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Abstract: Iterative Feedback Tuning (IFT) is a data-based method for the tuning of
restricted-complexity controllers with a standardH2 criterion which in general gives no
a priori robustness guarantees. In this paper we elaborate on Loop Transfer Recovery
(LTR) LQG synthesis techniques designed to achieve robustness of the feedback loop. We
propose an IFT procedure that achieves approximate LTR and its associated robustness.
The proposed procedure is illustrated with a numerical simulation example.
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1. INTRODUCTION

Iterative Feedback Tuning (IFT) is a method for tuning
a parameterised controller in a feedback loop when a
mathematical description of the plant is not available
and the controller must be tuned on the basis of input-
output measurements. In IFT the tuning of the con-
troller parameters is performed through an iterative
procedure where a sequence of parameter updates is
calculated. Each update is calculated on the basis of
data obtained from a specific closed-loop experiment
where the previously calculated parameter vector is
implemented in the controller closing the loop and a
particular reference input is injected in the system.
The sequence of updates converges to a locally op-
timal parameter vector according to anH2 control
criterion which is the weighted combination of a track-
ing and a disturbance rejection term. The essence of
the method is an algorithm to construct an estimate
of the gradient of this control design criterion as a
function of the parameter of the controller on the basis
of the input-output data collected during the closed-
loop experiment. The tuning of the controller eventu-
ally consists in a gradient based descent of the control

design criterion on the space of controller parameters.

The IFT method was introduced in (Hjalmarssonet
al., 1994); see also (Hjalmarssonet al., 1998). Follow-
ing the original formulation several variants and im-
provements of the procedure have been proposed and
a number of successful applications have also been re-
ported (Hjalmarsson, 2002). One of the main features
of the method is that the term of the design criterion
associated to disturbance rejection automatically takes
into account the disturbances acting on the plant dur-
ing the tuning procedure. The asymptotic convergence
rate of the IFT method for pure disturbance rejection
has been analysed in (Hildebrandet al., 2005a) and
(Hildebrandet al., 2005b).

At the current state of the art, an issue that certainly
requires more investigation is the degree of robust
stability of a feedback loop tuned through the IFT
method. Since IFT minimises anH2 criterion, it does
not carry with it any a priori robustness guarantees. On
the other hand, increasing the degree of robust stability
can often be the main motivation for a practitioner to
re-tune the controller in an existing feedback loop.

An approach based on the IFT methodology which



deals with the issue of robust stability has been pro-
posed in (Veres and Hjalmarsson, 2002). This ap-
proach considersH∞ robust stability concepts. In par-
ticular, it is based on the fact that one can obtain a
rough estimate of theH∞ stability margin, i.e. the
maximum singular value of the closed-loop frequency
response (Zhouet al., 1996), through the following
procedure: (i) feed the system with a white noise input
and collect the corresponding output; (ii) estimate the
values of the frequency dependent stability margin on
a frequency grid in[0 π] as the sampled variances
of filtered versions of the collected output obtained
through a battery of narrow-band filters centred on the
elements of the grid; (iii) take the maximum of the
values of the estimated frequency dependent stability
margin. The tuning procedure of (Veres and Hjalmars-
son, 2002) then consists of estimating the stability
margin at each iteration and of taking a descent step
on anH2 criterion with a very narrow band weighting
term centred on the frequency corresponding to the
maximum estimated singular value. As can be ob-
served, the procedure is computationally heavy and
rather ad-hoc. The main reason for this is that it is
based on anH∞ robust stability criterion, which does
not lend itself naturally to an IFT implementation.
Indeed, the key feature of IFT, and the reason for its
success, is the fact that anH2 criterion is miminized
via the on-line estimation of its gradient with respect
to the vector of controller parameters. While the com-
putation of the gradient of anH2 criterion poses no
problem, for anH∞ criterion this represents a major
computational burden.

A suboptimal but simpler approach to the introduc-
tion of robustness into a controller computed by
the IFT methodology has recently been proposed in
(Proch̀azka et al., 2005). There the control perfor-
mance criterion is modified by the addition of one or
more H2 terms that specifically introduce weighted
versions of one or all of the sensitivity functions in the
criterion. Each sensitivity function can be weighed in-
dependently with a view of obtaining specific robust-
ness features; the choice of these weighting filters is
typically performed in a trial and error fashion. Thus,
the procedure of (Prochàzkaet al., 2005) is inspired
by the sensitivity shaping objective ofH∞ methods,
but it pursues this objective usingH2 criteria which
lend themselves to an IFT implementation, i.e. to a
computation of the gradient of the cost function using
IFT-like experiments on the real system.

In this paper, we propose to approach the issue of
robust stability within theH2 framework, which is
the natural framework of IFT, but using a robust con-
trol approach that does not attempt to approximate
or mimic theH∞ design. Our approach is inspired
instead by the research on LQG control design which
considered the covariance and weighting matrices in
the formulation of the LQG control problem as design
variables, rather than models of the real world, which
can be manipulated in order to meet some design re-

quirements. In particular, here we refer to the results
of (Maciejowski, 1985) on Loop Transfer Recovery
(LTR) for discrete-time LQG design. In (Maciejowski,
1985) it has been shown that for some specific choices
of these design variables and under some specific
assumptions, the designed control system meets the
excellent robustness properties of continuous-time LQ
state feedback, i.e. infinite gain margin and at least
60◦ of phase margin (Maciejowski, 1989). The termi-
nology LTR refers to the fact that this robustness is
obtained as a result of the matching of the open-loop
return ratio of the designed feedback loop with the
open-loop return ratio of the Kalman filter associated
to the selected noise model.

The contribution of this paper is an IFT procedure to
obtain approximate loop recovery and its associated
robustness in a parameterised feedback loop. In paral-
lel with the fact that in LTR LQG synthesis fictitious
covariances and weighting terms are used to obtain
loop recovery, our procedure is based on the injection
of synthetic disturbances in the loop and the formula-
tion of a specific disturbance rejection problem.

The paper is organised as follows. In the next section
we recall the results of (Maciejowski, 1985) on LTR.
In Section 3 we introduce an IFT procedure for ap-
proximate LTR. A numerical example that illustrates
the procedure is discussed in Section 4. Section 5
contains conclusions and future objectives.

2. LOOP TRANSFER RECOVERY (LTR) FOR
DISCRETE-TIME SYSTEMS

Consider the problem of designing an output feedback
controller for a plantP described by the state-space
equations

xk+1 = Axk +Buk +wk (1)

yk = Cxk + vk (2)

wherex ∈ R
n, y,u ∈ R

m (n ≥ m), andw andv are pro-
cess and measurement disturbances modelled as white
noise signals with covariancesW andV respectively.
Here we focus on LQG methods where the output
feedback controller is obtained as the concatenation
of a Kalman filter, for state estimation, and an LQ-
optimal state feedback law. The Kalman filter takes
the form

x̂k+1|k = Ax̂k|k−1 +Buk +K p
f (ŷk|k−1− yk) (3)

ŷk|k−1 = C x̂k|k−1 (4)

x̂k|k = x̂k|k−1−K f
f (ŷk|k−1− yk) (5)

where ˆxk|k and x̂k|k−1 are the state estimates at time
instant k based on data up to time instantsk and
k − 1 respectively. The feedback matrixK p

f and the

feedforward matrixK f
f are obtained from the solution



of the appropriate Riccati equation (Åstrom and Wit-
tenmark, 1997). In the sequel we consider the case in
which it is actually possible to use ˆxk|k to calculate the
control action, i.e. the computational time is negligible
with respect to the interval between observations of
plant variables. The output feedback control is then
obtained as

uk = −Kc x̂k|k . (6)

where state feedback matrixKc is also defined by the
appropriate Riccati equation after the selection of a
pair of cost weights in the LQ control design crite-
rion. We denote byC f the output feedback controller
defined by equations (3–6).

In general the control system described by equations
(1–6) does not have good robust stability properties.
The lack of guaranteed robust stability properties is
a drawback of output feedback LQG design. This
drawback arises in the discrete time case considered
in this paper as well as in the continuous time case
(Doyle, 1978). In order to overcome this limitation,
techniques to select the weighting terms in the de-
sign procedure have been developed which aim to
the recovery of the excellent robustness properties of
continuous time LQ full-state feedback. The contin-
uous time case is considered for example in (Doyle
and Stein, 1981). Here, we recall some results for the
discrete time case.

In (Maciejowski, 1985) the particular case in which
the output feedback controllerC f is designed accord-
ing to the design criterion

J =
∞

∑
k=1

y′kyk (7)

is considered. Let us recall that for this particular cri-
terion the optimal state-feedback matrixKc has an ex-
plicit expression (Shaked, 1985). It is then shown that,
under some suitable assumptions, the loop transfer
function of the resulting control system (1-6) recovers
the open loop transfer function of the state feedback
loop in the corresponding Kalman filter (3-5). More-
over, conditions under which the Kalman filter state
feedback loop presents robustness properties compa-
rable to a continuous time LQ state feedback loop are
derived.

The results of (Maciejowski, 1985) are summarized
below. HereΦ(z) denotes the open loop transfer func-
tion of the Kalman filter. The transfer functionΦ(z) is
given by

Φ(z) = C(zI −A)−1K p
f . (8)

and is the transfer function from(ŷk|k−1−yk) to ŷk|k−1
obtained by cutting the internal feedback loop in (3-5).
The recovery properties are stated as follows.

Proposition 1 (Maciejowski, 1985)
Let the following assumptions hold: (i) det(CB) 6=
0; (ii) P(z) = C(zI − A)−1B is minimum-phase. Let
C f (z) be the LQG output feedback controller designed
according to (7). Then

P(z)C f (z) = Φ(z) . (9)

The following proposition deals with the robustness of
the loop determined byΦ(z).

Proposition 2 (Maciejowski, 1985)
Suppose that, for somez0 = e jω0

σ̄ [Φ(z0)] < ε (10)

σ̄ [C(z0I −A)−1W 1/2] < ε (11)

σ(V ) = σ̄(V ) (12)

ε ≤ 2σ̄(W ) (13)

where σ̄(·) and σ(·) denote, respectively, the maxi-
mum and the minimum singular value of a matrix.
Thenε ≪ 1 implies thatΦ(z) has the stability margins
of the continuous-time LQ state feedback loop.

The following comments are in order:

• As pointed out in (Maciejowski, 1985), assump-
tions (10) and (11) will usually hold withε small
over some high-frequency interval provided that
the sampling interval is small enough or, equiv-
alently, provided that the bandwidth ofΦ(z) is
low enough.

• The robustness of the continuous-time LQ state
feedback loop is characterised by infinite gain
margin and at least 60◦ of phase margin. In the
SISO case, on which we shall focus in the next
section, the designed loop satisfies the condition

|1+Φ(e jω)| ≥ 1 (14)

which means that the Nyquist locus stays outside
the circle with centre -1, and radius 1 and implies
the stability margins mentioned above.

• Good robustness properties of the designed loop
are guaranteed as long as the assumptions of
Proposition 2 are met. Some freedom is then
left to the designer who can modifyW andV ,
in order to obtain useful feedback action (sensi-
tivity reduction) as well as stability robustness.
For example, an increase ofW with respect toV
results, roughly speaking, in an increase of the
bandwidth of the designed loop. The reader is
referred to (Maciejowski, 1989) for a discussion
of more sophisticated procedures, which may
include augmentation of the plant dynamics, to
allow the designer to affect also the shape of the
designed open-loop return ratio.

3. IFT PROCEDURE FOR APPROXIMATE LOOP
RECOVERY

In this section we propose an IFT procedure to achieve
approximate LTR in a parameterised feedback loop.
The procedure is inspired by the results of Proposi-
tions 1 and 2. Here, though, we restrict ourselves to
the SISO case.

We make the usual assumption that the transfer func-
tion of the plant is not known and that an output



feedback controllerC(ρ) belonging to a set of pa-
rameterised controllers with parameterρ ∈R

r, is con-
nected to the plant. The objective is to tune the con-
troller C(ρ), in order to obtain approximate loop re-
covery and its associated robustness. In order to do so
we adopt the restriction of the LQG criterion (7), over
the set of available controller parameters, as a design
criterion.

The basic idea, which allows us to obtain (7) as a
design criterion, is to consider the experimental set-up
depicted in Figure 1. Here ˜w and ṽ are synthetically
generated white-noise signals with variancesσ2

w and
σ2

v respectively. The desired design criterion is then

J(ρ) = Var[ỹ(ρ)] . (15)

The above criterion is the restriction of (7) over the
set of available controllers for a particular choice of
W andV . It can be expected that, providing that the
system fulfils the assumptions of Proposition 1 and 2,
the controller tuned so as to minimise (15) will achieve
approximate loop recovery.

The following comments are in order:

• Since we inject the synthetic process noise ˜w at
the input of the plant, the proposed experimental
setup corresponds to the choiceW = σ2

wBB′ and
V = σ2

v in the formulation of the LQG control
problem. Here we assume that other disturbances
acting on the system are not taken into account
in the design criterion. In practice we realise this
condition by making the IFT procedure insensi-
tive to the effect of other possible disturbances.

• In the SISO case the transfer function of the plant
must have exactly unit delay in order to fulfil as-
sumption (i) in Proposition 1. (This occurs gener-
ically when sampling a continuous-time plant.)
In addition, we recall that here we consider the
case where the controller has no delay.

• The assumptions of Proposition 2 will be ful-
filled if the bandwidth of the system is kept low
enough (relative to the sampling frequency) as
discussed at the end of the previous section. The
ratio σ2

w/σ2
v is an approximate tuning knob for

the bandwidth. Condition (12) is automatically
satisfied sinceV is in fact a scalar.

The data-based IFT procedure to minimise (15) is
given below. Apart from the introduction of the syn-
thetic disturbances the procedure does not take other
major departures from the standard IFT procedure of
(Hjalmarssonet al., 1998). Here Step 2 is introduced
to make the tuning independent from other distur-
bances acting on the loop whose effect is in fact can-
celed in the sampled estimate (16) below.

IFT PROCEDURE FOR LOOP RECOVERY

Assume that controllerC(ρn) is attached to the plant.

1. Generate synthetic white-noise signals{w̃k}k=1:N

and{ṽk}k=1:N and collect output data{ỹk(ρn)}k=1:N

by performing the experiment illustrated in Figure 1.

−

+

+

+

P

C(ρ)

y

ỹ

u

w̃

ṽ

Fig. 1. Experimental setup

2. Repeat the experiment with the same inputs and
collect another set of output data{ỹ′k(ρn)}k=1:N .

3. Collect output data{ỹ2
k(ρn)}k=1:N data by perform-

ing a third experiment with input ˜w2
k = ỹk(ρn).

4. Form the estimate of the gradient ofJ(ρ) at ρn as

estN

[

∂J
∂ρ

(ρn)

]

=
1
N

N

∑
k=1

ỹ′k(ρn)est

[

∂ ỹk

∂ρ
(ρn)

]

(16)

est

[

∂ ỹk

∂ρ
(ρn)

]

=
∂C
∂ρ

(q,ρn) ỹ2
k(ρn) (17)

5. Calculate the new parameter vectorρn+1 according
to

ρn+1 = ρn − γnR−1
n estN

[

∂J
∂ρ

(ρn)

]

(18)

whereγn is a positive step size andRn is a symmetric
positive definite matrix.

6. Update the controller parameter withρn+1 and loop
to step 1.

Under some technical assumptions the sequenceρn

converges to a local minimiser of (15) (Hildebrand
et al., 2005a; Hjalmarssonet al., 1998). The reader
is referred to (Hildebrandet al., 2005a; Hjalmarsson
et al., 1998) also for the choice ofγn and Rn in the
algorithm. In the case that the external disturbances
are negligible, with respect to the power of inputs ˜wk

and ṽk, the experiment in Step 2 can be avoided and
one can set ˜y′k(ρn) = ỹk(ρn) in (16).

4. NUMERICAL EXAMPLE

In this section we present a numerical example which
illustrates the use of the IFT procedure proposed in
the previous section. The design case illustrated here
is a fair representative of many different examples
which confirmed the effectiveness of the proposed
procedure.

The transfer function of the plant is

P(z) =
0.259(z−0.3)3

(z−0.8)(z−0.5)(z2− z+0.89)
. (19)

The Bode plots ofP(z) are displayed in Figure 2. The
parameterised feedback controller is given by

C(z;ρ) = ρ0 +ρ1z−1 +ρ2z−2 . (20)
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Fig. 2. Bode plots of the plant transfer function

Since the plant is minimum-phase and has unit de-
lay, and the controller has no delay, the conditions
of Proposition 1 — which imply recovery of good
robustness properties — are fulfilled. Therefore, due
to the result of Proposition 2, we can expect good
robustness properties at least for a design with a low
target bandwidth.

We have tuned the parameter of the feedback con-
troller according to the data-based procedure of Sec-
tion 3 for different values of the ratioσ2

w/σ2
v . In each

caseσ2
v was fixed atσ2

v = 1 while σ2
w was given

by σ2
w = 0.5, σ2

w = 2 and σ2
w = 4 respectively. For

each case, a large number of IFT iterations have been
performed, with a small step size, in order to ensure
convergence of the algorithm. The figures documented
below are plotted with the IFT controllersC(z;ρ) ob-
tained at convergence of the algorithm.

Figure 3 displays the Nyquist diagrams ofP(z)C(z;ρ)
and ofP(z)C f (z) whereC f (z) is the LQG controller
defined byW = σ2

wBB′, V = σ2
v and (7). The Bode

plots of the corresponding sensitivites are displayed in
Figure 4.

Notice how by increasing the ratioσ2
w/σ2

v we ob-
tained an increase in the bandwidth of the designed
closed-loop system — namely an increase in the gain
of P(z)C(z;ρ), and a corresponding reduction of the
corresponding sensitivity over an increasing range of
frequencies. We also obtained good robustness prop-
erties in terms of stability margins for all three cases.
As was expected, the robustness of the design, which
is implied by fulfilment of the assumptions of Proposi-
tion 2, degrades slightly as the bandwidth is increased.
This can be seen from the slight increase in the peak
value of the sensitivity.

5. CONCLUSIONS

We have proposed an IFT procedure that achieves
Loop Transfer Recovery and the robustness which is
associated with it. The objective of current research
is the development of an iterative procedure for con-
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Fig. 3. Nyquist diagrams ofP(z)C(z;ρ) (dash) and of
P(z)C f (z) (solid)



troller tuning where the designer can progressively en-
large the bandwidth of a initial controller while main-
taining robustness of the loop. A simulation example
which illustrates such a procedure has been given in
this paper. We will investigate the use of more sophis-
ticated techniques to shape the designed loop which
possibly make use of approximate closed-loop models
of the plant.
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Fig. 4. Bode plots of[1+P(z)C(z;ρ)]−1 (dash) and of
[1+P(z)C f (z)]−1 (solid)


