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Abstract: This paper studies direct (non-iterative) data-based method for Model Reference
(MR) control design. It shows that the optimal controller can be obtained as the solution of a
Prediction Error (PE) identification problem that directly estimates the controller parameters
through a reparametrization of the input-output model. The standard tools of Prediction Error
Identification can thus be used to analyze the statistical properties (bias and variance) of the
estimated controller. It also shows that, for MR control design, direct and indirect data-based
methods are essentially equivalent.
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1. INTRODUCTION

In the past two decades, a number of data-based control
design methods have been proposed (Hjalmarsson et al.,
1994, 1998; Campi et al., 2002; Karimi et al., 2004), where
a parametrized controller structure is chosen a priori,
and the controller tuning is based directly on input and
output data collected on the plant without the use of a
model of this plant. Some of these methods, like Iterative
Feedback Tuning (Hjalmarsson et al., 1994, 1998) and
Correlation-based Tuning (CbT) (Karimi et al., 2004) are
iterative in nature: the optimal controller is obtained as a
sequence of controllers that operate on the actual plant,
and experimental data are collected on the corresponding
sequence of closed-loop plants. Other methods are direct
(or one-shot): they directly estimate the controller on
the basis of one sequence of input-output data: Virtual
Reference Feedback Tuning (VRFT) (Campi et al., 2002)
and a non-iterative version of CbT (Karimi et al., 2007)
are representative of this class.

The Virtual Reference Feedback Tuning (VRFT) method
was first proposed in (Campi et al., 2002). It uses controller
structures that are linearly parametrized, and it was shown
that in such case the optimal Model Reference (MR)
controller can be estimated very simply as the solution
of a Least Squares problem for noise free data. In the
case of noisy data, the VRFT method has been looked
upon as an identification problem, but with inputs that are
corrupted by measurement noise. The most common way
to circumvent the problems in the application of VRFT to
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noisy data is to apply instrumental variable methods for
the parameter estimation. The bias problem can thus be
resolved, but at the expense of a loss in efficiency.

Unstable or non-minimum phase plants also cause serious
problems for the application of VRFT as pointed out in
(Sala and Esparza, 2005a,b), where some ad-hoc methods
were discussed to alleviate these difficulties. An excellent
analysis of the VRFT method in the case of noisy data can
be found in (van Heusden et al., 2011): the authors discuss
the similarities and differences between the controller
estimation that takes place in VRFT and the model
estimation in prediction error identification, and they
illustrate the bias problems that arise in VRFT due to the
fact that the inputs to the controller estimation problem
are noisy and that the controller and noise model have
common parameters. They also point to the difficulty
caused by the fact that the controller parameters appear
in the noise model.

In this paper we examine a completely different approach,
which is based on the PE identification of the inverse of a
part of the controller. The idea of identifying the inverse
of the controller has been suggested in (Sala and Esparza,
2005a), but without any detail about its implementation.
In (van Heusden et al., 2011) the authors have briefly
discussed this idea again, but mainly to show its difficulties
and shortcomings, such as possible unstable pole-zero
cancellations and the presence of controller parameters in
the resulting noise model.

We develop a new approach to the data-based identifica-
tion of the inverse of the controller in which the input-
output model of the system is replaced from the outset
by an equivalent input-output description involving only
parameters that are functions of the optimal MR controller
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parameters. Unlike the VRFT scheme and most other
data-based control design methods, the controller struc-
ture is not limited to being linear in the parameters. With
this new parametrization, the estimation of the controller
parameters is now put in a completely standard open-
loop PE identification problem. As a result, the optimal
reference controller can be identified without bias using
open-loop data provided the model structure chosen for
the controller includes the optimal controller, even if the
noise model is incorrect. In the non-ideal case where the
controller structure does not include the optimal con-
troller, the standard results from PE identification can be
used to characterize the bias of the resulting controller.

A consequence of our embedding of the controller estima-
tion problem in a standard PE identification framework
is that a complete statistical analysis of the estimated
controller is provided. Another interesting outcome of our
analysis is that we show that the direct data-driven esti-
mation of the MR controller by PE identification of the
controller inverse is essentially equivalent to PE identifi-
cation of the plant model followed by control computation
through an algebraic equation. Thus we show that for MR
control, direct and indirect design methods are essentially
equivalent and that the opposition between direct data-
based control and identification for control is essentially
meaningless.

The paper is organized as follows. Definitions and the
problem formulation are presented in Section 2. Section 3
presents the reparametrization of the input-output model
using controller parameters that will be identified by Pre-
diction Error identification. Section 4 presents the pro-
posed controller identification method, while the design
choices and the properties of the estimate are explored
in Section 5. Section 6 illustrates the application of the
proposed method and the design choices through a simu-
lated example. Conclusions are presented at the end of the
paper.

2. PRELIMINARIES

Consider a linear time-invariant discrete-time single-input-
single-output process

y(t) = G0(z)u(t) + v(t) = G0(z)u(t) +H0(z)e(t), (1)

where z is the forward-shift operator, G0(z) is the process
transfer function, u(t) is the control input, H0(z) is the
noise model, and e(t) is zero mean white noise with
variance σ2

e . Both transfer functions, G0(z) and H0(z), are
rational and causal.

The task is to tune the parameter vector ρ of a linear
time-invariant controller C(z, ρ) in order to achieve a
desired closed-loop response. We assume that this con-
troller belongs to a given user specified controller class C
such that C(z, ρ)G0(z) has positive relative degree for all
C(z, ρ) ∈ C; equivalently, the closed loop is not delay-free.
The control action u(t) can be written as

u(t) = C(z, ρ)(r(t) − y(t)), (2)

where r(t) is a reference signal, which is assumed to be
quasi-stationary and uncorrelated with the noise, that is
Ē [r(t)e(s)] = 0 ∀t, s, and Ē[f(t)] ! limN→∞

1
N

∑N
t=1 E[f(t)]

with E[·] denoting expectation (Ljung, 1999). The system
(1)-(2) in closed loop becomes

y(t, ρ) = T (z, ρ)r(t) + S(z, ρ)v(t)

T (z, ρ) =
C(z, ρ)G0(z)

1 + C(z, ρ)G0(z)
= C(z, ρ)G0(z)S(z, ρ)

where we have now made the dependence on the controller
parameter vector ρ explicit in the output signal y(t, ρ).

Model Reference control design consists of specifying a
“desired” closed-loop transfer function M(z), which is
known as the reference model, and then solving the fol-
lowing optimization problem

min
ρ

JMR(ρ) (3)

JMR(ρ) ! Ē
[

((T (z, ρ)−M(z))r(t))2
]

. (4)

The optimal controller is defined as C(z, ρMR) with

ρMR = argmin
ρ

JMR(ρ).

We assume that the user can collect a batch of data from
the process (1)

ZN = [u(1), y(1), . . . , u(N), y(N)].

His/her task is then to estimate the optimal parameters of
the controller C(z, ρMR) from these data.

3. REPARAMETRIZATION OF THE
INPUT-OUTPUT MODEL

Analyzing (4) we see that if the ideal controller

Cd(z) !
M(z)

G0(z)(1−M(z))
(5)

were used in the closed loop then the objective function
(3) would evaluate to zero. It is not the goal of this paper
to discuss the choice of the reference model M(z); this
is the topic of many textbooks on control design. We
shall assume that this choice is appropriate for the system
G0(z) and that, as a consequence, the controller Cd(z) is
realizable as a causal filter.

The core idea of the method is to rewrite the input-output
system (1) as a function of the reference model and the
controller by inverting the relation (5), i.e.

G0(z) =
1

Cd(z)

M(z)

1−M(z)
. (6)

The task will be to identify Cd(z) from input-output
data using an appropriate parametrization for the set of
controllers C = {C(z, ρ), ρ ∈ Rd}. Now it is often the
case that one imposes some fixed part in the controller,
which therefore need not be identified. We call CF (z) this
fixed part, so that the ideal controller can be written as
Cd(z) = CI

d (z)C
F (z) and its model as

C(z, ρ) = CI(z, ρ)CF (z). (7)

This yields a new description for G0(z):

G0(z) =
1

CI
d (z)

×
M(z)

CF (z)(1−M(z))
. (8)
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We now define the filtered input signal

ũ(t) !
1

CF (z)

M(z)

1−M(z)
u(t), (9)

and the transfer functions

C̃d(z) !
1

CI
d(z)

and C̃(z, θ) !
1

CI(z, ρ)
, (10)

so that

Cd(z) =
1

C̃d(z)
CF (z) and C(z, ρ) =

1

C̃(z, θ)
CF (z). (11)

The input-output system (1) is then equivalent with

Sc : y(t) = C̃d(z)ũ(t) +H0(z)e(t), (12)

for which the following parametric model structure can be
chosen

Mc : y(t, θ) = C̃(z, θ)ũ(t) +H(z, θ)e(t). (13)

Here C̃d(z) is the portion of the inverse of the ideal con-
troller that we want to identify, C̃(z, θ) is a parametric
model structure for C̃d(z) and H(z, θ) is a parametric
model structure for H0(z). The model structures C̃(z, θ)
and H(z, θ) may have either common or disjoint parame-
ters, as we shall discuss in Section 5.

Before we describe some properties of the input-output
model (13), let us illustrate by an example how the
parameter vector θ is related to the controller parameter
vector ρ one wants to obtain. Suppose the chosen controller
class C is a class of PID controllers, given by

C(z, ρ) =
ρ1z2 + ρ2z + ρ3

z2 − z
.

From (7), we have

CI(z, ρ) = ρ1z
2 + ρ2z + ρ3, CF (z, ρ) =

1

z2 − z

and then C̃(z, ρ) = 1
ρ1z2+ρ2z+ρ3

. It is usual in system
identification that the highest term of the denominator
is unitary. If we divide the numerator and denominator by
ρ1 and if we use the change of variables θ1 = 1

ρ1
, θ2 = ρ2

ρ1

and θ3 = ρ3

ρ1
we get

C̃(z, θ) =
θ1

z2 + θ2z + θ3
.

Clearly, if a parameter vector θ̂ is identified, the controller
parameters are recovered as ρ̂ = 1

θ̂1
[1 θ̂2 θ̂3].

Properties of the reparametrization
We now examine some properties of the input-output
description (12) and of the model (13) that will be used
to identify the optimal controller. It is important to stress
first that (12) and (1) are two equivalent descriptions of
the input-output map.

We examine the connections between the poles and zeroes
of the system G0(z), the reference model M(z) and the
optimal controller Cd(z). From (5) we have that

Cd(z) =
dG0

(z)nM (z)

nG0
(z)(dM (z)− nM (z))

, (14)

where nF (z) denotes the numerator of a transfer function
F (z) and dF (z) its denominator. We observe that in our
identification problem of this optimal controller, nM (z)

and dM (z) are known quantities (imposed by the designer)
while nG0

(z) and dG0
(z) are unknown.

On the basis of (14) we can make the following observa-
tions.

• The transfer functions C̃d(z) and C̃(z, θ) can always
be made causal, by adding powers of z in their
denominator, if necessary. Corresponding terms are
then also added in the denominator of CF (z) so that
they will cancel in forming Cd(z) and C(z, ρ).

• The zeroes of Cd(z) are a combination of the poles
of G0(z) and of the zeroes of M(z), whereas its
poles contain the zeroes of G0(z). As a result, the
transfer function C̃d(z) in (12) will be unstable if
G0(z) contains unstable poles. If that is the case, one
will have to resort to an ARX or ARMAX model
structure for the identification of the model (13)
since such model structures allow the identification
of unstable systems. This means that in such case,
also the noise model will need to be estimated even if
open-loop data are used.

• If the process G0(z) has a non-minimum phase zero,
it must be included as a zero of the reference model
M(z); this is one of the basic constraints of MR con-
trol. Violating this requirement may lead to an unsta-
ble closed-loop system. One data-based procedure for
detecting and estimating non-minimum phase zeroes
has been described in (Campestrini et al., 2011). As-
suming that this precaution has been taken, it follows
that Cd(z) will be stable.

• It follows from (14) that there are several possibilities
to factor Cd(z) into a fixed part and a part to
be identified. Since M(z) is known, one extreme

possibility is to incorporate nM (z)
dM (z)−nM (z) in the fixed

part CF (z) of the parametric controller structure (7).
By doing this, one gets ũ(t) = u(t) and C̃d(z) = G0(z)
in (12), and the problem is then reduced to the
identification of G0(z) and the computation of the
controller via (5) in which G0(z) is replaced by the
identified G(z, θ̂). In other words, this amounts more
to identification for control than to direct control
design.

• If the reference model M(z) has been chosen to
produce zero steady-state error, then dM (z)− nM (z)
contains a zero at z = 1. The other extreme, therefore,
is to choose CF (z) as an integrator and to let the
“free part” CI

d (z) of Cd(z) contain all other zeroes
and poles of the right hand side of (14).

• In between these two extreme choices, the fixed part
CF (z) may contain any fraction of the known transfer

function nM (z)
dm(z)−nM (z) , in which case the parametric

model structure C̃(z, θ) will take the form

C̃(z, θ) =
nG(z, θ)dP (z, θ)

dG(z, θ)nP (z, θ)
, (15)

where nP and dP are the fractions of nM and dM ,
respectively, that the user has chosen to put in
C̃(z, θ).

In Section 5 we shall discuss how this freedom in the
selection of the fixed part of the desired controller im-
pacts on the properties of the identified controller. Let
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us mention in passing that the observations made above
show that, fundamentally, there is not a lot of difference
between indirect and direct controller design in the case of
MR control design, given that in such case the difference
essentially amounts to a choice of parametrization. This
is due to the algebraic link that exists between G0(z) and
Cd(z) in this control design methodology.

4. THE CONTROLLER IDENTIFICATION METHOD

In the previous section we have shown that, for MR
control design, the controller estimation problem can be
reduced to the identification problem of C̃d(z, θ) in (12)-
(13). We can thus use standard PE identification methods
to estimate the controller, and the whole body of results on
the statistical properties of the PE estimates are available
to us for the statistical analysis of the estimated controller.

From N measured input-output data one constructs the
data vector

ZN
c = [ũ(1), y(1), . . . , ũ(N), y(N)]

by passing the input data through the filter (9). The

estimate θ̂N is then θ̂N = argminθ
∑N

t=1 ε
2(t, θ) where

ε(t, θ) ! y(t)− ŷ(t|t− 1, θ), (16)

and

ŷ(t|t− 1, θ) = H−1(z, θ)C̃(z, θ)ũ(t) +
[

1−H−1(z, θ)
]

y(t).

Using (7) and (10), the estimated optimal controller is then
obtained by

C(z, ρ̂N ) =
1

C̃(z, θ̂N)
CF (z). (17)

5. DESIGN CHOICES AND ESTIMATE PROPERTIES

Since the estimation of the optimal MR controller has
been reduced to a PE identification problem, all properties
of the PE identification theory apply. However, given
the properties already mentioned in Section 3 of the
relationship (14) between Cd(z), G0(z) and M(z), the
relative freedom in the choice of the fixed partCF (z) of the
controller, and the choice of model structures to be used in
(13), we shall in this section discuss some important design
choices of the method and the corresponding properties of
the resulting controller.

An important observation is that, since the object of
interest is the optimal controller only, and not the input-
output model, the identification of H0(z) is of no interest,
which may simplify the identification problem as we shall
discuss here. Unless otherwise specified, we shall consider
that we are in the practical situation where the true noise
model is unknown and where no knowledge is available
about the structure of H0(z).

To structure the analysis, we shall distinguish between
two situations, the case where the optimal controller Cd(z)
defined in (5) is in the controller set C = {C(z, ρ)} defined
by (7), and the case where it is not.

5.1 The ideal case: Cd(z) ∈ C

We first consider the ideal case where the optimal con-
troller is in the parametrized controller class, i. e.

∃ θ0 such that
1

C̃(z, θ0)
CF (z) = C(z, ρ0) = Cd(z).

We shall assume that input data u(t) have been chosen
such that the filtered inputs ũ(t) are sufficiently rich
with respect to the chosen model structure C(z, ρ) (see
(Gevers et al., 2009)). The following results then follow
straightforwardly from standard PE identification theory
(Ljung, 1999) applied to (13).

• If the data are collected in open loop, and if C̃d(z)
and H(z, θ) have disjoint parameters, then θ̂N → θ0,
i.e. with C(z, ρ) defined by (11) we have

C(z, ρ̂N) → Cd(z).

• The same convergence result holds if the data are
collected in closed loop, and if in addition ∃ θ0 such
that H(z, θ0) = H0(z).

Discussion on design choices

• When the optimal controller is in the controller set
and the data are collected in open loop, we thus see
that the procedure converges to the optimal controller
regardless of any knowledge on the noise model. In
the absence of any information about the spectral
properties of the noise, the easiest solution is therefore
to take H(z, θ) = 1, i.e. an Output Error model. If
the true noise model H0(z) is more complex, then
including a noise model that is able to representH0(z)
will improve the variance of the controller estimate,
but its asymptotic bias will be zero in any case.

• One of the design choices is the selection of CF (z)
in the factorization of the controller C(z, ρ): see (11).
As stated in Section 3, one extreme possibility is to
incorporate M(z)

1−M(z) in CF (z), the other extreme being

to leave all parameters of C(z, ρ) free, i.e. to take
CF (z) = 1 or CF (z) = 1

z−1 . In the latter case, the
vector ρ - and hence also the vector θ parametrizing
C̃(z, θ) will contain more parameters than in the
former case, resulting in a larger variance for the
estimated parameters. This will be illustrated in Sec-
tion 6; it actually follows directly from the expression
(11), which shows that the identified C̃(z, θ) includes
the model parameters plus additional parameters ap-
pearing in nP (z, θ) and dP (z, θ) which are in fact
known.

• When the data are collected in closed loop, it follows
from PE identification theory that the estimate of the
controller will be biased if an incorrect noise model
is used. A range of procedures exist to reduce or
eliminate this bias (Ljung, 1999).

We conclude from this subsection that direct data-based
MR control design is essentially no different from iden-
tification based control design based on the same data.
It includes more degrees of freedom in the sense that
there is a certain amount of freedom in the choice of
the appropriate parametrization. However, the inclusion of
more than the minimal number of parameters in C̃(z, θ)
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results in a larger variance than would be obtained by
identification of G0(z) followed by control design via (5).

5.2 The non-ideal case: Cd(z) /∈ C

In the non-ideal case, the identification procedure is iden-
tical to the ideal case, but the properties of the resulting
controller estimate are different. These properties again
follow from standard PE identification theory.

With open-loop data, the parameter vector θ in (13) con-
verges to the best possible parameter in the set {C̃(z, θ)}.
In other words

θ̂N −→ θ∗ = argmin
θ

V̄ (θ) (18)

where

V̄ (θ) =
1

2π

∫ π

−π

1

|H(ejω , θ)|2

{

|C̃d(e
jω)− C̃(ejω , θ)|2Φũ(ω)

+Φv(ω)} dω, (19)

where Φv(ω) is the noise spectrum and Φũ(ω) is the
spectrum of ũ(t):

Φũ(ω) =
|M(ejω)|2

|CF (ejω)(1 −M(ejω))|2
Φu(ω).

Since there does not exist a parameter vector θ0 for which
C̃d(z) = C̃(z, θ0), the resulting estimate will converge to
a biased C(z, θ∗) and the bias will be governed by the
expression (19). In the extreme (but simplest case) where

CF (z) has been chosen as CF (z) = M(z)
1−M(z) this amounts

again to identification of a reduced order model for G0(z)
followed by computation of a reduced order controller for
Cd(z), as stated earlier.

6. ILLUSTRATIVE EXAMPLE

In this section, we present an example that illustrates the
design choices for the definition of the fixed part of the
controller and the properties that result for these different
design choices. We consider that the system is described
by (1) with

G0(z) =
0.5

z − 0.9
, H0(z) =

z

z − 0.3
, (20)

where the white noise variance is σ2
e = 0.1. The desired

reference model with zero steady-state error is chosen as:

M(z) =
0.16z

(z − 0.6)2
.

The optimal controller is then calculated from (5) as

Cd(z) =
0.32z(z − 0.9)

(z − 1)(z − 0.36)
=

(0.32z − 0.288)z

(z − 1)(z − 0.36)
.

6.1 The ideal case: Cd(z) ∈ C

We first select a controller structure C = {C(z, ρ)} that is
able to represent the ideal Cd(z). It is clear from (7) that
at least two choices are possible for CF (z):

CF
1 (z) =

z

z − 1
or CF

2 (z) =
0.16z

(z − 1)(z − 0.36)

With the first choice we get CI
1 (z, ρ) = ρ1z+ρ2

z+ρ3
, while

with the second choice we get CI
2 (z, ρ) = ρ1z + ρ2. This

corresponds to C̃1(z, θ) = θ1z+θ2
z+θ3

for the first choice,

and to C̃2(z, θ) = θ1
z+θ2

for the second choice. Thus we
observe that the first choice leads to the estimation of 3
parameters, while the second leads to the estimation of
only 2 parameters which are in fact the parameters of
G0(z), as explained in Section 3. In order to compare
the properties of the estimates corresponding to these
two choices, we have identified both under the following
experimental conditions.

We applied a PRBS signal with amplitude ±1 as input
signal of an open-loop experiment, and we collected 1000
samples of input data and output data on the process.
The identification was done using the function oe of the
Matlab toolbox ident, which means that H(z, θ) = 1. 500
Monte Carlo runs were realized. With the choice CF

1 (z),
we obtained the mean value for the parameter vector as

θ̂m = [3.12395 − 1.12590 − 0.90010]T ,

for which the corresponding controller is given by

C1(z, ρ̂m) =
(0.32024z − 0.28824)z

(z − 1)(z − 0.36014)
.

with variance

Cov1(ρ̂) = 1× 10−5 ∗

[

4.24366 −3.77763 8.57356
−3.77763 3.40404 −6.98214
8.57356 −6.98214 30.23981

]

.

(21)
With the fixed part of the controller as CF

2 (z), which
means that we identify G(z, θ) and then estimate C(z, ρ),
the mean value of the parameter estimate θ̂ is

θ̂m = [0.49962 − 0.90007]T ,

for which the corresponding controller is given by

C2(z, ρ̂m) =
(0.32030z − 0.28830)z

(z − 1)(z − 0.36)
,

with variance

Cov2(ρ̂) = 1× 10−5 ∗

[

1.90181 −1.88754
−1.88754 1.88200

]

. (22)

As expected, both estimates are unbiased. It follows im-
mediately from (21) and (22) that Cov2(ρ̂) < Cov1(ρ̂),
and hence the precision of the estimates ρ1 and ρ2 is
better with the choice CF

2 (z) than with CF
1 (z). This is also

confirmed by Figure 1, where we plot a graph that shows ρ̂1
and ρ̂2 obtained at each Monte Carlo run, for both designs.
Grey circles represent the first two parameters of CI

1 (z, ρ̂)
while black dots represent the parameters of CI

2 (z, ρ̂). This
confirms that the best statistical properties are obtained
with the indirect method where we only estimate the two
parameters of G(z, θ).

6.2 The non-ideal case: Cd(z) /∈ C

Consider now that we choose freely a controller class
of PI controllers, which does not contain the optimal
controller Cd(z). With the same reference model, we
expect a biased controller that should make the closed-
loop transfer function as close as possible to the desired
one, that is M(z). The PI controller class is given by

C(z, ρ) =
ρ1z + ρ2
z − 1

,
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Fig. 1. Grey circles: first two parameters of CI
1 (z, ρ̂); black

dots: parameters of CI
2 (z, ρ̂) estimated through 500

Monte Carlo runs using the proposed method for an
OE model.

for which we have chosen the simplest fixed part

CF (z) =
1

z − 1
and CI(z) = ρ1z + ρ2.

The same experiment was performed, and again the iden-
tification was done using the function oe of the Matlab
toolbox ident. After 500 Monte Carlo runs we obtained,
for the mean controller

C(z, ρ̂m) =
0.45186z − 0.40095

(z − 1)
,

which is biased, with variance

CovPI(ρ̂) = 1× 10−5 ∗

[

5.20536 −5.23462
−5.23462 5.28728

]

.

Notice that the variance is bigger than the ones obtained
in both designs for the ideal case, that is, (21) and (22).
Figure 2 presents the step responses of the closed loop
obtained with one of the PI controllers and the reference
model. Note that we obtained a closed-loop response that
is very close to the desired one, despite the fact that a
PI controller is not the ideal one for the chosen reference
model.
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Fig. 2. Step response of the closed-loop system with the
controller C(z, ρ̂) = 0.44768z−0.39665

z−1 obtained from
one of the 500 Monte Carlo runs and the desired
reference model M(z).

7. CONCLUSIONS

A direct data-based method used to identify the optimal
MR controller has been presented. The method consists in
solving a PE identification problem, where the inverse of
the ideal controller is identified from data collected on the
system. Open loop or closed loop data may be used, but
they lead to different properties of the controller estimate.
Unlike some other data-based designs, this method does

not require that the class of controllers is linear in the
parameters.

In developing this method in detail, we have made it clear
that this “direct” data-based controller design method for
MR control, is essentially equivalent to PE identification of
the plant followed by control calculation through the MR
design equation. A number of design choices can be made
in the reparametrization of the input-output model, and
with some design choices the method may depart from
indirect identification. However, our analysis has shown
that for MR control, indirect and direct data-based control
design are essentially equivalent, and that the variance
obtained with indirect design is actually smaller than with
direct design. In doing so, we believe this paper has added
useful insight into data-based MR design methods.
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