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Abstract Most research on system identification is focused on the identification of parametric
models, for example a transfer function or a state space model where the information is
condensed in a few parameters. In the daily practice, nonparametric methods, like frequency
response function measurements, are intensively used. Recently, it was indicated that nonpara-
metric identification methods could be used to robustify the parametric identification framework.
A nonparametric preprocessing step can also be used to reduce or even eliminate the required
user interaction, making system identification accessible for a much wider user group. For
that reason, there is an increasing interest in nonparametric identification. In order to choose,
compare, and to benchmark these nonparametric methods, it is very important to select the
proper criteria. In this paper we identify and discuss the important choices that should be
considered. It will be shown that these strongly depend on the intended use of the nonparametric
model.
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1. INTRODUCTION

The mainstream of system identification is focused on
the identification of parametric models, either in the time
domain or in the frequency domain (Ljung, 1999; Pintelon
and Schoukens, 2001; Söderström and Stoica, 1989). Many
success stories are reported in the literature, for example
the prediction error framework delivers dedicated models
like ARX, ARMAX, OE, or Box-Jenkins depending upon
the user selected noise model.

In practical applications, the use of non-parametric models
is also very popular. The measurement of the impulse
response using correlation methods (Godfrey, 1980), or the
frequency response function (FRF) using spectral methods
(Bendat and Piersol, 1980) are even today intensively used
in commercial equipment. The most important drawback
of these classical solutions is that they suffer from leakage
errors, even if there is no disturbing noise present on the
data. The development of the local polynomial method
(Pintelon et. al., 2010 a, b; Schoukens et. al., 2009) was
the start of a new class of nonparametric methods that
allow the leakage to be reduced to levels where it does
no longer harm the results. In a second step, alternative
methods were proposed that reduce the noise sensitivity of
the nonparametric methods by smoothing the results over
neighboring frequencies (Gevers et. al., 2011, Hägg et. al.,
2011).

Untill now, the interaction between parametric and non-
parametric identification methods is rather low. But re-
cently it was shown that the availability of good nonpara-
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metric plant and noise models allow us to improve the
results obtained in the parametric framework (Schoukens
et. al., 2011). Nonparametric results from a preprocessing
step are not only used to guide the user during the model
selection process, the availability of a nonparametric noise
model can also be used to improve the robustness and the
convergence of the parametric identification methods.

A series of new nonparametric methods are nowadays un-
der study, and this creates a need to compare the older and
more recent methods. What are the best nonparametric
methods? There is no single answer to this question, the
intended use of the model will strongly affect the discus-
sion. In order to avoid an unstructured discussion with
a proliferation of many solutions and answers, we need a
framework to bring structure into this field. The aim of this
paper is to address this need. We will identify a number
of critical issues that will help to guide the researcher and
the user to make a clear classification that will allow the
methods to be compared to each other.

In Section 2 we introduce first the improved nonpara-
metric FRF estimator for linear dynamic systems. The
bias/variance tradeoff of smoothed estimates is discussed
in Section 3. In Section 4 we reflect on the dependency of
the optimal properties on the intended application. Next
we illustrate the results on an example in Section 5 before
we draw the final conclusions.

2. A BRIEF INTRODUCTION TO THE LPM, A
NONPARAMETRIC FRF ESTIMATOR

For a long time, the estimation of the FRF started from
the estimated cross- and auto-spectrum, or cross- and
auto-correlation (Bendat and Piersol, 1980). The inherent
leakage problems were reduced and reshaped by applying
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windowing techniques. Recently an alternative method,
the local polynomial method (LPM), was proposed that
estimates the frequency response function (FRF) Ĝpoly

and the power spectrum of the disturbing noise with
a much higher quality than these classical windowing
methods. The cost for this improved quality is an increased
computation time (typical a factor 1000 independently
of the record length). But, given the actual available
computer power, records of a few (ten)thousands of data
points are still processed in a few seconds. The required
calculation time grows proportionally with the record
length.

Consider the system given by
y (t) = G0 (q)u0 (t) + v (t) , (1)

where q−1 is the backward shift operator, and v (t) the
disturbing noise modeled as filtered white noise: v (t) =
H0 (q) e (t). For a finite record length

u0 (t) , y (t) t = 0, . . . , N − 1

this equation has to be extended with the initial conditions
(transient) effects of the dynamic plant and noise system
tG, tH :

y (t) =G0 (q)u0 (t) +H0 (q) e (t) + tG (t) + tH (t) , (2)
with t = 0, . . . , N−1. Using the discrete Fourier transform
(DFT)

X(k) =
1√
N

N−1�

t=0

x(t)e−j2πkt/N (3)

an exact frequency domain formulation of (2) is obtained:

Y (k) =G0 (Ωk)U0 (k) + TG (Ωk) +H0 (Ωk)E(k) + TH (Ωk)

=G0 (Ωk)U0 (k) +H0 (Ωk)E(k) + T (Ωk) (4)

where the index k points to the frequency kfs/N with
fs the sampling frequency. The contributions U0, E, Y in
(4) are an O

�
N0

�
, the transient terms TG, TH are an

O
�
N−1/2

�
, where O(x) = ordo x: a function tending

to zero at the same rate as x. It is most important
for the rest of this paper to understand that (4) is an
exact relation (Pintelon et. al., 2010 a,b; Pintelon and
Schoukens, 2001; McKelvey, 2000). The finite length record
requires the use of a transient term in (2), and it turns out
that the leakage errors of the DFT are modeled by very
similar terms in the frequency domain. All these terms
tG (t) , tH (t) , TG (Ωk) , TH (Ωk) are described by rational
forms in q−1 (time domain) or z−1(frequency domain).
The presence of the transient or leakage terms is inde-
pendent of the selected domain to describe the system
(time- or frequency domain), but it depends on the nature
of the excitation (periodic or random). A finite length
experiment will always suffer from ’leakage’ errors as well
in time- as in frequency domain.

Making use of the smoothness of G0, H0 and T , the fol-
lowing polynomial representation holds for the frequency
lines k + r, with r = 0,±1, . . . ,±n.

G0(Ωk+r) =

G0(Ωk) +
R�

s=1

gk(s)r
s +O(

� r

N

�(R+1)
)

(5)

TG(Ωk+r) =

T (Ωk) +
R�

s=1

tk(s)r
s +N− 1

2O(
� r

N

�(R+1)
)
. (6)

Putting all parameters G0(Ωk), TG(Ωk) and the paramet-
ers of the polynomial gk (s) , tk(s), with s = 1, . . . , R in a
column vector θk, and their respective coefficients in a row
vector, K(k, r) allows (4) to be rewritten (neglecting the
remainders) as:

Y (k + r) = K(k, r)θk, (7)
Collecting (7) for r = −n,−n+1, . . . , 0, . . . , n finally gives

Yn,k = Kn,kθk, for k = 0, . . . , N/2− 1 (8)
with Yn,k,Kn,k the values of Y (k + r),K(k, r), for r =
−n,−n+1, . . . , 0, . . . , n stacked on top of each other. Ob-
serve that the matrix Kn,k depends upon U0. Solving this
equation in a least squares sense eventually provides the
polynomial least squares estimate Ĝpoly(Ωk) for G(Ωk).
From the residuals of the fit, an estimate σ̂2

V
(k) of

σ2
V
(k) = |H(Ωk)|2 σ2

e
(k) is obtained. In order to get a full

rank matrix Kn, enough spectral lines should be combined:
n ≥ R+1. The smallest interpolation error is obtained for
n = R+ 1.

A detailed discussion of these results can be found in
(Pintelon et. al., 2010 a,b; Schoukens et. al., 2009).).

3. THE BIAS/VARIANCE TRADE-OFF OF FRF
ESTIMATORS

Just as for any identification method, we have to make
a bias-variance trade-off when evaluating the quality of
the nonparametric FRF estimates. In this case we will
consider the situation where the variance induced by the
disturbing noise v (t) dominates the variance that is due to
the leakage error (see Pintelon et. al. 2010 (a,b) for more
details). It is possible to modify the bias/variance ratios
either by changing the settings of the LPM, or by adding
an additional smoothing to the algorithm. Both methods
are briefly discussed.

3.1 Impact of the settings of the LPM on the bias/variance
trade off

The LPM method is controlled by two parameters. The
first is the degree R of the local polynomials, the second
is the local bandwidth that is specified by n. The bias and
variance on the nonparametric estimate Ĝpoly(Ωk)is given
by respectively by (Pintelon et al., 2010a):

GB(Ωk) = O((n/N)R+1 (9)
and

σ2
G
(k) = O(σ2

V
(k)/ (2n−R)) = O(σ2

V
(k)/n). (10)

For the variance expression, we assumed that the dis-
turbing noise is dominating the leakage error. This shows
that the bias/variance ratio is affected by the choice of
n,R. Restricting n to its minimum value (n = R + 1)
will result in the smallest bias, but a higher variance.
Increasing n will reduce the variance at a cost of a fast
increasing bias. When the variance is balanced against the
bias (σ2

G
(k) = |GB(Ωk)|2) we have that
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ñ = O(
�
σ2
V

� 1
2R+3 N

2R+2
2R+3 ) (11)

and

G̃2
B
= σ̃2

G
= O(

�
σ2
V

� 2R+2
2R+3 N− 2R+2

2R+3 ) (12)

For R = 2 we find that G̃2
B

= σ̃2
G

= O(
�
σ2

� 6
7 /N

6
7 ), and

ñ = O(σ
2
7N

6
7 ).

These results show clearly that the user can tune the LPM
either towards a minimal bias (at a cost of an increased
variance), or a balanced bias/variance solution. In the
next section we introduce smoothing as an alternative for
changing the parameters of the LPM.

3.2 Imposing additional smoothing

The basic nonparametric methods process the data fre-
quency by frequency. The results over the different fre-
quencies are not linked to each other although we know
that the FRF is a smooth function of the frequency.
Imposing additional smoothness constraints to the solu-
tion by combining the neighbouring frequencies results
in a noise reduction. Smoothing methods with a variable
smoothing window are studied in Stenman and Gustafsson
(2001) and Fan and Gijbels (1995). Recently, smoothing
was also added to the local polynomial method (Gevers
et. al., 2011). Imposing smoothing constraints over the
neighbouring frequencies can be interpreted as if the local
models that are used in the nonparametric method should
describe a wider local frequency bandwidth. Hence we
can use again the relations (12), but have to replace n
by a new value neff ≥ n where neff will depend upon
the nature and the settings of the smoothing method.
An alternative method that estimates the FRF Ĝ(Ωk) in
the frequency domain and the leakage terms tG(t)in the
time domain through a global Least Squares problem was
recently introduced in (Hägg et. al.,2011) and compared
with other nonparametric methods in Gevers et. al. (2012).
It also introduces smoothing on the estimates Ĝ(Ωk) in
order to produce enough equations for the LS problem.

3.3 Conclusion

We can balance the bias/variance trade-off either by
adding smoothing constraints or by changing the settings
of the LPM. For both choices it is clear that the variance
is reduced at a cost of an increased bias in the results:
increasing the smoothing by combining measurements over
a wider frequency band increases also the systematic errors
because the simple nonparametric or local models should
span a wider frequency band.

4. OPTIMAL TUNING OF THE NONPARAMETRIC
IDENTIFICATION METHODS

From the previous section, it turns out that the user
can tune the bias-variance ratio of the nonparametric
identification methods. In this section we will explain that
the best ratio will depend upon the intended use of the
nonparametric results. The estimation of the FRF of a
system is only an intermediate step in a complex modelling

process. In some applications the results are used to make a
graphical representation of the dynamics of a system, while
in other problems the FRF measurements (or even better,
the transient compensated output Fourier transform) are
used as a starting point for a parametric modeling step.

4.1 Direct use of the nonparametric results

If the nonparametric FRF measurements are directly inter-
preted, the user prefers a smooth result that is disturbed
as less as possible by the noise. From such a figure it is for
example possible to get an idea of the dominant frequency
range of the system; the damping of the dominant system
poles in the frequency range of interest; the phase (margin)
of the system; etc. We can translate this desire in a formal
requirement by minimizing the mean square error: the sum
of the squared bias and variance should be as small as
possible. This requires the variance to be balanced against
the bias errors.

Besides an estimate of the plant model, the unsmoothed
nonparametric method delivers also an estimate of the
power spectrum of the disturbing noise. In the clas-
sical smoothing methods all emphasis is put on the
bias/variance trade-off of the plant model, without paying
any attention to the quality of the nonparametric estimate
of the noise model. The noise model is estimated from the
residuals of the fit. It is clear that it will be biased because
also the bias errors of the plant model will contribute to
the residuals. The power of this contribution at frequency
Ωk is given by:

GB (Ωk)
2 SU (k) (13)

with SU (k) the power spectrum of the input at frequency
k. When the nonparametric use of the plant model is
the main goal, this is not an issue. However this is
unacceptable when we need reliable uncertainty bounds,
or reliable nonparametric noise model estimates. A two
step method should be used in that case to provide the
uncertainty bounds. In the first step, the smoothed plant
model is estimated, in the second step (smoothing switched
off) the noise model is obtained and next it is translated
in uncertainty bounds (and if possible also an estimate of
the bias) on the smoothed results.

4.2 Parametric identification starting from intermediate
nonparametric results

A parametric model combines the measurements at all
frequencies in one single model that uses significantly less
parameters than the nonparametric FRF description. Also
this step smoothes the nonparametric data. However, if a
bias is present in the raw data used for the parametric
identification, it will be impossible to remove it. Because
many more data points per parameter are combined in the
parametric identification step the variance that is induced
by the noise will be much smaller, and the optimal balance
between variance and bias errors should shift towards a
significantly smaller bias. This is the opposite of what
would be obtained by adding additional smoothing to the
nonparametric estimates. For that reason no smoothing
should be added to the nonparametric estimates if these
will be used as an input for a parametric estimation step.
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4.3 Conclusion

From the previous discusions it turns out that the intended
goal of the nonparametric processing steps will set the
required properties of the algorithm. If a high quality non-
parametric plant model is the major goal, it is advisable
to add smoothing to the algorithm. Alternatively, if the
results will be used as the input of a parametric estimation
step, or if the estimation of the nonparametric noise model
is the goal of the modeling process, it is not advisable to
add smoothing to the nonparametric preprocessing step.
In that case most attention should be paid to the reduction
of the bias of the nonparametric estimates.

5. EXAMPLE

The results of the previous discussions are illustrated on a
simulation. Consider the following system:

G0(z) = B0(z)/A0(z)

with
a = [0.19427 0.38854 0.19427]

and
b = [1 0.71246 0.74486].

The system is disturbed by process noise that is described
by the following noise model

H0(z) = C0(z)/D0(z)

with
c = [0.038854 0.083670 0.10156 0.059723 0.018658].

and
d = [1 1.5281 2.2864 1.2918 0.71537].

The system is excited with filtered white noise
u0 (t) = Ggen(q)eu (t)

with
Ggen(q) = Bgen(q)/Agen(q)

and
bgen = [0.52762 1.5829 1.5829 0.52762]

and
agen = [1 1.7600 1.1829 0.27806].

The simulation is repeated 10 000 times. In each simula-
tion N + 500 data points were generated. The first 500
points of each simulation were removed in order to create
simulations with non-zero initial conditions. The remain-
ing N = 2000 data points were processed to estimate
the (smoothed) FRF and the variance of the noise. The
rms error on the FRF (see Fig. 1), and the mean of the
estimated variance (see Fig. 3) is calculated over the 10
000 realizations. The number of realizations is selected so
high in order to show very clearly the bias/variance trade
off. From the averaged FRF estimates, the bias on the esti-
mated FRF is calculated (see Fig.2). From the figures, it is
seen that the rms error drops in this simulation when the
smoothing is increased (the local bandwidth is increased).
This is to be expected since the disturbing noise levels were
much higher than the leakage errors of the LPM. In Fig. 2
it can be seen that at the same time also the bias increased.
For the largest and 2nd largest local bandwidth a clear
bias can be seen. For the smallest bandwidth the bias is
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Figure 1. rms error of the estimated FRF for different
local bandwidths of the LPM. Black: G0; blue: n = 3;
green: n = 19; red n = 38.

still below the noise level, even after averaging over 10 000
realizations. This is the reason that the blue curve is not
smooth, the noise error still dominates the results. In the
last figure it can be seen that the variance estimate that
is obtained with the smallest local bandwidth coincides
completely with the true value, while for the larger local
bandwidths a bias can be observed: the sharp resonance is
smeared over the neighbouring frequencies, and the anti-
resonance is lost.

These results are in perfect agreement with the earlier
discussions.

i) If the nonparametric estimate of the FRF will be used
the largest local bandwidth should be selected. It results
in the smallest rms-error and hence the best results to be
used for a direct interpretation.

ii) If the estimated noise variance will be further used as a
frequency weighting in a parametric estimate, we have to
avoid the bias that is apparent for the smoothed results.
This would lead to a loss in efficiency on the parametric
estimate. Also the generation of uncertainty bounds would
be badly influenced by these wrong estimates.

iii) If in addition also the nonparametric FRF estimate
(or the transient compensated input/output Fourier trans-
form) would be used in a second step to obtain a paramet-
ric plant model estimate the situation becomes even worse.
In that case also a bias will be created on the parametric
estimate.

Conclusion: these results show clearly that the selection of
the best nonparametric method depends on the intended
use of the results. As a rule of thumb, we can say that
unsmoothed results should be used if the nonparametric
estimates are used as the input for a parametric post
processing. If the nonparametric FRF is the final goal (to
determine for example the cross-over frequency) it is better
to add an additional smoothing in order to get the smallest
rms-errors.

6. CONCLUSION

In this paper we set up a framework to compare and select
the ’best’ nonparametric FRF-estimator. It is shown that
the optimal choice depends strongly on the intended use of
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Figure 2. Bias error on the estimated FRF for different
local bandwidths of the LPM. Black: G0; blue: n = 3;
green: n = 19; red n = 38.
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Figure 3. Estimated variance of the disturbing noise for
different local bandwidths of the LPM. Black: true
variance; Estimated variance: blue: n = 3; green:
n = 19; red n = 38.

the results, and upon the experimental conditions. If the
nonparametric results are directly used and interpreted
by the user an optimized smoothing should be included
in the nonparametric estimate. The smoothing reduces
the variance of the estimate, but creates at the same
time a bias that increases with an increasing smoothing.
The bias/variance trade off can be tuned in order to
minimize the rms-error of the FRF-estimate. The smaller
the disturbing noise (with respect to the level of the
leakage errors), the less smoothing should be applied. If
the nonparametric estimates (noise model or/and plant
model) are to be used later in a parametric estimate,
it is important to avoid a bias because this can not be
removed any more in the post-processing. For that reason
smoothing should be turned off in that situation.
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