has full rank, or equivalentlyI(θ) > 0,

if and only if
Ker{Vw(q, θ)w(t) + Ve(q, θ)e(t)} (26)

= Ker{Vw(q, θ)w(t)} ∩Ker{Ve(q, θ)} = {0}

Proof: Denote ψ1(t, θ) , Vw(q, θ)w(t). Result (1) fol-
lows by observing that, for any α ∈ Rd:

αT Ē[ψ1(t, θ)ψT1 (t, θ)]α

=
1

2π

∫ π

−π
αTVw(ejω, θ)Φw(ω)V Hw (ejω, θ)α dω

Result (2) follows similarly by noting that Φe(ω) is a constant.
To prove result (3), note that the independence of the signals
w and e implies that

αT Ē[ψ(t, θ)ψT (t, θ)]α (27)
= Ē[αTVw(q, θ)w(t)]2 + Ē[αTVe(q, θ)e(t)]2.

Therefore α ∈ Ker{ψ(t, θ)} if and only if α belongs to
the left-kernels of both Vw(q, θ)w(t) and Ve(q, θ)e(t), and
hence to their intersection. Next, it follows from result (2)
that Ker{Ve(q, θ)e(t)} = Ker{Ve(q, θ)}.

Result (2) of Theorem 4.1 states that white noise causes no
drop of rank. The same is actually true for any input signal that
has a continuous spectrum. For the part of ψ(t, θ) driven by the
controlled signals u(t) or r(t) (see (20) and (22)), we want to
consider input signals (u(t) or r(t)) that have discrete spectra,
such as multisines; this problem is treated in Section V.

Observe that the condition (26) uses the two distinct but
compatible notions of kernel, defined in Definitions 4.1 and
4.2 respectively, in the same statement. This condition shows
how the positive definiteness of I(θ) depends on both the
model structure through Vuol(q, θ) and Veol(q, θ) (respectively,
Vrcl(q, θ) and Vecl(q, θ)) and the excitation signal u(t) (re-
spectively r(t)): see (20) and (22). We now elaborate on these
conditions, separately for the open-loop and for the closed-
loop identification setup.

C. Positive definiteness conditions for I(θ) in open and
closed-loop identification

Open-loop identification
In open-loop identification, the pseudoregression vector is
given by (20). We then have the following result.

Theorem 4.2: Let NH denote the left-kernel of ∇θH(q, θ).
Then I(θ) is positive definite if and only if either NH = {0}
or, for each non-zero d-vector α ∈ NH we have

Ē[αT∇θG(q, θ)u(t)]2 6= 0. (28)
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Proof: First note that the set of vectors {α ∈ NH ⊆ Rd}
spans Ker{∇θWy(q, θ)} = Ker{Veol(q, θ)}. Therefore, by
Theorem 4.1, I(θ) > 0 if and only if either NH = {0}
or if, for each nonzero α ∈ NH , we have Ē[αT (∇θWu +
G0∇θWy)u(t)]2 6= 0. Since αT∇θH(q, θ) = 0, this is
equivalent with Ē[αT∇θG(q, θ)u(t)]2 6= 0.

Closed-loop identification
In closed-loop identification, the pseudoregression vector is
given by (22). We then have the following result.

Theorem 4.3: Let NVecl denote the left-kernel of Vecl(q, θ).
Then I(θ) is positive definite if and only if either NVecl = {0}
or, for each non-zero d-vector α ∈ NVecl we have

Ē[αT∇θWy(q, θ)r(t)]2=Ē[αTK(q)∇θWu(q, θ)r(t)]2 6= 0.
(29)

Proof: First note that for each α ∈ NVecl ⊆ Rd we have
αT∇θWy(q, θ) = αTK(q)∇θWu(q, θ). By Theorem 4.1,
I(θ) > 0 if and only if either NVecl = {0} or if, for
each non-zero α ∈ NVecl , we have Ē[αTKS(∇θWu +
G0∇θWy)r(t)]2 6= 0. Now observe that αTKS(∇θWu +
G0∇θWy) = αTS(1 + KG0)∇θWy = αT∇θWy =
αTK∇θWu. This proves the result.

V. TRANSFER OF EXCITATION

This section is entirely devoted to the relationship between
the rank of V (q), the rank of ψ(t) and the properties of the
scalar signal u(t) when ψ(t) = V (q)u(t). It contains the
main technical result of this paper, in the form of necessary
and sufficient conditions on the richness of u(t) such that
rank{ψ(t)} = rank{V (q)}. In order to analyze the rank
properties of regressors obtained by filtering scalar signals
with discrete spectra, we introduce the concept of degree of
richness of a signal and of a persistently exciting regression
vector.

Definition 5.1: A quasistationary vector signal ψ(t) is
called persistently exciting (PE) if Ē[ψ(t)ψT (t)] > 0.

Whether a quasistationary vector signal ψ(t) obtained as a
filtered version (by a vector V (q) of transfer functions) of
a quasistationary scalar signal u(t) is PE or not depends on
whether Ker{V (q)} = {0} but also on the degree of richness
of the input u(t). The richness of a scalar signal is defined as
follows.

Definition 5.2: A quasistationary scalar signal u(t) is suffi-
ciently rich of order n (denoted SRn) if the following regressor
is PE:

φ1,n(t) ,


u(t− 1)
u(t− 2)

...
u(t− n)

 =


q−1

q−2

...
q−n

u(t) (30)

It is sufficiently rich of order exactly n (denoted SREn) if it is
SRn but not SRn+1.

Definition 5.2 is equivalent with many other classically used
definitions, except that nowadays the most common terminol-
ogy is to say that a signal is PE of order n rather than SR

of order n. At the risk of being considered old-fashioned, we
prefer the term sufficiently rich because sufficient reflects the
notion of degree of richness while persistent does not. The
vector φ1,n(t) serves as a basis for all regression vectors that
are obtained as (vector)-filtered versions of a scalar signal u(t).
For future use, we introduce the notation

Bk,n(q) ,
[
q−k q−k−1 . . . q−n

]T
, for k ≤ n. (31)

By our assumption of quasistationarity, u(t) is SRn if
Bk+1,k+n(q)u(t) is PE for any k. Thus, we could just as
well have used φ0,n−1(t) in lieu of φ1,n(t) in Definition 5.2:
the definition is shift-invariant. We denote by Un the set of
all SRn signals. We now address the following problem.

What are the necessary and sufficient conditions on the
richness of u(t) such that Ker{ψ(t)} = Ker{V (q)} when
ψ(t) = V (q)u(t)?

To help us solve this problem, we have . . . . . . not much.
As it happens, the only available results, as far as we know,
are sufficiency results [16], [17], [7]. The vector filter V (q)
can be uniquely decomposed as

V (q) =
N(q−1)
D(q−1)

=
q−m

D(q−1)
RB0,k−1(q) (32)

where D(q−1) = 1 + d1q
−1 + . . . + dpq

−p, with dp 6= 0,
R ∈ Rd×k is the matrix of real coefficients of the expansion
of the numerator matrix N(q−1) into powers of q−1, and m
is a possible common delay in all elements of N(q−1).

Lemma 5.1: Let ψ(t) = V (q)u(t) with ψ(t) ∈ Rd, u(t)
quasistationary, V (q) proper and stable, and let V (q) be
decomposed as in (32) with ρV = c. Let the rows of Q ∈ Rc×k

be a basis for the rowspace of R, and define the c-vectors
U(q) = q−m

D(q−1)QB0,k−1(q) and φ(t) = U(q)u(t). Then,
for any u(t), Ker{ψ(t)} = Ker{V (q)} if and only if
Ker{φ(t)} = Ker{U(q)} = 0.

Proof: Since the rows of Q form a basis for the rowspace
of R we can write

R = T

[
Q
0

]
(33)

for some nonsingular matrix T ∈ Rd×d. Then, for any α ∈ Rd

we have:
αTR = αTT

[
Q
0

]
= βTQ (34)

where β is uniquely defined by αTT , (βT γT ) with β ∈ Rc

and γ ∈ Rd−c. It follows from (34) that

αTψ(t) =
q−m

D(q−1)
αTRB0,k−1(q)u(t)

=
q−m

D(q−1)
βTQB0,k−1(q)u(t) = βTφ(t)

Therefore the following four statements are equivalent:
• Ker{ψ(t)} = Ker{V (q)}
• Ē[αTψ(t)]2 = 0 iff αTR ∈ Ker{B0,k−1(q)u(t)}
• Ē[βTφ(t)]2 = 0 iff βTQ ∈ Ker{B0,k−1(q)u(t)}
• Ker{φ(t)} = Ker{U(q)}

Finally, since Q has full rank, Ker{U(q)} = 0.
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We can now state our main result on transfer of excitation.
Theorem 5.1: Let ψ(t) , V (q)u(t) with ψ(t) ∈ Rd, u(t)

quasistationary, V (q) proper and stable, and let V (q) be
decomposed as in (32). Then Ker{ψ(t)} = Ker{V (q)} for
almost all u(t) ∈ Un if and only if n ≥ ρV .

Proof: If ρV < d, we can replace ψ(t) = V (q)u(t)
by φ(t) = U(q)u(t) with U(q) defined from V (q) as in
Lemma 5.1 above, where U(q) has full rank. Thus, using
Lemma 5.1, we can assume without loss of generality that
ρV = d. Using Parseval’s Theorem and (32) we can write

Ē[αTψ(t)]2 = Ē[αT
q−m

D(q−1)
RB0,k−1(q)u(t)]2

= αTR

(
1

2π

∫ π

−π
Φu(ω)

1
|D(e−jω)|2

B0,k−1(e−jω)

×BH
0,k−1(e−jω)dω

)
RTα

Let u(t) be SREn with finite n. Its spectrum can then be
written as Φu(ω) =

∑n
i=1 λiδ(ω−ωi) where δ(·) is the Dirac

impulse function, λi ∈ <, and the ωi are n distinct frequencies
in the interval (−π, π]. Define its support as the vector f =
[ejω1 ejω2 . . . ejωn ] ∈ Ωn, where Ωn ⊂ Cn is the set of all
supports f which result in an SREn signal, that is, those f
such that the ejωi are distinct. Ωn is an n-dimensional subset
of Cn which defines the class of signals u(t) that we consider.
Then we can write

Ē[αTψ(t)]2 =

αTR(
1

2π

n∑
i=1

λ′iB0,k−1(e−jωi)BH
0,k−1(e−jωi))RTα

where λ′i = λi
|D(e−jωi )|2 . Hence

Ē[αTψ(t)]2 = αTRF (f)ΛFH(f)RTα (35)

with

F (f)=
[
B0,k−1(e−jω1) B0,k−1(e−jω2) . . . B0,k−1(e−jωn)

]
(36)

and Λ = diag{λ′1, λ′2, . . . , λ′n}. Note that for k ≥ n, the n
first rows of F (f) form a Vandermonde matrix; since all ejωi
are distinct, it follows that this Vandermonde matrix has full
rank. Therefore ρ(F (f)) = n whenever k ≥ n. But ψ(t) is
full rank if and only if P (f) ∆= RF (f)ΛFH(f)RT has rank
equal to d, which is equivalent to det(P (f)) 6= 0. Suppose that
n < d; then ρ(F (f)) = n < d which, noting that ρ(P (f)) ≤
ρ(F (f)), implies det(P (f)) = 0, thus proving the necessity
of n ≥ d.

For n ≥ d, the determinant det(P (f)) is a nontrivial
polynomial in the vector variable f and ψ(t) loses rank exactly
at the roots of this polynomial. Since the roots of a polynomial
define a set of measure zero in the space of its variable, ψ(t)
is full-rank for almost all f ∈ Ωn.

Theorem 5.1 completely characterizes the required signal
richness of u(t) that keeps the kernel of the regressor vector
ψ(t) , V (q)u(t) identical to the kernel of V (q), thus causing
no drop of rank, i.e. ρψ = ρV . It tells us that signals that do
not result in full transfer of excitation form a set of measure
zero in the set of signals. The next theorem explains that there

is indeed a gap between a necessary condition and a sufficient
condition on the signal richness for the preservation of the
rank. This gap explains why the rank preservation property
holds for almost all u(t) ∈ Un.

Theorem 5.2: Let ψ(t) , V (q)u(t) with ψ(t) ∈ Rd, u(t)
quasistationary, V (q) proper and stable, and let V (q) be
decomposed as in (32) with rank(V ) = ρV .
• If u(t) is not SR of order ρV , then Ker(ψ(t)) ⊃
Ker(V (q)).

• If u(t) is SRk then Ker(ψ(t)) = Ker(V (q)).
Proof: With R and F defined as in (32) and (36),this

result follows immediately from Sylvester’s inequality:

ρ(R) + ρ(F )− k ≤ ρ(RF ) ≤ min(ρ(R), ρ(F ))

which yields ρ(RF ) < ρ(R) for n < ρV and ρ(RF ) ≥ ρ(R)
for n ≥ k.

Theorem 5.2 provides a necessary richness condition - SR
of order ρV - and a sufficient condition - SR of order k.
Hence, any signal that is SRk guarantees that Ker(ψ(t)) =
Ker(V (q)) and any signal that is not SR of order ρV
guarantees that Ker(ψ(t)) 6= Ker(V (q)). For signals with
richness in between ρV and k, some will result in full
transfer of excitation - that is, Ker(ψ(t)) = Ker(V (q)) -
and some will not. That is, for such signals, only a few
frequencies - a set of measure zero on the real axis - will cause
Ker(ψ(t)) 6= Ker(V (q)). The following example illustrates
our results.

Example 5.1: Consider the regressor ψ(t) = V (q)u(t),
with V (q) , R

[
1 q−1 q−2 q−3 q−4

]T
where

R =

 0 1 0 0 1
0 0 1 0 0
1 0 0 0 1


Consider first u(t) = λ1 + λ2sin(ω1t), which is SRE3.

For such signal, RF is a 3× 3 matrix, whose determinant is
det(RF ) = −2j[3 sin(ω1)−2 sin(2ω1)−sin(3ω1)+sin(4ω1)].
Its roots in (−π, π] are at −π3 , 0, π

3 and π, but ω1 = 0 and
ω1 = π do not keep u(t) ∈ U3. Thus, ψ(t) will have rank 3
for all u(t) ∈ U3 except for u(t) = λ1 + λ2 sin(π3 t).

Now let u(t) = λ1 sin(ω1t) + λ2 sin(ω2t) which is SRE4
provided that ω1 6= ω2 and that neither ω1 nor ω2 equal 0 or
π. We have

RF=

ejω1+ej4ω1 ejω2+ej4ω2 e−jω1+e−j4ω1 e−jω2+e−j4ω2

ej2ω1 ej2ω2 e−j2ω1 e−j2ω2

1 + ej4ω1 1 + ej4ω2 1 + e−j4ω1 1 + e−j4ω2


It is rather easy to see that RF will have full rank for all
values of ω1 and ω2 for which u(t) is SRE4, except those
for which ω1 + ω2 = π. We observe, using Theorem 5.2, that
the richness of the two considered signals are in between the
necessary richness (u(t) is SR3) and the sufficient richness
(u(t) is SR5).

VI. POSITIVE DEFINITENESS OF I(θ) FOR ARMAX AND
BJ MODEL STRUCTURES

The combined results of Theorems 4.2, 4.3 and 5.1 produce
necessary and sufficient richness conditions on the excitation
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signal that guarantee positive definiteness of the information
matrix at all θ at which the model structure is identifiable,
i.e. at which Γ(θ) > 0. In order to show how these results
materialize into explicit richness conditions on the external
signals as a function of the polynomial degrees of the model
structure and the controller (in a closed-loop setup), we derive
these explicit conditions for the “classical” model structures:
ARMAX, ARX, BJ and OE. We do this for both open-loop
and closed-loop identification.

A. Open-loop identification

ARMAX model structure
Consider the ARMAX model structure

A(q−1)y(t) = B(q−1)u(t) + C(q−1)e(t),where (37)
A(q−1) = 1 + a1q

−1 + . . .+ anaq
−na (38)

B(q−1) = b1q
−1 + . . .+ bnbq

−nb (39)
C(q−1) = 1 + c1q

−1 + . . .+ cncq
−nc (40)

We comment that for ARMAX model structures, one must
consider as generic the possible existence of common roots
between the polynomials A and B, as well as between A
and C. However, the three polynomials A, B and C must be
coprime at any identifiable θ; at a θ at which A, B and C
have a common root, Γ(θ) would be singular.

In open-loop identification it is well known (see Theorem
13.1 in [15], for instance) that an excitation that is SR of
order nb+na is sufficient for an experiment to be informative
both for ARMAX and Box-Jenkins model structures. Using
the results of Sections IV and V we derive similar results, in
the form of necessary and sufficient conditions.

Theorem 6.1: For the ARMAX model structure (37), the
information matrix I(θ) is positive definite at a θ at which the
model structure is identifiable if and only if u(t) is SRk, where
k = nb +nu(θ) and nu(θ) is the number of common roots of
the polynomials A(q−1) and C(q−1) at that θ. I(θ) is positive
definite at all θ at which the model structure is identifiable if
and only if u(t) is SRk with k = nb + min{na, nc}.

Proof: For the ARMAX model structure, we have:

∇θG =
1
A2



−Bq−1

...
−Bq−na
Aq−1

...
Aq−nb

0
...
0


, ∇θH =

1
A2



−Cq−1

...
−Cq−na

0
...
0

Aq−1

...
Aq−nc


(41)

Let αT = (αTA | αTB | αTC) denote any vector in the left-
kernel of∇θH(q, θ), and let γA(q−1) , αTAB1,na , γB(q−1) ,
αTBB1,nb , and γC(q−1) , αTCB1,nc . Then

αT∇θH(q, θ)=0 ⇔ γA(q−1)C(q−1)=γC(q−1)A(q−1) (42)
⇔ qγA(q−1)C(q−1)=qγC(q−1)A(q−1)

At a value of θ at which the polynomials A and C are coprime,
it follows from the theory of Diophantine equations (see e.g.
[18]) that αA = 0 and αC = 0, because deg(qγA(q−1)) <
deg(A(q−1)) and deg(qγC(q−1)) < deg(C(q−1)). Consider
now a θ at which there are common factors between A and
C and let U(q−1) , u0 + u1q

−1 + . . . + unuq
−nu denote

the Greatest Common Divisor (GCD) of A and C. Then
A = A1U and C = C1U for some coprime polynomials
A1 and C1. Then (42) is equivalent with qγA(q−1)C1(q−1) =
qγC(q−1)A1(q−1) where deg(qγA) = na−1 and deg(qγC) =
nc − 1. The set of all solutions of this equation is described
by

qγA = αTAB0,na−1 = A1T, qγC = αTCB0,nc−1 = C1T
(43)

where T (q−1) , t0 + t1q
−1 + . . . + tnu−1q

−nu−1 is a
polynomial of degree nu − 1 with arbitrary coefficients. The
left-kernel of ∇θH(q, θ) is thus defined by those vectors
αT = (αTA | αTB | αTC) such that αA and αC are solution
of (43), while αB is arbitrary. As stated earlier, we consider
values of θ at which Γ(θ) > 0. At these values of θ,
αT∇θG(q, θ) 6= 0 for all vectors α defined above and, by
Theorem 4.2, I(θ) > 0 if and only if u(t) is such that
Ē[αT∇θG(q, θ)u(t)]2 6= 0 for all such α. For such α, we
have:

αT∇θG(q, θ)u(t) =
1
A2

[−αTAB1,naB + αTBB1,nbA]u(t)

=
1
A2

[−q−1A1TB + αTBB1,nbA1U ]u(t)

=
1
AU

[−q−1TB + αTBB1,nbU ]u(t)

where the coefficients of the polynomial T , of degree nu− 1,
as well as the coefficients of αB are completely free. Therefore
Ē[αT∇θG(q, θ)u(t)]2 6= 0 if and only if the following
pseudoregressor has full rank:

ψ(t) =
1
AU



−Bq−1

...
−Bq−nu
Uq−1

...
Uq−nb


u(t) =

1
AU

RB1,nb+nuu(t)

(44)
where R ∈ R(nb+nu)×(nb+nu) is a Sylvester matrix. Since
A,B,C are coprime at all θ, and U is the common factor
of A and C at the considered θ, it follows that B and U
are coprime, and hence R in (44) is nonsingular. Therefore,
by Theorem 5.1, ψ(t) in (44) is PE (and hence I(θ) > 0)
if and only if u(t) is sufficiently rich of degree nb + nu(θ),
where nu(θ) represents the number of common roots between
A and C at the considered θ. Since the maximum number of
such common roots is min{na, nc}, I(θ) is positive definite
at all identifiable θ if and only if u(t) is SRk with k = nb +
min{na, nc}.

The corresponding result for an ARX model structure
follows immediately as a corollary. We remind the reader
that an ARX structure is globally identifiable at all θ (see
Definition 3.1) [15].
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Corollary 6.1: For the ARX model structure A(q−1)y(t) =
B(q−1)u(t) + e(t) with A(q−1) and B(q−1) as in (38) and
(39), the information matrix I(θ) is positive definite at all θ
if and only if u(t) ∈ Unb .

This same condition - SR of order nb - is known to be
necessary and sufficient for informativity of data for ARX
structures in open-loop identification [7].

Box-Jenkins model structure
Consider now the BJ model structure:

y(t) =
B(q−1)
F (q−1)

u(t) +
C(q−1)
D(q−1)

e(t) (45)

where B and C are as above, with F (q−1) = 1 + f1q
−1 +

. . .+ fnf q
−nf and D(q−1) = 1 + d1q

−1 + . . .+ dndq
−nd .

Theorem 6.2: For the BJ model structure (45), the infor-
mation matrix I(θ) is positive definite at all θ at which the
model structure is identifiable if and only if u(t) is SRk, where
k = nb + nf .

Proof: The gradient vectors Vuol(q, θ) and Veol(q, θ) de-
fined in (20) are now partitioned into 4 blocks corresponding,
successively, to the parameters of the polynomials B,F,C,
and D. It is easy to see that the left-kernel of Veol(q, θ)
(i.e. of ∇θH(q, θ)) is spanned by the set of vectors αT =
(αTB | αTF | 0 . . . 0 | 0 . . . 0). Therefore, by Theorem 4.2,
I(θ) > 0 if and only if the following pseudoregressor is PE:

ψB,F (t) ,
1
F 2



Fq−1

...
Fq−nb

−Bq−1

...
−Bq−nf


u(t) =

1
F 2

RB1,nb+nfu(t).

(46)
where R is a Sylvester matrix which is nonsingular at all
values θ at which B and F are coprime, i.e. at all θ at which
Γ(θ) > 0. The result then follows from Theorem 5.1.

Corollary 6.2: For the OE model structure y(t) =
B(q−1)
F (q−1)u(t) + e(t), the richness condition on u(t) is identical
to that for the BJ model structure.

B. Closed-loop identification

We now apply the results of Theorem 4.3 to closed-loop
identification of ARMAX and BJ model structures. We will
show that the information matrix I(θ) will be positive definite
if the controller complexity achieves a prescribed degree; and
when that is not the case, the degree of richness required of the
reference excitation must precisely compensate for the deficit
in controller complexity. This precisely quantifiable trade-off
between controller complexity and degree of richness of the
reference signal is another main contribution of this paper. For
the controller K(q) of (2) we consider a coprime factorization
K(q) = X(q−1)

Y (q−1) , with X(q−1) = x0 +x1q
−1 + . . .+xnxq

−nx

and Y (q−1) = 1 + y1q
−1 + . . .+ ynyq

−ny .

ARMAX model structure
Consider the ARMAX model structure (37). For simplicity, we
shall consider only parameter values θ at which the following
assumption holds.

Assumption 1: The polynomials A(q−1)Y (q−1) +
B(q−1)X(q−1) and C(q−1) are coprime.
Notice that the subset of θ values at which these polynomials
have a common root has measure zero in the parameter space.
They correspond to parameter values that cause a pole-zero
cancellation between the closed-loop poles of the model and
the zeros of the noise model. We then have the following
result.

Theorem 6.3: Consider the ARMAX model structure (37)
under feedback control with the stabilizing controller K(q) =
X(q−1)
Y (q−1) , with Assumption 1 holding.
(i) Let r(t) ≡ 0. Then the information matrix I(θ) is positive
definite at all θ at which the model structure is identifiable if
and only if

max(nx − na, ny − nb) ≥ 0. (47)

(ii) Let max(nx − na, ny − nb) < 0. Then the information
matrix I(θ) is positive definite at all θ at which the model
structure is identifiable for almost all r(t) ∈ Uk if and only if

k ≥ min(na − nx, nb − ny). (48)

Proof: For an ARMAX model structure, the filter Vecl
expressed in (22) becomes:

Vecl=
H0S

C2Y
{−CY∇θA− CX∇θB+(AY +BX)∇θC}

(49)
Let αT = (αTA | αTB | αTC) denote any vector in the left-
kernel of Vecl. Using the same notations as in the proof of
Theorem 6.1, it then follows that

(qγAY + qγBX)C = qγC(AY +BX). (50)

By Assumption 1, the polynomials C and AY + BX are
coprime. Since deg(qγAY + qγBX) < deg(AY + BX) and
deg(qγC) < deg(C), it then follows from the theory of
Diophantine equations [18] that the only solution of (50) is
given by

γC = 0, and qγAY + qγBX = 0. (51)

It follows from the first part that any vector α in the left
kernel of Vecl must have αC = 0. Consider now the right
hand part of (51). Since X and Y are coprime, it follows
again from the theory of Diophantine equations that if either
deg(Y ) > deg(qγB) or deg(X) > deg(qγA), then the only
solution of (51) is γB = γA = 0. Equivalently, Vecl has full
rank, and hence no external excitation is required, if and only
if (47) holds.

Consider now the situation where max(nx−na, ny−nb) <
0. The general solution of qγAY + qγBX = 0 can then be
written as

γA = XT, γB = −Y T, (52)

where T is an arbitrary polynomial of the form

T (q−1) , t1q
−1 + . . .+ tntq

−nt , with (53)
nt = min{na − nx, nb − ny}. (54)



10

Thus, when max(nx−na, ny−nb) < 0, the left kernel of Vecl
is defined by vectors αT = (αTA | αTB | 0T ) such that γA =
αTAB1,na and γB = αTBB1,nb are constrained by (52) with T
defined by (53)-(54). By Theorem 4.3, I(θ) is positive definite
if and only if (29) holds for such α. Using (22) and (41) it is
easy to compute that, for an ARMAX model structure,

αT∇θWy(q, θ) = αTK(q)∇θWu(q, θ) = − 1
C
γA. (55)

Since γA = XT with T defined by (53)-(54), we
conclude that Ē[αT∇θWy(q, θ)r(t)]2 6= 0 (or, equiva-
lently, Ē[αTK(q)∇θWu(q, θ)r(t)]2 6= 0) if and only if
Ē[T (q−1)r(t)]2 6= 0 for all T given by (53)-(54), provided
the points of support of the spectrum of r(t) do not coincide
with possible zeroes of X on the unit circle. This holds for
almost all r(t) ∈ Uk if and only if k ≥ min{na−nx, nb−ny} :
see Theorem 5.1.

That an ARMAX model identified in closed loop is iden-
tifiable from noise information alone if the controller is
sufficiently complex with respect to the model structure, as
specified by condition (47), was already known: see Appendix
C10.1 of [7]. What is novel and, we believe, remarkable
in Theorem 6.3 is that, when that complexity condition is
not satisfied by the controller, then the degree of richness
required of the reference signal is precisely determined by how
much that condition is violated. In other words, the degree of
richness required of r(t) is precisely equal to the difference
between the complexity required by expression (47) and the
actual complexity of the controller.

Corollary 6.3: For the ARX model structure A(q−1)y(t) =
B(q−1)u(t)+e(t) under feedback control with the stabilizing
controller K(q) = X(q−1)

Y (q−1) , the richness conditions are iden-
tical to those given in Theorem 6.3 for the ARMAX model
structure.

Proof: The proof follows immediately by setting
C(q−1) = 1 everywhere in the proof of Theorem 6.3.

BJ model structure
Consider the BJ model structure (45). For simplicity, we
shall again exclude parameter values θ that cause a pole-zero
cancellation between the closed-loop poles of the model and
the zeros of the noise model. This corresponds to the following
assumption.

Assumption 2: The polynomials F (z−1)Y (z−1) +
B(z−1)X(z−1) and C(z−1) are coprime.

Theorem 6.4: Consider the BJ model structure (45) un-
der feedback control with the stabilizing controller K(q) =
X(q−1)
Y (q−1) , with Assumption 2 holding.
(i) Let r(t) ≡ 0. Then the information matrix I(θ) is positive
definite at all θ at which the model structure is identifiable if
and only if

max(nx − nf , ny − nb) ≥ nd. (56)

(ii) Let max(nx − nf , ny − nb) < nd. Then the information
matrix I(θ) is positive definite at all θ at which the model
structure is identifiable for almost all r(t) ∈ Uk if and only if

k ≥ nd +min(nf − nx, nb − ny). (57)

Proof: For the BJ model structure, the filter Vecl of (22)
becomes:

Vecl =
SH0

C

{
−KD

F
∇θB +

KDB

F 2
∇θF

+
D

C
(1 +K

B

F
)∇θC − (1 +K

B

F
)∇θD

}
Let αT = (αTB | αTF | αTC | αTD) denote any vector in the
left-kernel of Vecl. Then, with the same notations as before,
we find, after some calculations:

αTVecl=
SH0

C

[
(
B

F
γF−γB)

KD

F
+(

D

C
γC−γD)(1 +K

B

F
)
]

=
SH0

F 2C2Y
[DCX(BγF − FγB)

+F (FY +BX)(DγC − CγD)] = 0. (58)

Assume that F and X have a common factor at the considered
θ; let then M , of degree nm, be the greatest common divisor
of these two polynomials, i.e. F = F̄M and X = X̄M . Then

αTVecl=
SH0

FF̄C2Y

[
DCX̄(BγF − FγB)

+F̄ (FY +BX)(DγC − CγD)
]

= 0. (59)

It follows from Assumption 1, the coprimeness of X and Y ,
and the coprimeness of F and X̄ that the polynomials FY +
BX and CX̄ are coprime. It then follows from the theory of
Diophantine equations that the only solution of (58) is

BqγF − FqγB = 0, and DqγC − CqγD = 0 (60)

if either nc + nx − nm > nf − nm + nd + nc − 1, or
max{nf +ny, nb+nx} > nd+nf +nb−1. These conditions
are equivalent to (56). Thus, suppose (56) holds and consider
(60). At all values of θ at which Γ(θ) > 0, the polynomials
B,F and C,D are coprime. Since deg(qγF ) < deg(F ),
and deg(qγC) < deg(C), it then follows from (60) that
γB = γF = γC = γD = 0, and hence α = 0, and the
first part of the result follows.

Consider now the situation where max(nx−nf , ny−nb) <
nd, and let α be any vector in the kernel of Vecl. The
polynomials γB , γF , γC , γD corresponding to any such α
satisfy the equality (59), whose general solution is

D(BγF − FγB)=(FY +BX)T, F̄ (DγC − CγD)=CX̄T
(61)

where T is an arbitrary polynomial of the form (53) with

nt = nd + min{nb − ny, nf − nx}. (62)

By Theorem 4.3, I(θ) is positive definite at each identifiable
θ if, for any such α, we have Ē[αT∇θWy(q, θ)r(t)]2 6= 0.
We have:

αT∇θWy =
1
C2

(DγC − CγD) = −X̄T
CF̄

(63)

where the last equality follows from (61). In this expression,
the polynomial T , whose degree is given by (62), is free while
all others are fixed. Therefore, Ē[αT∇θWy(q, θ)r(t)]2 6= 0 if
and only if Ē[Tr(t)]2 6= 0 where T is given by (53) and
(62), provided the points of support of the spectrum of r(t)
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do not coincide with possible zeroes of X on the unit circle.
This holds for almost all r(t) ∈ Uk if and only if k ≥ nd +
min{nb − ny, nf − nx}.

We observe that, just like in the case of an ARMAX model
structure identified in closed loop, the degree of richness
required of the external excitation signal r(t) is precisely
equal to the difference between the complexity required by
expression (56) and the actual complexity of the controller.

Corollary 6.4: For the OE model structure y(t) =
B(q−1)
F (q−1)u(t) + e(t), under feedback control with the stabilizing

controller K(q) = X(q−1)
Y (q−1) , the information matrix I(θ) is

positive definite at all θ at which Γ(θ) > 0 if and only if
K(q) 6= 0.

Proof: It is easy to see that for an OE model structure,
the left kernel of Vecl is defined by

αTVecl =
SH0X

F 2Y
(BγF − FγB) = 0. (64)

If SH0X 6= 0, then the only solution to this Diophantine
equation at values of θ at which B and F are coprime is
γB = 0 and γF = 0.

This confirms a result obtained in [3] where it was shown
that an OE model structure is identifiable in closed loop
without external excitation as long as the controller is not
identically zero.

VII. NUMERICAL ILLUSTRATION

We illustrate our results with an ARMAX and a Box-
Jenkins model structure, both in an open-loop and a closed-
loop identification setup. We consider situations where the
‘true system’ is in the model set; in such case, the positive
definiteness of I(θ0) at the true value is a necessary condition
for the existence of a unique global minimum of the iden-
tification criterion [15]. In all simulations presented in this
section we have collected N = 105 data samples. In order
to validate our theoretical results, we replace the mathemat-
ical expectation Ē[·] in the expression (13) of I(θ) by its
approximation 1

N

∑N
i=1 ψ(t, θ)ψT (t, θ). The pseudoregressor

ψ(t, θ) is computed using (20) for the open-loop identification
setup, and (22) for the closed-loop identification setup. The
positive definiteness of I(θ) is verified by using the MATLAB
command rank with a tolerance of 10−5.

A. ARMAX model structure

We consider the following ARMAX system as the true
plant:

y(t) =
b10q

−1 + b20q
−2

1 + a10q−1
u(t) +

1 + c10q
−1

1 + a10q−1
e(t) (65)

where a10 = −0.7, b10 = 0.3, b20 = 0.12, c10 = −0.5, and
e(t) denotes a realization of a zero-mean white noise signal
with σ2

e = 0.09. We first perform an open-loop identification
with an ARMAX model structure matching the true system,
i.e. we take θ = [a1 b1 b2 c1]T . Considering that the polyno-
mials A and C are coprime at θ0, we know by Theorem 6.1
that in order to obtain a positive definite information matrix,
we need to excite the plant using an input signal u(t) ∈ U2,

since nb = 2. Indeed, for u(t) = 1, which is SRE1, I(θ0) is
found to be singular, whereas for u(t) = sin(π6 t), which is
SRE2, I(θ0) is a full rank matrix.

Consider now that the plant (65) is operated in closed loop
with the controller K = 1−0.175q−1

1−q−1 , and that the same model
structure is used. Since the condition (47) is satisfied, it follows
from Theorem 6.3 that the true system can be identified
without external excitation signal. Verification of the rank of
the information matrix confirms this fact. By collecting enough
data one can actually obtain a model of the plant with arbitrary
accuracy, without any external excitation.

We now consider that the plant is controlled by K = 0.25
1−q−1 ,

and that the same model structure is used as before. In this
case, the controller is not complex enough with respect to
the chosen model structure and an additional excitation is
necessary for identification. From Theorem 6.3, we know that
I(θ0) > 0 for r(t) ∈ Uk with k = min(na−nx, nb−ny) = 1.
The simulation with r(t) = 1 confirms the theoretical result,
i.e. rank(I(θ0)) = 4.

We now perform an identification experiment with the same
experimental conditions (K = 0.25

1−q−1 and r(t) = 1), but
using an over-parametrized ARMAX model structure θ =
[a1 a2 b1 b2 b3 c1]T . We observe that, with such combination
of controller and reference excitation, I(θ0) is singular, with
rank(I(θ0)) = 5. Theorem 6.1 tells us that, in such case,
identifiability requires an excitation signal r(t) that is SR2.
Indeed, for r(t) = sin(π6 t) our simulations show that I(θ0)
is positive definite, i.e. rank(I(θ0)) = 6. This confirms that
the required richness on the excitation signal depends on the
model structure that is used, and not on the true plant.

B. BJ model structure

We consider the following BJ system:

y(t) =
b10q

−1

1 + f10q−1
u(t) +

1 + c10q
−1

1 + d10q−1 + d20q−2
e(t) (66)

where f10 = −0.45, b10 = 0.3, c10 = −0.75, d10 = −1.2,
d20 = 0.36 and e(t) is defined as in Subsection VII-A.
To perform the open-loop identification using a BJ model
structure with θ = [b1 c1 d1 d2 f1]T a signal u(t) ∈ Uk
with k = nb + nf = 2 is needed. An inspection of the rank
of the information matrix, for u(t) = sin(π6 t) confirms that
I(θ0) is positive definite. To verify the necessity condition of
Theorem 6.2, I(θ0) is computed for u(t) = 1. As anticipated,
the information matrix is singular in this case.

Assume a situation where the plant is to be identified in
closed loop with the controller K = 0.25

1−q−1 . For a model
structure θ = [b1 c1 d1 d2 f1]T and the given controller, we
have nd = 2, nb = 1, nf = 1, nx = 0 and ny = 1.
According to Theorem 6.4, the degree of richness required
of r(t) is k = nd + min(nf − nx, nb − ny) = 2. Indeed, for
r(t) = sin(π6 t), I(θ0) is found to be positive definite, whereas
we have found rank(I(θ0)) = 4 for r(t) = 1.

VIII. CONCLUSIONS

The information matrix plays a fundamental role in
system identification, given that it combines information
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about the identifiability of the model structure and about the
informativity of the data set. In addition, when the system
is in the model set, the information matrix evaluated at the
convergence value of the identification criterion is, up to a
scalar factor, the inverse of the parameter covariance matrix.
Our first main contribution has been to provide necessary
and sufficient conditions for the transfer of excitation from
a vector-filtered scalar input signal to the corresponding
regression vector. With this new result, we have derived
necessary and sufficient conditions on the richness of the
excitation signal and on the controller complexity (in closed-
loop identification) that make the information matrix full
rank at all values of the parameter space where the model
structure is identifiable. Our results apply to general model
structures, in open-loop and in closed-loop identification.
We have applied our results to all model structures that
are commonly used in prediction error identification. In
closed-loop identification, these results provide a remarkable
and quantifiable tradeoff between controller complexity and
degree of richness of the external excitation.

ACKNOWLEDGMENT

The authors wish to thank Roland Hildebrand and Luc
Haine for some useful hints for the proof of Theorem 5.1.

REFERENCES

[1] M. Gevers, A. Bazanella, and X. Bombois, “Connecting informative
experiments, the information matrix and the minima of a Prediction
Error Identification criterion,” in Proc. 15th IFAC Symposium on System
Identification (SYSID2009), Saint-Malo, France, 2009.

[2] X. Bombois, G. Scorletti, M. Gevers, R. Hildebrand, and P. Van den
Hof, “Cheapest open-loop identification for control,” in CD-ROM Proc.
33rd IEEE Conf on Decision and Control, The Bahamas, December
2004, pp. 382–387.

[3] X. Bombois, G. Scorletti, M. Gevers, P. Van den Hof, and R. Hildebrand,
“Least costly identification experiment for control,” Automatica, vol. 42,
no. 10, pp. 1651–1662, October 2006.

[4] H. Jansson and H. Hjalmarsson, “Optimal experiment design in closed
loop,” in 16th IFAC World Congress on Automatic Control, paper 04528,
July 2005.
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