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1. INTRODUCTION

Experiment design is a key component of system iden-
tification: important improvements in the quality of the
estimates or, alternatively, important reductions in ex-
periment time can be obtained by a clever choice of the
excitation signals applied for the estimation of parametric
models. In system identification, experiment design has its
roots in the 1970’s with pioneering work from Goodwin
and Payne [1977], Zarrop [1979], Mehra [1974] and others.
That work dealt with the optimization, with respect to the
input signal, of a quality measure of the covariance of the
parameter estimates.

In the 1980’s the objective of the experiment design
changed from a quality measure on the estimated parame-
ters to a quality measure on an application oriented mea-
sure of the transfer function estimate. A number of optimal
design results were obtained in Yuan and Ljung [1985] for
open loop identification and in Gevers and Ljung [1986] for
closed loop identification. This was made possible by new
approximate frequency domain formulas for the bias and
variance of transfer function estimates derived by Ljung
in the mid-eighties under the assumption that the model
order tends to infinity: see Ljung [1999]. The work of Yuan
and Ljung [1985] considered the situation of reduced order
models.

Optimal experiment design has seen a major revival in
the last decade, with three major advances: (i) a return
to the covariance formulas that do not assume that the
model order goes to infinity; (ii) a significant expansion
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of the cost criteria that can be handled; (iii) the adoption
of the dual concept where the optimal experiment is one
that minimizes the cost of the identification experiment
subject to achieving a prescribed quality constraint: see
e.g. Jansson [2004], Bombois et al. [2006], Hjalmarsson
[2009] and many others.

As far as we know, all of the work on optimal experiment
design for finite order models makes the assumption that
the system is in the model set, i.e. that there are no bias
errors. The optimal criteria are therefore a function of
the asymptotic covariance of the estimated quantity. The
treatment of the case where the system is not in the model
set is much harder to solve.

In this paper we present a first attempt at solving the
problem with a reduced order model, by considering the
simple case where the true system is a linear regression
system with n parameters, and where the model contains
only a subset m of these n parameters with m < n.
The quality criterion is the Mean Square Error between
a linear measure of all parameters and the same measure
involving only the subset of m estimated parameters. The
optimal experiment design problem consists of finding the
regression signal with the smallest energy subject to this
quality criterion being below some prescribed bound. We
show that the optimal solution does not depend on the
estimated parameter vector, but that it depends on the
unmodeled parameter vector, say θ2. We then provide
an optimal solution that satisfies the required quality
constraint for all θ2 vectors whose norm is below some
bound. The optimal solution is such that the smaller the
prior uncertainty on θ2, the smaller the energy that is
required of the regression signal.

In Section 2 we set up the Least Squares linear regression
problem with a reduced order model and we propose an
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“applications oriented” quality measure. The MSE input
design problem is formulated precisely in Section 3 and
its solution is presented in Section 4, including for the
case where a structure is imposed on the covariance of
the regression signal. Several examples are presented in
Section 5 which, we believe, provide a lot of intuition into
the optimal solution. Section 6 is a brief conclusion. The
proofs of all results are presented in the Appendix.

2. PRELIMINARIES

Consider a linear regression system described by

y0(t) = ϕT (t)θ0 + ν(t) (1)

where y(t) ∈ R is the system output, ϕ(t) ∈ R
n is the

input vector, ν(t) ∈ R is a zero mean white-noise sequence
with variance σ2 and θ0 ∈ R

n is the vector of parameters.

We would like to estimate a low-order model for the
process (1). The model has the following structure:

y(t, θ) = ϕT
1 (t)θ (2)

where θ ∈ R
m(m < n) is the vector of parameters that we

want to estimate. Notice that the model comprises only
the m first elements of θ0 and ϕ(t), so the model is a low-
order approximation of the system. Let us assume that the
input and the parameter vector have the structure

ϕT (t) =
[

ϕT
1 (t) ϕT

2 (t)
]T

, θT0 =
[

θT1 θT2
]T

.

Assume that N samples are collected from the system.
This setup can be described in a compact form as

Y = Φθ0 + V, (3)

where

Y = [ y0(1) · · · y0(N) ]
T
, V = [ ν(1) · · · ν(N) ]

T
,

ΦT
1 = [ ϕ1(1) · · · ϕ1(N) ] , ΦT

2 = [ ϕ2(1) · · · ϕ2(N) ] ,

R =

[

R11 R12

∗ R22

]

= ΦTΦ =

[

ΦT
1 Φ1 ΦT

1 Φ2

∗ ΦT
2 Φ2

]

, Φ = [ Φ1 Φ2 ] .

The least-squares technique can be used to obtain an
estimate of θ based on the N samples collected from the
system. The estimate is given by

θ̂ =
(

ΦT
1 Φ1

)+
ΦT

1 Y (4)

where A+ is the Moore-Penrose pseudo-inverse of A [Horn
and Johnson, 1999]. The pseudo-inverse is used here be-
cause in some applications the matrix ΦT

1 Φ1 is not full

rank. The estimate θ̂ is optimal in the sense that it

minimizes the quadratic criterion
∑N

t=1
(y0(t) − y(t, θ))2.

However, notice that θ̂ is a biased estimate of θ1.

One of the simplest quantities used to evaluate the quality

of θ̂ is the linear composition of the parameters:

J(θ̂) = ΛT
1 θ̂

where Λ1 ∈ R
m is chosen according to the purpose of the

model. For example, if the model is an FIR and Λ1 is a

vector of ones, then J(θ̂) is the DC-gain of the model. We
can define a similar quantity for the process

J(θ0) = ΛT
1 θ1 + ΛT

2 θ2.

where Λ2 ∈ R
n−m; this quantity takes into account both

θ1 and θ2.

In this work we propose the Mean-Square Error as a
measure to evaluate the quality of the estimated model.
The measure is defined as

MSE(θ̂) =E

[

(

J(θ̂)− J(θ0)
)2

]

. (5)

Notice that the criterion considers both bias and variance
errors. When (5) is evaluated using (4) we get

MSE(θ̂) =
∥

∥ΛT
1 R+

11 (R11θ1 +R12θ2)− ΛT
1 θ1 + ΛT

2 θ2
∥

∥

2

+ σ2ΛT
1 R+

11Λ1. (6)

We can see that the measure MSE(θ̂) depends strongly
on the input signal. A natural way to reduce the value

MSE(θ̂) and, therefore, to improve the quality of the
model, is to choose properly the input vector ϕ(t). The
next section covers the design of the input signal.

3. THE MSE INPUT DESIGN PROBLEM

In this section, we propose a method to design ϕ(t) which
ensures that the quality measure is smaller than a specified
value γ.

It is worth noticing that there is a trade-off between the
quality measure and “energy” of the signal ϕ(t). If a
signal with more “energy” is used, it is possible to achieve
a lower value of γ. In this work, we are interested in
finding the signal with smallest “energy” which ensures

that MSE(θ̂) ≤ γ. The energy of the signal will be
measured by the trace of R, i.e. trace of ΦTΦ.

The design of the input signal can be described by the
following optimization problem

min
R

trR (7)

s. t. MSE(θ̂) ≤ γ. (8)

In order to ensure that we can construct a signal ϕ(t) from
R we need to add one more constraint to the problem:

R ≥ 0. (9)

Note that in (6) the quality measure MSE(θ̂) depends
on θ1 and θ2, which are assumed to be unknown to the
designer. In principle, one can only compute the optimal
input signal ϕ(t) if the values θ1 and θ2 are known. On the
other hand, we will show in the sequel that the solution
of the problem does not involve θ1. However, the optimal
solution depends on θ2. In this work, we will relax the
above optimization problem, considering that an upper-
bound to the norm of θ2 is known and that we want to
ensure that

MSE(θ̂) ≤ γ ∀θ2 : ‖θ2‖ ≤ α.

In other words, we will not solve the problem just for
a specific θ2, but for any θ2 such that ‖θ2‖ ≤ α. The
advantage of this robust/worst case formulation is that
the user only needs to specify the upper-bound α.

We thus have the problem:

Ropt = argmin
R

trR (10)

s. t. MSE(θ̂) ≤ γ ∀θ2 : ‖θ2‖ ≤ α

R ≥ 0.
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In the next section, we will show that this optimization
problem has an explicit solution, which can be easily
computed and that has several interesting properties.

In some cases, it is desirable that the matrix R has a
specified structure. For example, consider that system (1)
has an FIR structure such that

ϕT (t) =
[

ϕT
1 (t) ϕT

1 (t− 1) ϕT
1 (t− 2) ϕT

1 (t− 3)
]T

.

Under this consideration, the matrixR is Toeplitz. In order
to ensure that the solution of the problem has the desired
structure, we should include one more constraint in the
problem. In this case, the problem may not have an explicit
solution, although a numeric solution can be found. In this
work, we present also a solution to the problem when the
matrix R is structured.

4. SOLUTION TO THE MSE INPUT DESIGN
PROBLEM

4.1 Unstructured R

In this section we will compute the explicit solution to the
optimization problem proposed before.

Lemma 1. Problem (10) is equivalent to following problem
with only one variable δ ∈ R

n−m and with one constraint:

δopt = argmin
δ

F (δ) (11)

s.t. F (δ) =
σ2

(

‖Λ1‖
2 + ‖δ + Λ2‖

2
)

γ − ‖δ‖
2
α2

(12)

γ > ‖δ‖
2
α2, (13)

where

Ropt =
σ2ΛoptΛ

T
opt

γ − ‖δopt‖2α2
(14)

ΛT
opt =

[

ΛT
1 (δopt + Λ2)

]T
. (15)

Proof: See the appendix. �

Note that if the constraint is active, then F (δ) tends to
infinity, which is not the solution of the minimization
problem. Hence, the solution lies in the interior of the
admissible set. The solution of the problem can thus be
found by computing the values of δ such that the gradient
of F (δ) is equal to zero. We can compute all the possible
solutions and then check, one by one, if they respect
the constraint of the problem. It will be shown that this
problem has two solutions, but that only one of them
respects the constraint. The result is presented in the next
theorem.

Theorem 2. The solution of the problem (11) is

δ = kΛ2

where

k =

−
(

‖Λ1‖
2 + ‖Λ2‖

2 +
γ

α2

)

+

√

(

‖Λ1‖2 + ‖Λ2‖
2 +

γ

α2

)

2

− 4 ‖Λ2‖
2 γ

α2

2 ‖Λ2‖
2

Proof: See the appendix. �

This result has several interesting properties which are
presented on the next remarks.

Remark 1. The solution of the problem does not depend
on the value of θ1. The upper-bound α is the only system
property that affects the result.

Remark 2. The optimal input signal is proportional to the
noise (Ropt ∝ σ2). This is the usual case in input design.
However, note that we are identifying a low-order model,
and we have both errors from bias and variance. Even so,
the optimal solution is proportional to the level of noise.

Remark 3. There is a trade-off between the energy of the
signal (tr(R)) and the quality of the estimate γ. The
asymptotic result is

lim
γ→0

tr(R) = ∞ lim
γ→∞

tr(R) = 0.

The result shows that in order to have a “perfect model”
described by γ → 0, it is necessary to have an input signal
with unbounded energy. On the other hand, if the quality
measure can be very large (γ → ∞) then the optimum
input signal is zero. There is a relation between the quality
of the model and the necessary amount of energy used in
the input signal; we get a better model if we use a signal
with more energy.

Remark 4. The asymptotic relation between R and the
parameter α is given by:

lim
α→0

R11 =
σ2Λ1Λ

T
1

γ
lim

α→∞

R11 =
σ2Λ1Λ

T
1

γ

lim
α→0

R12 = 0 lim
α→∞

R12 =
σ2Λ1Λ

T
2

γ

lim
α→0

R22 = 0 lim
α→∞

R22 =
σ2Λ2Λ

T
2

γ
.

The result shows that if we know that θ2 is very small
(α → 0) then the energy of the input signal is concentrated
on R11, which means that it is not necessary to excite the
part of the process related to θ2. On the other hand, even
if nothing is known about θ2 (α → ∞) the energy of the
input signal is finite.

4.2 Structured R

If we want to solve the optimization problem considering
that R is structured, we need to include one more con-
straint to the optimization problem. The next theorem
presents an equivalent problem to (10) with the extra
constraint, described by Bilinear Matrix Inequalities.

Theorem 3. If there are a matrix Z, a structured matrix
R and a scalar x which satisfy the conditions

[

γ − x σΛT
1

∗ R11

]

≥ 0 (16)

[

x α
(

ΛT
1 Z − ΛT

2

)

∗ I

]

≥ 0 (17)

R11Z = R12 (18)
[

R11 R12

∗ R22

]

> 0 (19)

tr

{[

R11 R12

∗ R22

]}

< t (20)

then
MSE(θ) ≤ γ, ∀θ2 : ‖θ2‖ ≤ α.

R > 0,
tr(R) < t.
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Proof: From the conditions of the theorem, R11 is positive
definite, and the problem can be simplified to

∥

∥

∥

(

ΛT
1 (R11)

−1
R12 − ΛT

2

)

θ2

∥

∥

∥

2

+ σ2ΛT
1 (R11)

−1
Λ1 ≤ γ

∀θ2 : ‖θ2‖ ≤ α

R > 0

tr(R) < t.

The first condition is satisfied ∀θ2 : ‖θ2‖ ≤ α if and only if
∥

∥

∥

(

ΛT
1 (R11)

−1
R12 − ΛT

2

)∥

∥

∥

2

α2 + σ2ΛT
1 (R11)

−1
Λ1 ≤ γ.

Using the Schur complement and introducing the slack
variable x, the condition becomes

[

γ − x σΛT
1

∗ R11

]

≥ 0 (21)

[

x α
(

ΛT
1 R

−1

11 R12 − ΛT
2

)

∗ I

]

≥ 0. (22)

The change of variables

Z =R−1

11 R12

completes the proof. �

Note that the present problem is not convex because
the equality (18) presents a multiplication between two
variables. A local solution of this problem can be found
using iterative LMIs:

• Fix Z and solve for the other variables;
• Fix R11 and solve for other variables.

We propose two optimization criteria to be used with this
theorem.

(1) Minimize γ for a fixed t;
(2) Minimize t for a fixed γ.

In the first problem we have a fixed “energy” and we want
to maximize the quality of the estimate.

In the second problem we want to compute the minimal
“energy” of the input signal such that we ensure that the
model has a minimum level of quality.

5. EXAMPLES

5.1 Example 1

Consider the following problem

Λ1 = 1, Λ2 = 1, γ = 1, σ = 1.

We will compute the solution to the optimization problem
considering several values of α.

Figure 1 shows the values of R11, R12 and R22 as a function
of the parameter α. The figure also shows the trace of R,
indicated as t.

As expected, limα→0 R11 = limα→∞ R11 = 1 and the trace
of R increases with α. If α = 1 then the solution is

R11 = 1.1708, R12 = 0.7239,

R22 = 0.4478, t = tr(R) = 1.6189.

The results presented in the Figure 1 confirm Remark 4.
For small values of α both R12 and R22 tend to zero,
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0
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α

R
22

10
−2

10
0

10
2

1

1.5

2

2.5

α

t

Fig. 1. Solution for varying α.

and for large values of α the matrix R is bounded. It is
interesting to note that the results almost do not change
for values of α smaller than 10−1. The same happens for
values of α larger than 101. The size of this band of values
for which the results change is under investigation.

5.2 Example 2

Consider that the following system

y(t) = 2u1(t)− 1u2(t) + v(t)

will be identified by the model

y(t) = θ̂u1(t)

and the experiment design constraints are the same as in
the previous example with α = 1. As presented before, the
optimal solution is

R11 = 1.1708, R12 = 0.7239, R22 = 0.4478.

The input signal can be realized in many different ways.
We realized the signal as the periodic signals with 10000
samples and period equal to 2:

u1(t) = [0.00057 0.01529 0.00057 0.01529...]

u2(t) = [0.00057 0.00944 0.00057 0.00944...].

To check the quality of the experiment design, a Monte-
Carlo experiment with 10000 runs was performed.

The mean value of the estimated parameter was
1

10000

∑10000

i=1
θ̂ = 1.3674 and the mean square value of

the quality measure was 1

10000

∑10000

i=1

(

J(θ0)− J(θ̂)
)2

=

0.9883. Note that as expected the value is approximately
γ.

5.3 Example 3

Consider the following problem

Λ1 = 1, Λ2 = 1, γ = 1, σ = 1, α = 1

where the system is

y(t) = 2u(t)− 1u(t− 1) + v(t)

and the model is
y(t) = θ̂u(t)

Note that because the system has an FIR structure, we
need to ensure that R is Toeplitz, and to include one more
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constraint in the optimization. The solution of the problem
is

R =

[

1.000 1.000
1.000 1.000

]

.

It is interesting that the solution of this problem is the
same for any value of α. This is, however, not true in
general (see Example 4).

Note that the trace of R is 2.000, which is larger than the
value obtained for the unstructured problem (see Example
1). The extra constraint, which was included to ensure
the structure of the matrix R, made the problem more
restricted, resulting in a larger “energy” needed for the
input signal.

The input signal was realized as a constant u(t) = 0.01 for
t = 1, ..., 10000.

The solution of the problem was used in 10000 Monte-
Carlo runs. The mean value of the estimated model param-

eter is 1

10000

∑10000

i=1
θ̂ = 1.0246 and the mean value of the

quality criterion is given by 1

10000

∑10000

i=1

(

J(θ0)− J(θ̂)
)2

=

0.9972. Note that as expected the value is approximately
γ. The discrepancy is due to the variance of the Monte-
Carlo runs.

5.4 Example 4

Consider the following problem

Λ1 = 1, Λ2 = 2, γ = 1, σ = 1.

We compute the solution of the optimization problem,
considering that R is Toeplitz. The solution is plotted in
figure 2 as a function of α.
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Fig. 2. Solution varying α.

The values of R11, R12 and R22 increase with α, and all
of them tend to infinity when α tends to 1, as presented
in Figure 2. The problem is unfeasible for α ≥ 1.

When R is unstructured, the optimization problem has a
finite solution for every value of α. The present example
has a structured R, and the extra constraint - used to
ensure the structure of the matrix - makes the problem
unfeasible for large values of α.

6. CONCLUSION

This article presented a solution to an experiment design
problem for a linear regression model of reduced order. The
energy of the input signal was minimized and the designed
input ensured a predefined quality of the model which was
assessed using a mean square error measure.

7. PROOF OF LEMMA 1

The problem can be described as

min
R11,R12,R22

tr(R11) + tr(R22)

s. t. ‖β‖
2
+ σ2ΛT

1 R
+

11Λ1 ≤ γ ∀θ2 : ‖θ2‖ ≤ α (23)

R11 ≥ 0 (24)

R22 ≥ RT
12R

+

11R12 (25)

(I −R11R
+

11)R12 = 0 (26)

β = ΛT
1 R

+

11 (R11θ1 +R12θ2)− ΛT
1 θ1 − ΛT

2 θ2. (27)

Since we are searching for the matrix R22 with smallest
trace, we know that the constraint (25) is active, so that
it becomes an equation, R22 = RT

12R
+

11R12.

In order to ensure that the constraint (23) is satisfied
∀θ2 : ‖θ2‖ ≤ α we will relax this constraint to

h(β) + σ2ΛT
1 R

+

11Λ1 ≤ γ (28)

where
h(β) = max

θ2
‖β‖2 s.t. ‖θ2‖ ≤ α.

However, because R11 has the smallest possible trace (28)
becomes also an equation. The problem can be simplified
to

min
R11,R12

tr(R11) + tr(RT
12R

+

11R12)

s. t. h(β) + σ2ΛT
1 R

+

11Λ1 = γ (29)

R11 ≥ 0 (30)

R12 = R11R
+

11R12. (31)

If we replace (31) in the criteria we get

tr(R11)+tr(RT
12R

+

11R12) = tr(R11)+tr(RT
12R

+

11R11R
+

11R12)

but, from the definition of pseudo-inverse R+

11R11R
+

11 =
R+

11, so the criteria can be simplified again to

tr(R11) + tr(RT
12R

+

11R12).

Replacing R12 in the definition of β we get

β =ΛT
1 R

+

11

(

R11θ1 +R11R
+

11R12θ2
)

− ΛT
1 θ1 − ΛT

2 θ2

=ΛT
1 R

+

11 (R11θ1 +R12θ2)− ΛT
1 θ1 − ΛT

2 θ2

We see that the constraint (31) does not change the
problem and it can be dropped without any loss.

Equation (29) is respected for every X if

R+

11 =

(

σ2Λ1Λ
T
1

γ − h(β)

)+

+ (I − Λ+

1 Λ
T
1 )X. (32)

If we plug (32) into (27) we get

β = (ΛT
1 R

+

11R12 − ΛT
2 )θ2 (33)

and then
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h(β) = ‖δ‖2α2 (34)

δT =ΛT
1 R

+

11R12 − ΛT
2 . (35)

From (32) and (24)

R11 =
σ2Λ1Λ

T
1

γ − ‖δ‖2α2
+MMT if γ > ‖δ‖2α2. (36)

Remember that we search for the minimum trace matrix
R, hence the solution of the problem has M = 0.

From (35) and (36) it is possible to simplify the problem
to an optimization problem with just one variable (δ) and
with one constraint:

min
δ

σ2

(

‖Λ1‖
2 + ‖δ + Λ2‖

2
)

γ − ‖δ‖
2
α2

s.t. γ > ‖δ‖
2
α2.

8. PROOF OF THEOREM 2

Let us first compute the gradient of F

∇F =
2σ2 (δ + Λ2)

γ − ‖δ‖
2
α2

+
2σ2δα2

(

‖Λ1‖
2 + ‖δ + Λ2‖

2
)

(

γ − ‖δ‖
2
α2

)2

(37)

and let us now evaluate for which values of δ the gradient
is zero:

∇F =
(

γ − ‖δ‖
2
α2

)

(δ + Λ2)+δα2

(

‖Λ1‖
2 + ‖δ + Λ2‖

2
)

= 0.

We can reorganize the terms of this equation to

δ
(

α2‖Λ1‖
2 + α2 ‖δ + Λ2‖

2 + γ − ‖δ‖2 α2
)

= −
(

γ − ‖δ‖2 α2
)

Λ2

and describe in a convenient form

δ = −

(

γ − ‖δ‖
2
α2

)

(

α2‖Λ1‖2 + α2 ‖δ + Λ2‖
2
+ γ − ‖δ‖

2
α2

)Λ2.

So, we can prove the first part of the theorem, which says
that the vector δ is a scaling version of the vector Λ2

δ = kΛ2,

where k ∈ R.

We can use this fact, to simplify the equation ∇F = 0:

k2 ‖Λ2‖
2
+ k

(

‖Λ1‖
2 + ‖Λ2‖

2
+

γ

α2

)

+
γ

α2
= 0.

This is a second order polynomial on the parameter k.
There are two solutions to this equation:

k1 =

−
(

‖Λ1‖
2 + ‖Λ2‖

2 +
γ

α2

)

+

√

(

‖Λ1‖2 + ‖Λ2‖
2 +

γ

α2

)

2

− 4 ‖Λ2‖
2 γ

α2

2 ‖Λ2‖
2

k2 =

−
(

‖Λ1‖
2 + ‖Λ2‖

2 +
γ

α2

)

−

√

(

‖Λ1‖2 + ‖Λ2‖
2 +

γ

α2

)

2

− 4 ‖Λ2‖
2 γ

α2

2 ‖Λ2‖
2

.

Remember that we need to verify if the constraints of the
problem are not violated. We need to ensure that

‖δ‖2 = k2 ‖Λ2‖
2
<

γ

α2
.

However, this expression involves k2. To simplify the
condition, we will use the following equation,

k2 ‖Λ2‖
2
= −k

(

‖Λ1‖
2 + ‖Λ2‖

2
+

γ

α2

)

−
γ

α2

and then, the constraint is

−k
(

‖Λ1‖
2 + ‖Λ2‖

2
+

γ

α2

)

−
γ

α2
<

γ

α2

which has the following simplified form

−k
(

‖Λ1‖
2 + ‖Λ2‖

2
+

γ

α2

)

< 2
γ

α2
. (38)

We need to verify if the solutions k1 and k2 respect the
constraint (38).

The constraint evaluated with k1 is equivalent to
(

‖Λ1‖
2
+ ‖Λ2‖

2
+

γ

α2

)

2

− 4 ‖Λ2‖
2

γ

α2
<

(

‖Λ1‖
2
+ ‖Λ2‖

2
+

γ

α2

)

√

(

‖Λ1‖2 + ‖Λ2‖
2 +

γ

α2

)

2

− 4 ‖Λ2‖
2

γ

α2
(39)

which is true. Hence, the first solution does not violate the
constraints of the problem.

The second solution gives the constraint
(

‖Λ1‖
2
+ ‖Λ2‖

2
+

γ

α2

)

2

− 4 ‖Λ2‖
2

γ

α2
<

−

(

‖Λ1‖
2
+ ‖Λ2‖

2
+

γ

α2

)

√

(

‖Λ1‖2 + ‖Λ2‖
2 +

γ

α2

)

2

− 4 ‖Λ2‖
2

γ

α2

(40)

which is is false. Hence, the second solution violates the
constraints of the problem.

Now we know that the solution of the problem is given by
δ = k1Λ2, what concludes the proof.
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