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Abstract. This article reviews the development of experiment design in the field of identification
of dynamical systems, from the early work of the seventies on input design for open loop identification
to the developments of the last decade that were spurred by the research on identification for control.
While the early work focused entirely on criteria based on the asymptotic parameter covariance, the
results of the last decade aim at minimizing a wide range of possible criteria, including measures of
the estimated transfer function, or of functions of this estimated transfer function. Two important
recent developments are the solution of the experiment design problem for closed loop identification,
and the formulation and solution of the dual optimal design problem in which the cost of identification
is minimized subject to a quality constraint on the estimated model. We shall conclude this survey
with new results on the optimal closed loop experiment design problem, where the optimization is
performed jointly with respect to the controller and the spectrum of the external excitation.
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1. Introduction. Optimal experiment design has its roots in the statistical lit-
erature, where it was applied to the choice of regression variables in classical regression
problems of the type y = fT (x)θ + v, where θ is to be estimated from the observed
variables x and y, f(.) is a known vector function, v is a random error, and the design
consists of choosing the independent variables x from a compact set X. The most
relevant contributions date back to the 1960’s and are due to Kiefer [44], Kiefer and
Wolfowitz [45], Karlin and Studden [43] and Fedorov [15]. The first contributions of
optimal experiment design to dynamical system identification date back to around
1970, and the main contributors of this early period are Aoki and Staley[3], Mehra
[58], Goodwin, Payne, Zarrop, Ng and Söderström [25, 27, 26, 60, 74]. An excellent
survey of the early results in system identification can be found in [57].

The setup adopted in most of the literature on optimal experiment design for
dynamical systems is that of a linear time-invariant discrete-time system identified
using a parametric model structure that is able to represent the true system, and a
Prediction Error (PE) identification criterion. For simplicity of exposition, we shall
in this paper consider the single-input single-ouput (SISO) case only. Thus the “true
system” can be represented by:

S : y(t) =

G0(z)︷ ︸︸ ︷
G(z, θ0)u(t) +

v(t)︷ ︸︸ ︷
H(z, θ0)e(t) (1.1)
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for some unknown parameter vector θ0 ∈ Rd, where e(t) is white noise of variance λ0,
while G(z, θ0) and H(z, θ0) are stable discrete-time transfer functions, with H(z, θ0)
minimum-phase and monic, i.e. H(∞, θ0) = 1. The system is identified with a model
structure M(θ) = [G(z, θ), H(z, θ)], θ ∈ Rd, which represents the true system exactly
when θ = θ0. The model set M is defined as M = {M(θ), θ ∈ DM ⊂ Rd}, where
DM is a specified subset.

When Prediction Error identification is used with a full order model structure,
then under mild assumptions the estimated parameter vector θ̂N is known to be
asymptotically normally distributed and to converge as the number of collected data
tends to infinity, such that:

√
N(θ̂N − θ0)

N→∞−→ N(0, Pθ), (1.2)

where the asymptotic parameter covariance matrix Pθ can be estimated from the data.
When the true system cannot be represented within the chosen model structure, the
parameter estimate converges under reasonable assumptions to an asymptotic value
θ∗ defined as:

θ∗ = arg min
θ∈DM

V̄ (θ), where V̄ (θ) = lim
N→∞

1

N

N∑
t=1

E[y(t)− ŷ(t|t− 1, θ)]2, (1.3)

where ŷ(t|t − 1, θ) is the one-step ahead predictor of y(t) computed from the model
M(θ): see [52] for details. The error in the transfer function estimate at a given
frequency ω can then be decomposed as:

G(ejω, θ̂N )−G(ejω, θ0) = G(ejω, θ̂N )−G(ejω, θ∗)︸ ︷︷ ︸
variance error

+G(ejω, θ∗)−G(ejω, θ0)︸ ︷︷ ︸
bias error

. (1.4)

The optimal design research of the seventies focused for the most part on the iden-
tification of systems operating in open loop, and the design variables were either the
choice of input signal or of the sampling time. In this article we shall not discuss opti-
mal sampling time design. The criteria for optimal input design were scalar functions
of the parameter covariance matrix, or of the asymptotic parameter covariance matrix,
and the optimization was performed either in the time domain or in the frequency
domain. In both cases a statistical framework is assumed.

In the time domain approach, a Gaussian distribution is assumed for the noise
and the likelihood function L(y, u, θ), evaluated at input and output data vectors
u ∈ RN and y ∈ RN , is used to estimate the unknown parameter vector θ. Assuming
an unbiased estimator θ̂ for θ, the Cramér-Rao inequality states that the covariance
matrix of θ̂ is bounded from below by the inverse of the Fisher Information Matrix
(FIM) Mθ(u) constructed from L(y, u, θ). The input design problem is then to select
a sequence u ∈ RN in some admissible compact set U so as to maximize some scalar
function of Mθ(u). The set U is a subset of RN such as, e.g. U = {u | uTu ≤
α}. The problem thus reduces to a nonlinear optimal control problem; however, the
computational burden increases dramatically as N gets large.

As a result, this time-domain approach has for the most part given way to a
frequency domain approach that is based on a quasi-stationarity assumption of the
input-output process and the replacement of the information matrix by the asymptotic
per sample information matrix M̄θ, which is the inverse of the asymptotic per sample
covariance matrix Pθ. Using Parseval theory, this asymptotic information matrix
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is then expressed as a frequency weighted integral of the input spectrum, and the
optimal design on the input signal u then reduces to an optimization with respect
to the input spectrum Φu(ω) subject to a constraint on Φu(ω), yielding an optimal
spectrum Φ∗u(ω). Any input signal that realizes this optimal spectrum Φ∗u(ω) is then
the solution of the optimal input design problem. In Section 2 we shall briefly review
the main results of the early work of the pioneers of experiment design in system
identification. The main outcome of this period is that optimal inputs were obtained
for a range of classical criteria, leading to convex optimization problems. The most
commonly used design criteria were A-optimal design which minimizes tr(Pθ), D-
optimal design which minimizes det(Pθ), E-optimal design which minimizes λmax(Pθ),
and L-optimal design which minimizes tr(WPθ), where W is a nonnegative weighting
matrix. It was shown that, under a constraint on the input power (i.e.

∫
Φu(ω) ≤ c),

the optimal solutions can always be generated as multisines even though the set of
optimal solutions is infinite [26]. The number of frequencies required is a function
of the number of unknown parameters. One major difficulty of optimal experiment
design problems is that the optimal solution depends on the unknown system. To
circumvent this problem, it was suggested to use a Bayesian viewpoint, regarding the
unknown parameter vector θ as a random vector with a prior distribution.

Research on input design essentially came to a halt after the mid-seventies. But in
the mid-eighties, Ljung and collaborators produced variance formulas [51, 53] directly
for the transfer function estimates, rather than for the parameter estimates which
only serve as auxiliary variables in the representation of these transfer functions. The
asymptotic variance formulas were derived under the assumption that the model order
n tends to infinity in some appropriate way when the data length N tends to infinity.
Thus, for the variance of the transfer function estimates G(z, θ̂N ) and H(z, θ̂N ), the
following approximation was obtained in [51] under an assumption of high model
order:

Cov

(
G(ejω, θ̂N )

H(ejω, θ̂N )

)
∼=

n

N
Φv(ω)

[
Φu(ω) Φue(ω)
Φeu(ω) λ0

]−1

, Φχ0
(ω) (1.5)

where n is the model order, N is the number of data, Φu(ω) is the input spectrum,
Φue(ω) is the cross-spectrum between u and e, Φv(ω) is the output disturbance spec-
trum, and λ0 is the variance of the white noise signal e(t) in (1.1). Strictly speaking,
the result assumes that the model order n tends to infinity, but experience has shown
that this formula most often gives a reasonable approximation also for model orders
that do not exceed that of the true system. The formula explicitly contains the effect
of the experimental conditions (number of data, input spectrum, noise spectrum) on
the error measure. For open loop identification this formula reduces to

V ar(G(ejω, θ̂N )) ≈ n

N

Φv(ω)

Φu(ω)
(1.6)

where n is the model order, N is the number of data, Φu(ω) is the input spectrum,
and Φv(ω) is the output disturbance spectrum.

These asymptotic (in the model order n and in the number of data N) formulas
paved the way for the formulation and solution of a range of goal-oriented experiment
design problems, including control-oriented problems [23, 35, 17, 67]. We shall review
some of the most important results based on Ljung’s asymptotic variance formulas in
Section 3.
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The early nineties saw the emergence of identification for control as an important
new research subject. The focus was initially on reducing the effect of the bias error of
the identified model (see (1.4)) on the controller derived from the estimated model. In
practical applications the complexity of the model is always lower than that of the true
system, and such bias error is therefore inevitable, and may lead to the computation
of a controller that destabilizes the true system if no precautions are taken. The main
outcomes that emerged from this research period can be summarized as follows:

• the data should be collected in closed loop with a controller that is as close
as possible to the optimal controller that would result if the true system were
known;

• the identification criterion should match the control performance criterion as
much as possible;

• to achieve these goals a succession of closed-loop identification steps followed
by control design steps should be performed.

These ideas led to the widespread development of iterative identification and control
design schemes, and the use of the worst-case ν-gap as a measure for checking closed-
loop stability [19, 69, 28, 20, 73, 71].

The last decade saw a significant resurgence of activity in optimal experiment
design. This revival was stirred by new developments in identification for robust
control with the focus shifting from the influence of the bias error on the computed
controller to the influence of the variance error of the estimated model on the set
of stabilizing controllers. The progress was made possible by the advent of powerful
techniques for convex optimization under Linear Matrix Inequality (LMI) constraints.
This activity saw a return to the use of the more accurate finite order covariance
formulas based on the parameter covariance matrix Pθ, after it was observed that the
asymptotic (in the model order) transfer function variance formulas could sometimes
lead to erroneous conclusions [61].

One commonly used approach to go from parameter covariance to transfer func-
tion covariance is to use the following first order Taylor series approximation:

V ar(G(ejω, θ̂N )) ≈ 1

N

∂G∗(ejω, θ0)

∂θ
Pθ
∂G(ejω, θ0)

∂θ
(1.7)

Optimal design problems based on this formula have been addressed in [49, 48, 39,
38, 37], where it is shown that several useful H∞ design criteria can be reformulated
as weighted trace optimal input design problems subject to LMI constraints.

A rather different approach to optimal input design for robust control has been
developed for the case where the system is in the model set, in which case the error
reduces to the variance error. This approach, which directly uses the covariance
matrix Pθ without the need for an approximation, is based on the use of the ellipsoidal
uncertainty set Uθ:

Uθ = {θ|(θ − θ̂N )TNP−1
θ (θ − θ̂N ) < χ2}. (1.8)

It follows from the property (1.2) that the true parameter vector θ0 ∈ Rd belongs to
Uθ with probability α(d, χ2) = Pr(χ2(d) ≤ χ2), where χ2(d) denotes the χ2 distribu-
tion with d degrees of freedom. The results in [8, 22], which connect robust stability
and robust performance measures directly to the ellipsoidal uncertainty region Uθ,
allow one to formulate experiment design problems for robust control in terms of
the minimization of some appropriate function of Uθ (or of Pθ) without the need for
a mapping to an uncertainty set in the frequency domain, which typically requires
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both a Taylor series approximation as in (1.7) and/or a conservative step of over-
bounding of the uncertainty set. The first open-loop optimal input design problem
for robust control based on the direct use of the uncertainty ellipsoid Uθ was formu-
lated in [31], which provided an optimal input design that minimizes the worst-case

ν-gap δWC(G(z, θ̂N ),D) between the identified model G(z, θ̂N ) and all models in the
Prediction Error uncertainty set D , {G(z, θ)|θ ∈ Uθ}, with Uθ defined by (1.8).
This worst-case ν-gap, defined in [71], is directly related to the size of the set of its
stabilizing controllers: the smaller the worst-case ν-gap of the uncertainty set D, the
larger is the set of controllers that stabilize all models in D.

The research on experiment design of the last decade has enabled to vastly expand
the realm of optimal design criteria and constraints, and the solutions proposed to
these problems are all based on the finite order expressions for the covariance matrix
Pθ rather than on the approximate expressions derived under the assumption of a
model order tending to infinity. The major advances can be summarized as follows.

• The design criteria are no longer limited to the classical D-, A-, E- or L-
optimal design criteria, or to the variance of the transfer function estimates.
They have been extended to an array of more complicated but also more prac-
tically interesting functions of the parameter or transfer function estimates
[37, 39, 38, 55, 9].

• The constraints are no longer limited to energy constraints such as∫ π
−π Φu(ω)dω ≤ α, but can also handle frequency by frequency power con-

straints such as Φu(ω) ≤ α(ω) ∀ω, or quality constraints such as
V ar[ĜN (ejω)] ≤ α(ω) ∀ω [40].

• Whereas the classical experiment design formulation considered the mini-
mization of a quality measure of the estimated quantity of interest under
constraints on the input signal, a dual approach has been introduced in which
the cost of the identification is minimized subject to a quality constraint on
the estimated quantity of interest [12, 10, 11, 39]. From a practical point
of view, the cost of the identification is a major issue [63]; recent work has
dealt with the understanding and formalization of the cost of an identification
experiment and its relation to the model complexity [65, 34]. The duality of
these two approaches has been established in [64].

• Experiment design has been extended from open loop design to closed loop
design with a fixed controller (in which the design variable becomes the spec-
trum of the external excitation signal) [37, 11] and to the joint closed loop
design, in which the design variables are the choice of feedback controller
and/or the spectrum of the external excitation [36, 7]. In Section 7 we will
provide an optimal solution to the latter problem.

Underpinning these results of the last decade were some significant technical de-
velopments that can essentially be summarized as follows. The first contribution was
to show that many optimal design problems can be formulated or reformulated as
convex optimization problems under LMI constraints. The second technical work
consisted in showing that these optimization problems can be transformed into prob-
lems involving a finite dimensional parametrization of the design variables.

Because of the dependence of Pθ on the true system (i.e. Pθ = Pθ0), another
important feature of optimal experiment design is that the optimal experimental con-
ditions are dependent on the to-be-identified system (1.1). This could appear to be
a critical problem since an optimal design of the identification experiment requires
knowledge of the system one attempts to identify. This problem was already acknowl-
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edged in the early age of optimal experiment design (see e.g. [57]) and was generally
solved by replacing the true system (1.1) by an initial estimate, i.e. Pθ = Pθinit .
However, in the last few years, more attention has been devoted to this issue. Two
different approaches have been considered: robust experiment design [68, 11] and
adaptive experiment design [35, 18]. In a nutshell, in robust experiment design, one
considers a set of possible initial estimates instead of just one, and the optimal ex-
perimental conditions are the ones which give a satisfactory objective function for all
possible values in that set. In adaptive experiment design, the initial estimate of θ0 as
well as the spectrum of the excitation signal is adapted throughout the identification
experiment based on the information gathered since the beginning of this experiment.

In the remainder of this paper we shall first briefly review the major results
derived from the seventies to the turn of the century . The bulk of the paper will be
to present the techniques and results developed in the last decade in the context of
experiment design for robust control. We shall conclude with some new results for
the optimal design of closed loop experiments.

2. The early work of the seventies. We shall only refer in this section to the
frequency domain approach. Whereas in the time-domain approach, a finite set of
input data u(1), . . . , u(N) are computed as the solution of a nonlinear optimal control
problem that maximizes some scalar measure of the information matrix, here the input
signal is assumed quasi-stationary and the open loop optimal design problem then
reduces to computing the optimal spectrum Φ∗u(ω) that minimizes a scalar measure
of the asymptotic per sample covariance matrix Pθ or, equivalently, that maximizes a
scalar measure of the average per sample information matrix M̄θ. When the system is
in the model set, the dependence of Pθ on the input spectrum is given by the following
expression, using Parseval’s theorem:

M̄θ = P−1
θ =

(
1

2πλ0

∫ π

−π
Fu(ejω, θ0)Fu(ejω, θ0)∗Φu(ω)dω

)
+

(
1

2π

∫ π

−π
Fe(e

jω, θ0)Fe(e
jω, θ0)∗dω

)
(2.1)

Here, Fu(z, θ0) = ΛG(z,θ0)
H(z,θ0) , Fe(z, θ0) = ΛH(z,θ0)

H(z,θ0) , ΛG(z, θ) = ∂G(z,θ)
∂θ and ΛH(z, θ) =

∂H(z,θ)
∂θ . The formula shows that the input spectrum Φu(ω) appears linearly in the

expression of the information matrix P−1
θ , and that, for a given data length N , the

input spectrum is the only design quantity that can shape the parameter covariance
matrix.

Most of the results of this early period were derived under the following simplifying
assumptions:

• The length N of the data set is large;
• The input signal u(t) is quasistationary and admits a spectral density Φu(ω).
• The constraint is on the allowable input power:

1

2π

∫ π

−π
Φu(ω)dω ≤ α. (2.2)

The main outcomes of the research in the 1970’s can be summarized as follows:
see e.g. [26, 74] for the relevant theorems and proofs.

1. The set of average information matrices corresponding to a power constrained
input is a convex set.
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2. Let Φ
(1)
u (ω) be an input spectrum that satisfies the power constraint (2.2)

and yields an average information matrix M̄θ(Φ
(1)
u ). Then there exists an

input spectrum Φ
(2)
u (ω) generated by 1

2d(d+ 1) + 1 sinusoids, where d is the

dimension of θ, that yields the same average information matrix: M̄θ(Φ
(2)
u ) =

M̄θ(Φ
(1)
u ). This means in particular that an optimal input signal can always

be generated by no more than 1
2d(d + 1) + 1 sinusoids. Note that for some

optimal design criteria an optimal solution can often be generated with a
smaller number of sinusoids.

3. For a Box-Jenkins model structure

y(t) =
b1z
−1 + . . .+ bnz

−n

1 + a1z−1 + . . .+ anz−n
u(t) +

1 + c1z
−1 + . . .+ cnz

−n

1 + d1z−1 + . . .+ dnz−n
e(t), (2.3)

an optimal input signal minimizing detM̄θ under the input power constraint
(2.2) can be constructed that comprises no more than 2n sinusoids [26]. Ob-
serve that in such model structure the input signal yields information only
about the parameters bi and ai, i.e. 2n parameters in the structure (2.3).
We notice in passing that the number 2n of sinusoids required for an opti-
mal solution is twice the minimum number of sinusoids required to make the
information matrix nonsingular [21].

Some preliminary results were also obtained that compared open loop and closed
loop experimental conditions [26, 60]. It was shown that when the design criterion
is to minimize detM̄θ, open loop identification is optimal if the constraint (2.2) is
imposed on the input power. For the simple ARX model y(t) = a1y(t − 1) + . . . +
any(t − n) + bu(t − 1) + e(t) with the same design criterion and a constraint on the
output power, it was shown that closed loop identification with a minimum variance
controller and a white noise external excitation signal is optimal.

3. Optimal design based on Ljung’s asymptotic variance formulas. In
the mid-eighties, Ljung [51] produced the asymptotic variance formulas (1.5) for the
transfer function estimates under the assumptions that not only the number of data
N but also the model order n tends to infinity. When identification is performed
in open loop, Φue(ω) = 0 and the variance expression for G(ejω, θ̂N ) reduces to
the simplified expression (1.6). These formulas led to the formulation of a range
of new optimal design criteria and the solution of the corresponding input design
problems [23, 35, 17, 67]. The optimal design criteria used in these design problems
are the variance of the error between an application dependent signal obtained from
the estimated model and the corresponding signal that would be obtained if the true
system were known. Thus, let s(t) be a signal derived from an application of the
model; for example, s(t) could be the output of the closed loop system obtained
using a model-based controller. If the true system (1.1) were known, this signal
would be the optimal signal s0(t) = f(G0(z), H0(z))w(t), where w(t) is a driving

signal in the application. Since the signal is based on an estimated model G(z, θ̂N )
based on N data, the achieved signal is a degraded version of s0(t), namely ŝN (t) =

f(G(z, θ̂N ), H(z, θ̂N ))w(t), yielding an error ∆sN (t) , ŝN (t) − s0(t). By expanding

f(G(z, θ̂N ), H(z, θ̂N )) around the true system and linearizing, the variance of this
degradation can be approximated by E[∆sN (t)]2 ≈ 1

2π

∫ π
−π tr[Q(ω)Φχ0

(ω)]dω, where
Q(ω) is a weighting matrix that reflects the application and Φχ0

(ω) is the spectrum
defined in (1.5). An optimal experiment design criterion, in the framework proposed
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in the mid-eighties and based on the formula (1.5), can be formulated as

min
Φχ0

∫ π

−π
tr[Q(ω)Φχ0(ω)]dω (3.1)

subject to
∫ π
−π Φu(ω)dω ≤ α, or

∫ π
−π Φy(ω)dω ≤ α.

A much studied problem, for example, is when the application dependent signal
is the output of a closed loop system under minimum variance control: the error sig-
nal is then the difference between the output of the closed loop system under exact
minimum variance control and the output of the system controlled by a minimum
variance controller derived from the estimated model; the driving signal w(t) is then
the external reference signal applied to the closed loop system. It was shown in [23]
that, for an ARMAX model structure, the experimental conditions that minimize the
variance of this error signal ∆sN (t) consist of identifying the system in closed loop,
controlled by the ideal minimum variance controller. A remarkable side result showed
that the accuracy of the minimum variance controller estimated from the identified
model is independent of the power of the externally applied excitation signal, even
though the model accuracy does improve by increasing the power of that signal. Ex-
periment design for the minimum variance control application was further developed
in [33, 56] using the novel techniques developed in the last decade, with results based
on finite order covariance formulas.

4. The nineties: the advent of closed loop identification. The result of
[23] on optimal experimental conditions for a minimum variance control application
was the first instance in which closed loop identification was shown to be beneficial
compared to open loop identification. The street consensus up to that point was that
closed loop experimental conditions should be avoided by all means.

Around 1990, the new topic of identification for control emerged. The question
addressed in this research can be summarized as follows. Given that the objective
of the identification is to design a model-based controller, what are the experimental
conditions and the identification criterion that should be used so that the degradation
in control performance due to bias and variance error in the model are as small as
possible? The early work focused on the effect of the identification error and criterion
on the bias error and led to the finding that, when the identification is performed
for the purpose of designing a controller, it should be performed in closed loop with
a controller that should ideally match the to-be-identified controller. This quickly
led to the idea of iterative identification and control design schemes, which flourished
during the early nineties [19, 69, 6, 28, 47, 73].

In the second part of the nineties, attention turned to the design of identification
experiments that minimize some measure of the controller variance or the expected
value of the noise-induced control performance degradation, reaching the similar con-
clusion that closed loop experimental conditions are to be preferred if the identified
model is to be used for control design [35, 17].

The system identification community realized during the nineties that there was
a significant gap between the tools, methods and uncertainty sets developed by the
robust control community and those delivered by the identification community, and
major attemps were made to match these tools and uncertainty sets [19, 14, 54, 29,
24, 8].

The recognition that identification for control should be performed in closed loop
led to a renewed interest in closed loop identification, and a number of new closed loop
identification methods were developed whose purpose was to address and eliminate
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the bias error induced on the estimated input-output model when the noise model is
incorrect [30, 70, 16]. As for the iterative identification and control schemes, they led
to the question as to whether the newly computed controller can safely replace the
existing controller, i.e. can we guarantee closed loop stability, and possibly also closed
loop performance? This led to the introduction of caution in iterative identification
and control design [2].

5. Optimal experiment design in the last decade. The last decade has seen
an intense new activity in experiment design for system identification, with a shift
from the asymptotic variance formulas described in the previous section to the more
accurate formulas based on finite order models and parametrizations. As explained
in the introduction, the recent work has seen an expansion of the set of admissible
criteria and constraints (and in particular the handling of frequency by frequency
criteria and constraints), the solution of both open loop and closed loop experiment
design problems (including the simultaneous optimization of controller and external
excitation), the introduction of the concept of ‘identification cost’ and the solution to
the dual problem of least costly identification, and some preliminary results on robust
experiment design. Optimal experiment design can now handle criteria that are a
function of the estimated parameters or of the estimated transfer functions, such as,
e.g. the optimal design of inputs for the estimation of the zeros of a transfer function
[55, 66]. These new results have been made possible by the important developments
in convex optimization under LMI constraints over the last two decades [59].

5.1. The main ingredients of current experiment design. We shall assume
that the identification data are collected on the ‘true system’ (1.1). During the data
collection, this system may be operating under feedback control with an operating
controller Cid(z):

u(t) = r(t)− Cid(z)y(t) (5.1)

where r(t) is an external excitation signal. The closed-loop system can be written as:

y(t) = G0Sidr(t) + Sidv(t) (5.2)

u(t) = Sidr(t)− CidSidv(t), with Sid , 1/(1 + CidG0). (5.3)

Assuming quasistationary signals and a frequency domain approach, one can distin-
guish between three possible formulations of optimal experiment design problems, of
increasing complexity.

• Open loop design: min
Φu(ω)

J subject to constraints

• Closed-loop design with fixed controller Cid : min
Φr(ω)

J subject to constraints

• Joint design of Cid(z) and Φr(ω): min
Cid(z), Φr(ω)

J subject to constraints

The criterion J can take a range of possible expressions; examples are a quality
criterion such as J = V ar(C(ĜN )) where C(ĜN ) is a model-based controller, or
an energy criterion such as J =

∫ π
−π Φr(ω)dω. The constraints can also cover a

wide range of possibilities such as
∫ π
−π Φu(ω)dω ≤ α, or

∫ π
−π Φy(ω)dω ≤ α, or

|T (ejω)G0(ejω)−G(ejω,θ)
G(ejω,θ) | ≤ α ∀ω where T (ejω) is the complementary sensitivity

function, i.e. a typical robust stability criterion.
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The design variables Cid and Φr in a closed loop design are related to the spectra
Φu and Φue defined earlier through the following one-to-one relationships:

Φu(ω) = λ0|(1 + CidG0)−1CidH0|2 + |1 + CidG0|−2Φr(ω), (5.4)

Φue(ω) = −λ0(1 + CidG0)−1CidH0. (5.5)

As we shall see, it will turn out to be much simpler to perform the optimization with
respect to the design variables Φu and Φue, because the optimization criterion can
often be made affine in these variables. The optimal controller C∗id and the optimal
external excitation spectrum Φ∗r can then be reconstructed from the optimal Φ∗u and
Φ∗ue by inverting the relationships above:

C∗id = −Φ∗ue(λ0H0 +G0Φ∗ue)
−1 (5.6)

Φ∗r = |1 + C∗idG0|2(Φ∗u − λ−1
0 |Φ∗ue|2). (5.7)

The stability of the closed loop system formed from C∗idG0 puts some constraint on
the optimal cross-spectrum Φ∗ue as we shall discuss in Section 7.2.

The connection between the design parameters and the average information ma-
trix is obtained, using Parseval’s theorem, by the following relationship:

M̄θ , P−1
θ =

1

2πλ0

∫ π

−π
F (ejω, θ0) Φχ0

(ω) F ∗(ejω, θ0)dω (5.8)

where

F (z, θ) ,

[
H−1(z, θ)

∂G(z, θ)

∂θ
H−1(z, θ)

∂H(z, θ)

∂θ

]
, (5.9)

Φχ0
(ω) ,

[
Φu(ω) Φue(ω)
Φ∗ue(ω) λ0

]
(5.10)

Observe that M̄θ is affine in the design variables Φu(ω) and Φue(ω). The main strategy
that leads to the new optimal design results of the last decade consist of the following
ingredients:

• Express the design criterion as a linear function of the design variables.
• Express the constraints as an LMI on M̄θ.
• Find a finite dimensional parametrization of the design variables.

The key technical tool for the realization of the first two ingredients is the Schur
complement of a block-partitioned matrix. As for the obtention of a finite dimensional
parametrization, there are essentially two approaches: one is based on approximating
the spectrum Φχ0

(ω) by a finite dimensional parametrization (e.g. by restricting it
to be generated by a Finite Impulse Response (FIR) filter driven by white noise; the
other is by using the so-called partial correlation approach, based on Tchebycheff
moment theory introduced into experiment design theory by Zarrop [74]. In the next
few subsections, we shall briefly explain or illustrate these key technical devices.

5.2. Converting to an affine criterion. An important contribution of the
recent work on experiment design has been to show that many practically useful design
criteria can be rewritten, after some manipulations involving the Schur complement
of a partitioned matrix, as a convex criterion subject to LMI constraints [13, 49, 37].
We illustrate this procedure with a simple example.

10



Consider an open loop optimal experiment design problem in which the criterion
is the largest eigenvalue of the covariance matrix Pθ:

min
Φu(ω)

λmax(Pθ)

This can be rewritten as

min
Φu(ω)

γ subject to λmax(Pθ) ≤ γ

Using the Schur complement, this can be rewritten as:

min
Φu(ω)

γ subject to[
γI I
I P−1

θ

]
� 0

The important outcome of this technical trick is that the initial criterion, which was
non convex as a function of the design parameters, has been transformed into a convex
criterion, since P−1

θ is affine in Φu, whereas Pθ is not.

5.3. Convex representation of the quality constraints. Similar efforts were
developed to show that a wide range of useful quality constraints can also be trans-
formed into LMI’s in which the design variables appear in an affine way. The following
example, taken from [41], illustrates the tools that make this possible. In identification
for robust control, an important quantity of interest is

∆(ejω, θ̂N ) , T (ejω, θ̂N )
G0(ejω)−G(θ̂N )

G(θ̂N )
(5.11)

where T (ejω, θ̂N ) is the complementary sensitivity obtained from the estimated model

G(θ̂N ), since||∆(θ̂N )||∞ < 1 is a robust stability condition. One way to approximate

this constraint is to impose an upper bound b(ω) on the variance of ∆(θ̂N ) which,
using a Taylor series expansion can be approximated by

V ar(∆(ejω, θ̂N )) ≈
∣∣∣∣ TG0

∣∣∣∣2 1

N

∂G(e−jω, θ0)

∂θ
Pθ
∂G(ejω, θ0)

∂θ
(5.12)

Imposing a bound b(ω) on V ar(∆(ejω, θ̂N )) is equivalent with imposing the following
weighted trace constraint on Pθ:

tr{W (ω)Pθ} ≤ 1 ∀ω (5.13)

where

W (ω) ,
1

Nb(ω)

∣∣∣∣ T (ejω)

G0(ejω)

∣∣∣∣2 ∂G(ejω, θ0)

∂θ

∂G(e−jω, θ0)

∂θ

Since W (ω) is Hermitian, it admits a factorization W (ω) = V (ejω)V (e−jω) where
V (ejω) ∈ Cp×d with p , supω rank(W (ω)). The constraint tr{W (ω)Pθ} ≤ 1 ∀ω is
then equivalent with

tr{Z} ≤ 1 and Z − V (e−jω)PθV (ejω) � 0

11



Using the Schur complement again shows that the latter is equivalent with

tr{Z} ≤ 1 and Γ(ω) ,

[
Z V (e−jω)

V (ejω) P−1
θ

]
� 0 ∀ω. (5.14)

Thus, the frequency by frequency constraint |∆(ejω, θ̂N )| < 1 ∀ω has been converted
into a constraint that is convex in P−1

θ .
One problem is that (5.14) represents an infinite set of constraints, since it needs

to hold for every frequency. However, when the weighting matrix W (ω) is a finite
dimensional spectrum, then V (ejω) can be taken as a minimum phase stable ratio-
nal factor of W (ω) which can be represented by a controllable state-space realiza-
tion {AV , BV , CV , DV }, i.e. V (z) = CV (zI − AV )−1BV + DV . Using the Kalman
Yakubovich Popov (KYP) Lemma [72, 1], the infinite set of constraints can then be
replaced by a finite set. It can indeed be shown [40] that the constraint on Γ(ω) in
(5.14) holds for all ω if and only if there exists a real symmetric matrix Q such that[

Q−ATQA −ATQB
−BTQA −BTQB

]
+

[
0 CT

C D +DT

]
� 0 (5.15)

where {A,B,C,D} are constructed from {AV , BV , CV , DV }, Z and Pθ as follows:

A = AV , B = [ 0 BV ] , C =

[
CV
0

]
, D +DT =

[
Z DV

DT
V P−1

θ

]
We have illustrated how many experiment design criteria and constraints can be
reformulated as convex criteria and constraints in which the design parameters appear
linearly: Φu(ω) in the case of open loop design, or Φχ0

(ω) in the case of closed loop
design. We have also shown how the set of admissible design variables are equivalent
to the satisfaction of a LMI, possibly involving auxiliary variables such as γ in the
example of Section 5.2 or Z in the example of Section 5.3. However, these design
variables still have infinite dimension. The next step is to show how these can be
replaced by a finite set of design variables.

6. Finite dimensional parametrization of criterion and constraints. Two
basic approaches to the choice of the design variables can be distinguished.

One is the finite dimensional spectrum parametrization (see e.g. [37, 50, 41]).
Here the spectrum is developed into an infinite series of basis functions and the de-
sign variables are given by the coefficients of a truncated version of this infinite series.
If the basis functions are rational, by the KYP lemma the positivity of the spectrum
is expressed by an LMI in the truncated coefficient vector. Every coefficient vector
satisfying this LMI corresponds to a valid spectrum, but not every spectrum corre-
sponds to a coefficient vector, because all coefficients in the series after the cut-off
are supposed to be zero. Therefore the feasible set of the LMI approximates the fea-
sible set of the original problem from the inside, i.e., the former is contained in the
latter. Speaking in the terminology of optimization, the finite dimensional spectrum
parametrization leads to an inner semi-definite relaxation of the original input design
problem. This has the advantage that the optimal solution of the relaxation yields
a realizable input design. However, this approach considers only a finite-dimensional
subspace cut out of the infinite-dimensional variety of possibly useful spectra. This
results in a performance loss, as the optimisation procedure returns only suboptimal
solutions. For simple systems this loss can be compensated by considering a long
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truncated coefficient sequence, but in practice the gap is significant and optimisation
over large enough numbers of coefficients is computationally prohibitive.

The other approach is the partial correlation approach (see e.g. [31, 37]), which is
in some sense dual to the finite dimensional spectrum parametrization. Namely, an
infinite sequence of linear functionals on the space of spectra is considered, and the
design variables are the values of a finite number of these functionals on the spectrum
in question. These values are called (generalized) moments [42, 46] of the spectrum.
The linear functionals are chosen in such a way that both the constraints and the cost
function depend only on a finite number of these moments. Geometrically, the optimi-
sation is performed over a finite-dimensional projection of the infinite-dimensional cone
of possible spectra, as opposed to a finite-dimensional section in the finite dimensional
spectrum parametrization approach. Each point in the finite-dimensional truncated
moment space thus still corresponds to an infinite set of spectra rather than a single
spectrum, and the points of the finite-dimensional moment cone exhaust all possible
spectra. Thus the partial correlation approach does not suffer from the performance
loss characteristic of the finite dimensional spectrum parametrization approach.

6.1. Finite dimensional spectrum parametrization. The simplicity of this
method is that it is the spectrum itself that is expressed as a finite set of real param-
eters. Since we have shown how a large set of criteria and constraints can be written
as affine functions of the spectrum, the remainder of the procedure reduces to the so-
lution of a convex optimization problem with LMI constraints in which this finite set
of parameters, as well as other auxiliary variables, appear linearly. The drawback is
that only a suboptimal solution is obtained since the finite truncation of the spectrum
limits the search space of admissible solutions.

Consider that a closed loop optimization is performed with respect to the spectral
matrix Φχ0

(ω) defined above. This matrix can always be expressed as

Φχ0
(ω) =

∞∑
k=−∞

C̃kBk(ejω) (6.1)

where Bk are scalar proper stable rational basis functions with B−k(ejω) = Bk(e−jω),
C̃k = C̃T−k are real matrix coefficients that must satisfy Φχ0

(ω) � 0 ∀ω. A standard

choice for the basis functions is Bk(ejω) = e−jkω. A finite dimensional parametriza-
tion is then obtained by replacing the spectrum Φχ0(ω) in (6.1) by the following
approximation:

Φχ0
(ω) = Ψ(ejω) + Ψ∗(ejω) (6.2)

where Ψ(ejω) is a finite dimensional approximation of the positive real part of Φχ0
(ω),

and Ψ∗(ejω) , ΨT (e−jω):

Ψ(ejω) =

M−1∑
k=0

CkBk(ejω) (6.3)

where Ck = CT−k andM is chosen large enough. A constraint on the matrix coefficients
Ck must then be imposed to ensure the positivity of Φχ0

(ω) defined in (6.2). This
can be achieved using the Positive Real Lemma, based on the KYP Lemma [72]. The
procedure is to let Ψ(ejω) be parametrized via a controllable state space realization
{A,B,C,D}, where the coefficients Ck appear linearly in C and D while A and B
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contain only zeros and ones: see e.g. [37] for details. The quantity Φχ0
(ω) defined

by (6.2) is then positive semidefinite for all ω if and only if there exists a symmetrix
matrix Q such that condition (5.15) holds.

A special case of this finite dimensional parametrization method is when the
standard basis functions Bk(ejω) = ejω are chosen, in which case the coefficients Ck
are the autocorrelation coefficients of the output of a white noise driven Finite Impulse
Response (FIR) filter. In this case, the constraint (5.15) is expressed directly as an
LMI on Q and on these correlation coefficients [40].

The main drawback of the finite dimensional parametrization method are that it
delivers a suboptimal solution. The accuracy grows with the number of coefficients
M taken in the finite dimensional approximation, but a large M may lead to com-
putational complexity problems. The main advantage of this method is that it can
handle frequency by frequency constraints, which cannot be handled by the partial
correlation parametrization method to be studied next.

6.2. Partial correlation parametrization. The key feature of the partial cor-
relation parametrization approach is that the criterion and the constraints of the op-
timal experiment design problem can be expressed as a linear function and as an LMI,
respectively, of a finite set of so-called generalized moments or Tchebycheff moments
{m0,m1, . . . ,mn} of the design spectrum Φχ0(ω) and, possibly, an additional finite
set of auxiliary variables {x1, x2, . . . , xN}. These generalized moments are defined as
the following 2× 2 matrices:

mk =
1

2π

∫ +π

−π

1

|d(ejω)|2
Φχ0

(ω)ejkω dω, k ∈ N, (6.4)

where d(z) =
∑m
l=0 dlz

l is a polynomial of degree m with m ≥ 0 that is selected in
such a way as to give to the criterion and the constraints the properties just described.
The coefficients dl of d(z) are real, they obey d0 6= 0, dm 6= 0, and d(z) has all roots
outside of the closed unit disk. The matrices mk defined by (6.4) are called the
generalized moments of the spectrum Φχ0

. Note that the moments mk are real, obey
the relation mk = mT

−k and they are linear functions of Φχ0
(ω).

It is thus assumed that, by proper choice of d(z), the experiment design criterion
can be expressed as a linear function

J(m0, . . . ,mn, x1, . . . , xN ) =

n∑
k=0

〈Ck,mk〉+

N∑
l=1

clxl, (6.5)

where x1, x2, . . . , xN are the auxiliary variables mentioned above, Ck are known matri-
ces that depend on the particular problem, cl are known reals that are also dependent
on the particular problem, and 〈A,B〉 = trace(ABT ), and that the constraints can
be expressed as an LMI

A(m0,m1, . . . ,mn, x1, . . . , xN ) � 0 (6.6)

in the same variables. The condition (6.5) is representative of a wide variety of problem
formulations in open and closed-loop optimal experiment design; see e.g. [49, 37, 36].
In particular, all classical designs (D-optimal, A-optimal, L-optimal etc.) fall within
this framework. As for condition (6.6) on the constraints, it is representative of all
L2-type constraints such as constraints on the possibly frequency weighted total input
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or output power. However, as far as we know it cannot handle frequency by frequency
constraints.

To illustrate the choice of the polynomial d(z), consider an open loop design with
the criterion minΦu det(M̄θ) with an ARX model structure A(z)y(t) = B(z)u(t)+e(t).
The average information matrix M̄θ, defined in (2.1), takes the form

M̄θ =
1

2π

∫ π

−π

Φu
λ0|A|2



−z−1B(z)
...

−z−naB(z)
z−1A(z)

...
z−nbA(z)





−z−1B(z)
...

−z−naB(z)
z−1A(z)

...
z−nbA(z)



∗

+
1

2π

π∫
−π

1

|A|2



−z−1

...
−z−na

0
...
0





−z−1

...
−z−na

0
...
0



∗

dω

=
1

2π

∫ π

−π

Φu
λ0|A|2

dωM̃0 +
n∑
k=1

(
1

2π

∫ π

−π

Φu
λ0|A|2

ejkω dω
M̃k + M̃T

k

2

)
+ M̃

It is easy to see that M̄θ can be written as

M̄θ = m0L0 +

n∑
k=1

mkLk + L

with the moments defined by (6.4), provided the polynomial d(z) is chosen as d(z) =
A(z−1); here n = na+nb−1 and the Lk depend on the coefficients of A(z) and B(z).

Now a typical experiment design problem, known as the weighted trace design
problem, is

min
Φ
tr{PθW} (6.7)

where Φ is either Φu(ω) in open loop or Φχ0
(ω) in closed loop, Pθ is the asymptotic per

sample covariance matrix, and W is a positive semi-definite (PSD) weighting matrix,
typically the Hessian of the identification criterion. Such criterion has been studied
e.g. in [49, 37]. Using the Schur complement, the optimal design problem (6.7) can
be transformed into minΦ trX, subject to

[
X W 1/2

W 1/2 M̄θ

]
� 0. (6.8)

Thus, the criterion (6.7) can be re-expressed in the form of Assumption 6.5, where f0

takes the simple form f0 =
∑l
k=1 xkk where l is the size of X.

Since the criterion is now expressed as a function of the finite set of moments
{m0,m1, . . . ,mn}, the optimization can be performed with respect to these moments,
subject to the constraints imposed by the optimal design problem. To these con-
straints one must, however, add a realizability constraint given by the Carathéodory-
Fejer theorem [43]. This theorem implies that the sequence {m0,m1, . . . ,mn} can
be extended to an infinite sequence {mn+1,mn+2, . . .} that defines a positive power
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spectrum if and only if the following LMI condition holds:

Tn =


m0 mT

1

. . . mT
n−1 mT

n

m1 m0
. . . mT

n−2 mT
n−1

. . .
. . .

. . .

mn mn−1
. . . m1 m0

 � 0 (6.9)

The partial correlation approach to optimal experiment design has been introduced
by Zarrop [74] for the solution of open loop optimal design problems in which the
optimization is with respect to the input spectrum Φu(ω) only. Many years later, in
[31], this same approach allowed the solution of an open loop optimal design for a

robust control problem, where the criterion is the worst-case ν-gap δWC(G(θ̂N ),D)
between the estimated model and all models in an uncertainty set D. The ν-gap
δν(G1, G2) beween two transfer functions G1(z) and G2(z) is a measure of distance
between these two transfer functions, introduced by Vinnicombe [71], which allows
one to evaluate the stability margin of a [G2, C] loop as a function of the stability
margin of the [G1, C] loop and the distance δν(G1, G2) between G1 and G2. The

worst-case ν-gap δWC(G(θ̂N ),D) is the supremum of the distance δν(G(θ̂N ), G(θ))

between G(θ̂N ) and any member G(θ) ∈ D.
In both cases, constraint (6.9) imposed by the Carathéodory-Fejer theorem on

the optimal set of moments {m0,m1, . . . ,mn} is all that is needed to guarantee the
realizability of the solution. However, in the case of a closed loop design, the 2 × 2
moments mk are related to the joint spectrum Φχ0

(ω) through (6.4) and this spectrum
need not just be positive semi-definite. Indeed, there are constraints imposed on all
but the (1, 1) elements of Φχ0(ω) (e.g. stability constraints on the (1, 2) and (2, 1)
elements) and, therefore, the same holds for the moments mk. This difficulty has
prevented the application of the partial correlation method for closed loop experiment
design, until a solution was obtained by Hildebrand, Gevers and Solari [32], which
we shall briefly explain in Section 7.2. A suboptimal solution based on the finite
dimensional spectrum parametrization approach was presented by Hjalmarsson and
Jansson [36]: stability of the closed loop is enforced by the use of a Youla parameter
which is approximated by a finite parametrization. In the next section we present these
two solutions to the closed loop experiment design problem, where the optimization
is with respect to both the controller and the external reference.

7. Optimal joint closed-loop experiment design. In this section we present
some recent solutions to the closed loop optimal design problem where the optimiza-
tion is performed with respect to both the controller Cid(z) that is present during the
data collection, and the spectrum Φr(ω) of the external signal excitation. For reasons
explained in Section 5.1, these design variables are replaced by the equivalent design
variables Φu(ω) and Φue(ω). Thus the design problem treated in this section is

min
Φu(ω), Φue(ω)

J (7.1)

7.1. Solution using the finite dimensional spectrum parametrization.
The difficulty in the closed loop design, as explained in Section 6.2, is that the spec-
trum Φχ0

(ω) defined in (5.10) is constrained, as shown by the fact that the (2, 2)
element is a constant and that Φue(ω) must be realizable as in (5.5), which imposes a
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stability constraint. A solution to this problem using the finite dimensional spectrum
parametrization approach has been proposed in [36] where a Youla parameter is used
to parametrize the set of stabilizing controllers Cid(z), with the property that the
closed loop quantity Φue is affine in this Youla parameter. A finite parametrization
is then chosen to approximate both Φu(ω) and this Youla parameter, and hence the
whole spectrum Φχ0

(ω). The procedure can be briefly summarized as follows.

Let us denote G(z, θ0) and H(z, θ0) in (1.1) by G0 and H0 for simplicity, and let
us assume that any unstable poles of H0 are also poles of G0. Let us then factorize
G0 as G0 = N

M , where N and M are proper stable real rational transfer functions,
i.e. they are in RH∞. Then there exists a uniquely defined pair of transfer functions
U, V ∈ RH∞ such that the Bezout identity UN + VM = 1 holds. The set of all
controllers Cid that stabilize G0 is then defined by Cid = U+QM

V−QN , where Q ∈ RH∞ is

a free parameter called the Youla parameter. The set of all spectra Φχ0
(ω) that can

be generated from the system (1.1) with an internally stabilizing controller Cid(z) is
given by

Φχ0
=

(
Φu −λ0H0M(U +MQ)

−λ0H
∗
0M

∗(U +MQ)∗ λ0

)

where Φu(ω) and Q are free variables subject to the constraints Q ∈ RH∞ and
Φχ0

(ω) � 0.

The asymptotic average information matrix M̄ , related to Φχ0(ω) via (5.8), is
now affine in the design variables Φu(ω) and Q; however, these are infinite dimen-
sional quantities. It then remains to select a finite dimensional parametrization for
the spectrum Φu(ω) and the rational transfer function Q, using the procedures de-
scribed in Section 6.1 and to perform the optimization with respect to this finite set
of parameters, yielding an approximate solution to the closed loop experiment design
problem.

7.2. Solution using the partial correlation parametrization. In Section 6.2
we have explained that the difficulty in the application of the partial correlation
parametrization approach to the closed loop experiment design problem is that the
Carathéodory-Fejer theorem, which provides necessary and sufficient conditions for
the extension of a finite moment sequence {m0, . . . ,mn} to an infinite sequence, has
been proved only under the assumption that there are no constraints on these ex-
tended moments. In the case of closed loop identification, the definition of the {mk}
through (6.4) together with the expression (5.10) for Φχ0

(ω) and (5.5) for Φue(ω) im-
plies that the (1, 2), (2, 1) and (2, 2) elements of all moments mk must be constrained
for them to be feasible, i.e. for them to be the moments of a spectrum Φχ0

(ω) that
results from the closed loop system defined by (1.1) and (5.1). We now detail these
constraints.

Let T ⊂ C be the unit circle and let us define the function fue : T ⊂ C as
fue(e

jω) , Φue(ω). The stability of the transfer function (1+CidG0)−1CidH0 relating
e to u in (5.5) requires that fue be holomorphic outside the unit disk. The defining
relationship

mk,21 =
1

2π

∫ +π

−π

Φue(−ω)

d(ejω)d(e−jω)
ejkω dω.
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then implies

m∑
l=0

dlmk−l,21 =
1

2πj

∫
T

fue(z
−1)

d(z)
zk−1 dz ∀k > 0.

Since all zeros of d(z) are outside the closed unit disc, the ratio fue(z
−1)/d(z) is also

holomorphic inside the unit disc, which implies the following constraint on the (2, 1)
elements of the {mk}:

m∑
l=0

dlmk−l,21 = 0 ∀k > 0. (7.2)

In a similar manner it follows that

mk,22 =
1

2π

∫ +π

−π

λ0

|d(ejω)|2
ejkω dω, and hence

m∑
l=0

dlmk−l,22 = 0 ∀k > 0. (7.3)

It thus follows that if Φχ0
(ω) is a positive semidefinite spectrum defined by (5.4), (5.5)

and (5.10), and if the {mk} are the generalized moments of Φχ0
(ω) defined by (6.4),

then the constraints (7.2) and (7.3) must also hold. In addition the block-Toeplitz
matrix Tn defined by (6.9) must be positive semidefinite since Φχ0(ω) is a spectrum.

We have shown in [32] that the converse holds as well. More precisely, if the 2×2
matrices m0,m1, . . . ,mn satisfy m0 = mT

0 and if they obey the constraints (7.2), (7.3)
and (6.9) together with m−k = mT

k for all k = 1, . . . , n, then this finite sequence is
extendable to an infinite sequence of moments {mn′} for n′ = n, n + 1, . . ., which
satisfy the the same constraints for all n′. The relation (6.4) then defines a spectrum
Φχ0(ω), via the M. Riesz extension theorem [62], that satisfies the constraints imposed
by (5.4), (5.5) and (5.10). The proof of this result is too lengthy for this survey paper;
it can be found in [32].

This result allows one to reformulate the optimal experiment design problem
(6.5)-(6.6) into the following semi-definite program.

min

(
n∑
k=0

〈Ck,mk〉+

N∑
l=1

clxl

)
(7.4)

with respect to the set of constraints

A(m0,m1, . . . ,mn, x1, x2, . . . , xN ) � 0,

mk,22 =
1

2π

∫ +π

−π

λ0

|d(ejω)|2
ejkω dω, k = −n, . . . , n,

m∑
l=0

dlmk−l,21 = 0, k = 1, . . . , n,


m0 mT

1

. . . mT
n−1 mT

n

m1 m0
. . . mT

n−2 mT
n−1

. . .
. . .

. . .

mn mn−1
. . . m1 m0

 � 0,
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where m−k = mT
k . By solving this semi-definite program, the user obtains the op-

timal truncated moment sequence (m0, . . . ,mn) and the optimal value of the cost
function. In order to perform the identification experiment, the spectrum Φr(ω) and
the controller Cid(z) must now be computed from the optimal moment matrices mk.
A solution to this recovery step, which is by no means a trivial problem, can also be
found in [32].

8. Least costly experiment design. Traditionally, experiment design criteria
have always been formulated as the minimization of a function of the covariance of
the estimated quantities subject to constraints on the excitation signals, whether it
be frequency by frequency constraints or total energy constraints. One of the new
contributions of the last decade is to consider a dual to that problem: it consists
of minimizing some measure of the identification cost subject to constraints on the
achieved quality of the estimated quantity. The identification cost can be measured
in many different ways, including the energy of the excitation signal, but it can also
be the time required for the identification (i.e. the data length) or a measure of the
performance degradation of the system induced by the application of the excitation
signal required for the identification. In this section we present some of the key ideas
and results of this dual approach to experiment design.

This dual approach to experiment design was first proposed in [12] in the context
of identification for robust control; the proposed solution to the problem was based
on Ljung’s high model order variance formulas for estimated transfer functions pre-
sented in Section 3. A solution based on the finite order covariance formulas followed
quickly thereafter [10, 11]. The experiment design problem solved in these papers is
in the context of identification for robust control where the control objective is one
of disturbance rejection. The data are collected in closed loop with a fixed controller
Cid(z). The optimization is thus performed with respect to the spectrum Φr(ω) of the
external excitation only, and the design objective is to minimize the cost of the identi-
fication subject to the requirement that some model uncertainty measure is within the
bounds set by some robust control specifications. The cost of the identification can be
the data length N , or the performance degradation induced by the added excitation
signal r, or a combination of both. We briefly explain the main ideas and concepts of
this dual approach.

Consider that the ‘true’ system (1.1) is controlled by an existing controller Cid
as in (5.1) which is not considered satisfactory. The objective is to identify a model

G(ejω, θ̂N ), H(ejω, θ̂N ) of the plant in order to design a better (i.e. satisfactory)
controller Ĉ(z) that will achieve some robust control specification. In [11] a prediction
error uncertainty set was defined for the set of transfer functions:

D(θ̂N , Pθ) =
{
G(z, θ) | (θ − θ̂N )TP−1

θ (θ − θ̂N ) < χ
}

(8.1)

The constant χ is chosen such that the true plant G(z, θ0) belongs to D(θ̂N , Pθ) with
any desired probability level β (see [8]). The robust control design criterion adopted
in [11] is of the form

J(G(z, θ), C(G(z, θ̂N )),W (z)) ≤ γ < 1 ∀G(z, θ) ∈ D(θ̂N , Pθ), (8.2)

where γ is a fixed scalar, C(G(z, θ̂N )) is the controller defined from G(z, θ̂N ) through
some model-based design method, W (z) is a frequency weighting filter, and J is an
H∞ measure, e.g. J(G,C,W ) = ‖ W

(1+CG)‖∞. Many other criteria can of course be
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adopted and have actually been adopted in the context of this dual experiment design
method since then.

The experiment design variables are the data length N and the spectrum Φr(ω)of
the external exciation, and the constraint on these design variables is that the quality
criterion (8.2) must hold for all models in the uncertainty set D(θ̂N , Pθ) resulting from
the identification. Observe that this is a real robust control constraint that directly
relates the identification experiment with the quality required of the set of ‘estimated’
controllers resulting from the identification.

We now turn to the identification cost. In a disturbance rejection control problem,
the input and output signals in normal operation are given by u(t) = −CidSidv(t)
and y(t) = Sidv(t), respectively, where Sid = 1

1+CidG0
: see (1.1) and (5.1). When an

external signal r(t) is added for the purpose of closed loop identification, these signals
are perturbed as follows:

y(t) = Sidv(t) +

yr(t)︷ ︸︸ ︷
G0Sidr(t) (8.3)

u(t) = −CidSidv(t) + Sidr(t)︸ ︷︷ ︸
ur(t)

(8.4)

This entails a performance degradation during the data collection. The power of this
degradation could, e.g., be measured by

Jr = αy

(
1

2π

∫ π

−π
Φyr dω

)
+ αu

(
1

2π

∫ π

−π
Φur dω

)
(8.5)

=
1

2π

∫ π

−π

(
αy|G0(ejω)Sid(e

jω)|2 + αu|Sid(ejω)|2
)

Φr(ω) dω

It is well known that in closed loop identification the covariance of the estimated
parameters can be made arbitrarily small, even without external excitation, provided
the controller is sufficiently complex, even though this may require very long data sets.
This requires that the average per sample information matrix M̄θ be nonsingular.
Necessary and sufficient conditions for this to happen have been given in [21]. As a
result, the performance degradation due to the external excitation can possibly be
avoided if the cost due to the experiment time is negligible. Alternatively, if the cost
of the experiment time is high, one can fix the experiment time and compute the
experiment that minimizes the power Jr of the degradation subject to satisfaction of
a required level for the control performance cost. In [11] optimal experiment designs
have been computed for these two scenarios as well as for a combination of them.

The concept of this dual approach to experiment design has quickly been adopted,
and optimal design solutions have been proposed for a large number of constraints
and criteria in this dual framework [37, 41, 40, 5, 4] and others. Finally, the direct
and dual approach to optimal experiment design are of course closely related. The
equivalence between these two approaches have been precisely established in [64].

9. Conclusions. We have reviewed the development of experiment design for
system identification over the last four decades. The foundational tools of experiment
design originate from the statistics community. Their introduction into the framework
of the identification of dynamical systems was the work of a very limited number of
pioneers in the seventies. For some reason, and with the exception of some results
based on Ljung’s asymptotic formulas for the variance of estimated transfer functions,
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the progress in experiment design essentially came to a halt for almost two decades.
It was revived in the last decade, and has now become a flourishing activity, for
essentially two reasons: the availability of a range of new tools in convex optimization
under LMI constraints, and the development of identification for robust control as
a major area of research and applications. Identification is now viewed as a goal-
oriented design problem in which the experimental conditions under which the data are
collected has become an essential part of the design. The recent work on experiment
design is opening new research questions that will undoubtedly influence the research
agenda in the future, such as the cost of the identification and its connection to the
model complexity, as well as the connection between the application and the required
model complexity.
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[64] C. Rojas, J. Agüero, J. Welsh, and G. Goodwin, On the equivalence of least costly and
traditional experiment design for control, Automatica, 44 (2008), pp. 2706–2715.

[65] C. Rojas, M. Barenthin, J. Welsh, and H. Hjalmarsson, The cost of complexity in iden-
tification of FIR systems, in CD-ROM Proc. 17th IFAC World Congress, Seoul, Korea,
2008, pp. 11451–11456.

[66] C. Rojas, H. Hjalmarsson, L. Gerencser, and J. M. rtensson, An adaptive method for
consistent estimation of real-valued non-minimum phase zeros in stable lti systems, Auto-
matica, to appear, 47 (2011).

[67] C. Rojas, H. Hjalmarsson, and R. Hildebrand, MIMO experiment design based on asymp-
totic model order theory, in CD-ROM Proc. 48th IEEE Conf. on Decision and Control and
28th Chinese Control Conference, Shanghai, P.R. China, 2009, pp. 488–493.

[68] C. Rojas, J. Welsh, G. Goodwin, and A. Feuer, Robust optimal experiment design for
system identification, Automatica, 43 (2007), pp. 993–1008.

[69] R. J. P. Schrama, Accurate identification for control: The necessity of an iterative scheme,
IEEE Trans. on Automatic Control, 37 (1992), pp. 991–994.

[70] P. M. J. Van den Hof and R. J. P. Schrama, An indirect method for transfer function
estimation from closed loop data, Automatica, 29 (1993), pp. 1523–1527.

[71] G. Vinnicombe, Frequency domain uncertainty and the graph topology, IEEE Trans Automatic
Control, AC-38 (1993), pp. 1371–1383.

[72] V. A. Yakubovich, Solution of certain matrix inequalities occuring in the theory of automatic
control, Docl. Acad. Nauk. SSSR, (1962), pp. 1304–1307.

23



[73] Z. Zang, R. R. Bitmead, and M. Gevers, Iterative weighted least-squares identification and
weighted LQG control design, Automatica, 31 (1995), pp. 1577–1594.

[74] M. Zarrop, Optimal experiment design for dynamic system identification, Lecture Notes in
Control and Information Sciences, Vol. 21, Springer Verlag, Berlin, New York, 1979.

24


