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Abstract We consider the identification of networks of linear time-invariant dynam-
ical systems whose node signals are measured and are connected by causal linear
time-invariant transfer functions. The external signals at the nodes may comprise
both known excitation signals and unknown stationary noise signals. The identifi-
cation of such networks comprise two essentially different problems. The first is to
find conditions on the external excitation signals that allow the identification of the
whole network from the measured node signals and excitation signals. The second
problem is the identification of a particular module (i.e. transfer function) embedded
in the network. We present state of the art results for both problems.

1 Introduction

The identification of networks of dynamical systems has recently emerged as an ac-
tive topic in the systems and control community. Attention has focused on networks
in which the node signals are connected by scalar causal rational transfer functions.
These node signals are excited through the network by a combination of known
external excitation signals and unknown noise sources. The node signals and the
known external excitation signals are assumed to be measured without error. The
identification of such networks essentially contains two different questions.
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The first question is the identification of the whole network using all measured
node signals and the known external excitation signals. This approach estimates all
transfer functions of the network and, as a result, also delivers the topology of the
network by detecting which of these transfer functions are zero, so that one can
construct the directed graph describing its interconnection structure. As we shall
show, there is a fundamental unidentifiability problem in the sense that it is impos-
sible to reconstruct such dynamical networks from measurements of the nodes and
of the known external excitation signals, unless some prior knowledge is available
about the structure of the network. The question is thus to produce conditions on
the network structure (in the form of prior knowledge) and on the external excita-
tion signals that lead to a unique identification of the whole network. To illustrate
how virgin this question was until recently, we quote from [8] published in 2010:
“Remarkably, while networks of dynamical systems have been deeply studied and
analyzed in automatic control theory, the question of reconstructing an unknown
dynamical network has not been formally investigated yet. Indeed, in most applica-
tive scenarios the network is given or it is the very objective of design. However,
there are also some interesting situations where the link structure is actually un-
known and dynamic, such as in biological neural networks, biochemical metabolic
pathways and financial markets with a high frequency trade.”

The second question concerns the identification of a particular transfer function
within the network, assuming that its interconnection structure is known. It involves
questions such as which signals need to be measured, and which external excita-
tion signals need to be applied in order to estimate the desired transfer function. A
number of results on this topic have been obtained recently [9, 2, 3].

In this chapter, we present state of the art results on these two questions. We first
consider the problem of global identification of a network of dynamical systems. An
early result pointing to the unidentifiability problem mentioned above can be found
in [6] where the authors showed that, for a strictly proper continuous time system
with known inputs, the transformation from input-output form to a network form is
non-unique. More recent research has focused on the modeling and identification of
high-dimensional stochastic processes, where the focus has been on detecting the
causal links between variables [1, 11, 7].

We examine under what conditions on the network structure and on the external
signals such network can be uniquely identified from the measured node signals
and the known external signals, for networks with both deterministic and stochastic
inputs. Our results take the form of a range of sufficient conditions on the network
structure and on the external signals that will guarantee that the network can be
uniquely reconstructed from the measured data. They are close to those of [10], even
though our approach takes a different route inspired by the deterministic approach
of [6].

We adopt the network model structure studied in [10], and we first show that
this network model can be transformed into an equivalent Multiple Input Multiple
Output (MIMO) model with added noise, which can be identified in open loop. The
identifiability conditions for open-loop MIMO systems are well established, and
they lead to a unique Input Output (I/O) model and a unique noise model under
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the usual assumptions that the system is in the model set and that the data are in-
formative with respect to the adopted model structure. The question of whether the
network model can be identified from measured data then turns into the question of
whether or not the mapping from the network model to the I/O model is injective.

We first propose a definition of network identifiability that relates to the objective
of identifying the true network from measured data. A network model structure that
is able to represent the true network will be called identifiable if no other different
network model structure, that is unable to represent the true network, can produce
the same I/O model. By extending the results of [6] to networks with unmeasured
noise signals and with transfer functions that need not be strictly proper, we then
show that, generically, there is an infinity of network models that produce the same
I/O model, and we provide a parametrization of all these indistinguishable network
models. These indistinguishable network models may even have different intercon-
nection structures, i.e. the zero transfer functions are in different locations, leading
to different corresponding graphs. This implies that a network model structure that
is able to represent the true network will be identifiable only if some adequate prior
knowledge is available about its structure. Such prior knowledge can take many
different forms, such as the topology of the interconnection structure between the
nodes, or the topology of the external excitation structure by the known excitation
signals or by the noise signals.

We present a range of sufficient conditions on the structure of the external ex-
citation signals - reference excitation signals and noise signals - that make the net-
work model structure identifiable. These conditions show that the known excitation
signals and the unknown noise signals play the same role in terms of their capac-
ity to make the network structure identifiable; in other words identifiability can be
achieved either by the known excitation signals, or by the noise signals, or by a
combination of both.

In the second part of this chapter, we consider the problem of identitying a mod-
ule (i.e. a transfer function) embedded in the network. Several contributions have
recently been made for this problem [9, 2, 3]. A major open problem is that of find-
ing conditions on the external excitation signals (known or noisy) that will lead to a
consistent estimate of the desired transfer function. We illustrate this problem on a
3-dimensional network. Our contribution is twofold: show which external excitation
signals are required to make the data informative, and show how adding additional
excitation at other nodes affects the parameter variances of the estimated transfer
function.

The outline of this chapter is as follows. The network model structure is pre-
sented in section 2. In section 3 we present a definition of identifiability of a network
which relates to the objective of identifying the true network. We then show that a
network is generically unidentifable and we parametrize the set of all indistinguish-
able network models. Using this parametrization, we present a range of sufficient
conditions on the structure of the external excitation that render the network identi-
fiable. In section 4 we illustrate the problem of obtaining an informative experiment
for the identification of an embedded module. We conclude in section 5.
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2 Problem statement

We consider a network made up of L nodes, with node signals denoted {w1(t), . . . ,wL(t)}.
These node signals are related to each other and to external excitation signals r j and
white noise signals e j by the following network equations, which we call the net-
work model and in which the matrix G0 will be called the network matrix:

w1
w2
...

wL

=


0 G12 . . . G1L

G21 0
. . . G2L

...
. . . . . .

...
GL1 GL2 . . . 0




w1
w2
...

wL

+K0(q)


r1
r2
...

rL

+H0(q)


e1
e2
...

eL

 (1)

Or, equivalently

w(t) = G0(q)w(t)+K0(q)r(t)+H0(q)e(t) (2)

with the following properties:

• Gi j are proper but not necessarily strictly proper transfer functions. Some of them
may be zero, indicating that there is no direct link from w j to wi.

• there is a delay in every loop going from one w j to itself.
• the network is well-posed so that (I−G0)−1 is proper and stable.
• all node signals w j, j = 1, . . . ,L are measurable.
• ri are external excitation signals that are available to the user in order to produce

informative experiments for the identification of the Gi j. K0(q) reflects how the
external excitation signals affect the node signals.

• e ∈ℜL is a white noise vector with a positive definite covariance matrix Σ . H(q)
is a L×L stable rational matrix.

• the external excitation signals ri are assumed to be uncorrelated with all noise
signals e j, j = 1, . . . ,L.

• q−1 is the delay operator.

The network model (2) can be rewritten in a more traditional form as follows:

w(t) = T 0(q)r(t)+N0(q)e(t) (3)

where

T 0(q) ∆
= (I−G0(q))−1K0(q), N0(q) ∆

= (I−G0(q))−1H0(q). (4)

The description (3) will be called the input-output (I/O) description of the net-
work. A corresponding parametrized version Mio = [T (q,η),N(q,η)] will be called
the input-output (I/O) model.
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3 Identifiability of the whole network

3.1 Definition of network identifiability

Consider now that our objective is to estimate the matrices G0(q),K0(q) and H0(q)
of the network (2) using the available measurements w(t) and r(t). Assuming that
the network is driven by sufficiently informative excitation signals r(t) and white
noise signals e(t), what are the conditions (in the form of required prior knowl-
edge) on the network matrices G0(q),K0(q),H0(q) such that they can be uniquely
identified from the known measured signals w(t) and r(t)?

It is well known from the theory of identification of multi-input multi-output
(MIMO) linear time-invariant (LTI) systems that from the signals w(t) and r(t) one
can uniquely identify the matrices T 0(q) and N0(q) of the input-output model (3)
if the chosen model structure Mio = [T (q,η),N(q,η)] is such that [T 0(q),N0(q)] =
[T (q,η0),N(q,η0)] for some unique η0 (this is the identifiability question), and if
the signals r(t) are sufficiently rich for the chosen parametrizations (this is the infor-
mativity question). The identification of (3) is an open loop identification problem.

The question of network identifiability then relates to the mapping from
[T 0(q),N0(q)] to [G0(q),K0(q),H0(q)], namely under what conditions (in the form
of prior knowledge on the network matrices G0(q),K0(q),H0(q)) can one uniquely
recover the network matrices [G0(q),K0(q),H0(q)] from the true input-output de-
scription [T 0(q),N0(q)]? It can be formally defined as follows.

Definition 1. (Identifiability of the true network model): Consider the true network
(2) defined by the triple S = [G0,K0,H0] and a parametrized network model struc-
ture {M(θ) = [G(θ),K(θ),H(θ)],θ ∈ Dθ} with the property that M(θ0) = S =
[G0,K0,H0] for some θ0 ∈Dθ . Let [T 0,N0] be the corresponding true I/O model de-
fined by (4). Then S is network identifiable if there exists no other network model
structure {M̃(ν) = [G̃(ν), K̃(ν), H̃(ν)],ν ∈Dν} such that (I−G̃(ν0))

−1K̃(ν0) = T 0

and (I−G̃(ν0))
−1H̃(ν0)=N0 for some ν0, with [G̃(ν0), K̃(ν0), H̃(ν0)] 6= [G0,K0,H0].

We illustrate this definition with the following example studied in [10].

Example 1. Consider the following 3-node noise-free network S1:

G0(q)=

 0 0 0
A(q) 0 0

0 B(q) 0

 ,K0(q)=

1 0 0
0 1 0
1 0 0

 (5)

i.e. G0
21(q) = A(q),G0

32(q) = B(q), where A(q) and B(q) are rational transfer func-
tions, and all other G0

i j are zero. The corresponding I/O description of the true net-
work is given by (3) with

T 0(q)=

 1 0 0
A(q) 1 0

A(q)B(q)+1 B(q) 0

 (6)
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The following Ḡ and K̄ yield a network S2 with the same I/O model T 0 as the “true”
network (5):

Ḡ(q)=

 0 −B(q) 1
A(q) 0 0

0 B(q) 0

 , K̄(q)=

0 0 0
0 1 0
1 0 0

 (7)

Thus, the network [Ḡ, K̄] is indistinguishable from the true network even though it
has a different topology. It means that if the same data {r(t)} excite the two networks
(5) and (7), they will generate the same data {w(t)}, despite the fact that the graphs
of these two networks are different.

3.2 The set of all indistinguishable networks

We show in this section that there exists an infinite set of network models M(θ) =
[G(q,θ),K(q,θ),H(q,θ)]∈M ∗ that produce the same I/O model [T (q),N(q)], and
we parametrize the set of these indistinguishable network models. This will allow
us to derive conditions on prior knowledge of the true network model structure that
will make this network identifiable in the sense of Definition 1. This parametrization
is an extension to networks with noisy inputs of a result of [6] which adressed the
case of a noiseless network with strictly proper transfer functions. We first introduce
the notion of admissible network matrix.

Definition 2. (Admissible network matrix): A network matrix G(q,θ) is called ad-
missible if the following conditions hold:

• the diagonal elements of G(q,θ) are zero;
• there is a delay in every loop going from one w j to itself;
• all Gi j(q,θ) are proper
• (I−G(q,θ))−1 is stable

The following theorem describes the set of all network models that produce the same
I/O model [T N]. For brevity of notations, we delete the (q,θ) dependence.

Theorem 1. The set of all network models that produce an I/O model Mio = [T N]
is given by

{[G̃ K̃ H̃] = [G̃ (I− G̃)T (I− G̃)N]} (8)

where G̃ is any admissible network matrix of size L×L, in the sense of Definition 2.
Proof: We first show that the set of network matrices defined in (8) produce the
correct I/O model Mio = [T,N]. Indeed, the I/O transfer function matrices derived
from (8) are

T̃ = (I− G̃)−1K̃ = (I− G̃)−1(I− G̃)T = T

Ñ = (I− G̃)−1H̃ = (I− G̃)−1(I− G̃)N = N
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Conversely, let [G̃, K̃, H̃] be any network that produces the correct T and N with G̃
admissible. Then, necessarily, we must have (I− G̃)−1K̃ = T and (I− G̃)−1H̃ = N.
Premultiplying both equations by (I− G̃) shows that this network has the form (8).

This result shows that without prior knowledge about the network structure, any
admissible G̃ can produce the true I/O model [T 0(q),N0(q)]. The choice of any par-
ticular G̃ fixes the corresponding K̃ = (I− G̃)T and H̃ = (I− G̃)N, and the network
[G̃, K̃, H̃] is then indistinguishable from the “true” [G0,K0,H0]. This means that if
they are driven by the same {r(t),e(t)} signals, they will generate the same {w(t)}.
Thus, a network is generically not identifiable from measured data {w(t),r(t)}, un-
less some prior information is known about G0(q) and/or K0(q) and/or H0(q).

The following corollary, which is an extension to noisy networks of Lemma 4 of
[6], will help us generate constraints that make a network identifiable.

Corollary 1. Let [G0,K0,H0] be the transfer matrices of the “true” network. Let

∆G be any transfer function matrix of size L× L such that G̃ ∆
= G0 +∆G is ad-

missible in the sense of Definition 2. Let K̃ = K0 +∆K and H̃ = H0 +∆H be the
corresponding matrices defined by (8). Then the network [G̃, K̃, H̃] has the same I/O
model as the true network [G0,K0,H0] if and only if

[∆G ∆K ∆H]

T 0 N0

I 0
0 I

= [0 0] (9)

Proof: The proof follows immediately from Theorem 1 by noting that for all these
[G̃ K̃ H̃] we have (I− G̃)−1[K̃ H̃] = [T 0 N0].

3.3 Conditions for network identifiability

In this section we use the result of Corollary 1 to derive a range of sufficient con-
ditions under which the true network is identifiable. These conditions take the form
of prior knowledge on the structure of the excitation matrices K0(q) and H0(q). As
stated in the introduction, it is a realistic situation that the way in which the external
signals enter the network is known a priori. The following theorem provides a first
set of sufficient conditions.

Theorem 2. The network structure (1) is identifiable if L−1 columns of the matrix
[K0 H0] are known and linearly independent.
Proof: It follows from Corollary 1 that the network [G0 K0 H0] is identifiable if
and only if there is no triple [∆G ∆K ∆H] that satisfies

∆G(I−G0)−1[K0 H0] =−[∆K ∆H] (10)

Since ∆G has zeroes on its diagonal, it contains L×(L−1) unknown elements. Now
let W denote the L×(L−1) submatrix of [K0 H0] made up of its known and linearly
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independent columns. Then the corresponding columns of [∆K ∆H] are zero. From
(10) we can thus extract the following subset of equations for ∆G:

∆G(I−G0)−1W = O (11)

where W and O have size L× (L− 1). This represents a set of L× (L− 1) linearly
independent equations for the L× (L− 1) unknown elements of ∆G, from which it
follows that ∆G = 0. It then follows from (10) that ∆K and ∆H are also zero.

By applying this theorem to Example 1 we note that if K0 is known, then the network
is identifiable. A network is also identifiable when either K0(q) or H0(q) is diagonal
with nonzero diagonal elements, a situation that is not covered by Theorem 2.

Theorem 3. Consider the network structure (1) and assume that either K0(q) or
H0(q) is diagonal and of full rank. Then the network is identifiable.
The proof can be found in [4].

Alternative sets of sufficient conditions for identifiability of the whole network have
also been derived in [10].

4 Identification of an embedded module

In this section we consider the other major problem in the identification of networks,
namely the identification of a single embedded module. Without loss of generality,
consider that the objective is to identify the module G12(q) in the network (1).

Historically, this problem was addressed first in [9]. In that paper, the authors
proposed several solutions to this problem, based on existing closed-loop identifi-
cation methods. Indeed, if the objective is to identify G12(q), it is easy to show that
the network model (1) can be rewritten as a Multiple Input Single Output (MISO)
closed-loop system, where w1 acts as the single output and [w2 w3 . . .wL]

T acts as the
input vector of this closed-loop system. Thus, the various methods of closed-loop
identification can be applied for the identification of G12(q).

An important problem that has not been solved so far is that of deciding which
external excitation signals, measured or unmeasured, need to be applied for the iden-
tification algorithms to converge to the true G12. This is the question of informativity
of the identification experiment. In [9, 2] it is assumed that the vector w(t) of node
signals is informative, but this is an internal constraint. The difficult question is what
are the requirements on the external signals, ri(t) and ei(t), that will deliver informa-
tive data for the identification of the module G12(q). Assuming that different choices
of external signals can yield informative data, then another interesting question is
how do these different choices affect the variance of the estimated Ĝ12(q).

The objective of obtaining necessary and sufficient informativity conditions on
the external excitation signals for the identification of a specific module, say G12,
is illusory, since these informativity conditions will depend on the method that is
used for the identification of G12 and, in particular, on the signals that are used.
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Thus, the aim is to find sufficient conditions for informativity. The first contribu-
tion to this informativity question for an embedded module is to be found in [3],
where we have analyzed a 3-node network. We have shown that, even in such sim-
ple network, different alternatives exist for the identification of G12 and we have
proposed a framework, based on [5], for the computation of sufficient conditions
for informativity depending on the identification method used.

Here we study the direct identification of G12 using the first equation of (12), and
we extend the analysis of [3] by computing not just the informativity requirements,
but also the way in which informative excitation signals affect the variance of the
estimated G12. In order to obtain an unbiased estimate of G12, the direct method
requires the identification of the vector [G12 G13]. To keep the analysis simple, we
shall assume that K0 = H0 = I. Thus, consider the following 3-node network:w1

w2
w3

=

 0 G12 G13
G21 0 G23
G31 G32 0

w1
w2
w3

+
 r1

r2
r3

+
 e1

e2
e3

 (12)

where it is desired to identify G12. For the purpose of analysing the effect of different
excitation scenarios on the estimates, we adopt the following model structure for the
parametrization of G12, G13:

M =
{

G12(α),G13(α,β ), θ =
(

αT β T )T ∈ Dθ ⊂Rd
}

(13)

where G12(α) and G13(α,β ) are rational transfer functions, θ ∈ Rd is the vector
of model parameters, and Dθ is a subset of admissible values for θ . Thus, α are the
possibly common parameters of G12(θ) and G13(θ).

We shall assume that there exists some θ 0 = (αT
0 ,β

T
0 )T ∈ Dθ that represents the

true G0
12 and G0

13. The one-step ahead prediction error for w1(t) is given by

ε1(t,θ)
∆
= w1(t)− ŵ1(t|t−1,θ) = [w1(t)−G12(α)w2(t)−G13(α,β )w3(t)− r1(t)]

If the model structure is identifiable and the data informative, the parameter vector
estimate θ̂ N converges asymptotically to the true θ 0, and the per sample asymptotic
covariance matrix is given by Pθ = [I(θ 0)]−1 where I(θ) is the information matrix:

I(θ) ∆
= Ē[ψ(t,θ)ψT (t,θ)] (14)

The pseudoregressor vector ψ(t,θ) ∆
= ∂ε1(t,θ)

∂θ
is expressed as follows as a function

of the excitation signals:

ψ(t,θ) =V (q,θ)

 r1(t)+ e1(t)
r2(t)+ e2(t)
r3(t)+ e3(t)

 (15)
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where V (q,θ) is a d× 3 matrix of transfer functions obtained as follows from the
partial derivatives of G12(θ) and G13(θ) with respect to the unknown parameters.

V (q,θ) =
[

V1 V2 V3
]
, where (16)

V1
V2
V3

=

T 0
21 T 0

31
T 0

22 T 0
32

T 0
23 T 0

33

[∇1
∇2

]
, with ∇1=

[
∂G12
∂α

0

]
and ∇2=

[
∂G13
∂α

∂G13
∂β

]
. (17)

Here the T 0
i j are the elements of the second and third column of the transfer matrix

T 0 ∆
= (I−G0)−1 of the true network (12).
A data set is informative if the information matrix that it produces is nonsingular,

i.e. I(θ) > 0. By the above expressions, this is equivalent with the condition that
there exists no vector µ ∈ℜd with µ 6= 0 such that

µ
TV (q,θ) = 0. (18)

We now apply this informativity analysis to the identification of G12 = a1q−1 +
a2q−2 and G13 = bq−1 using the direct prediction error method based on the first
equation in the following 3-node example.w1

w2
w3

=
 0 a1q−1 +a2q−2 bq−1

q−1 0 0
0 cq−1 0

w1
w2
w3

+
 r1

r2
r3

+
 e1

e2
e3

 (19)

Applying expressions (16)-(17) to this example, with α = (a1 a2) and β = b, yields:

[
V1 V2 V3

]
=

1
∆

 q−2 q−1 bq−3

q−3 q−2 bq−4

cq−3 cq−2 q−1−a1q−3−a2q−4

 (20)

where ∆ = 1− a1q−2− (a2 + bc)q−3. From (20) it is clear that µT [V1 V2] = 0 for
µ = [0 c −1]T , while Ker(V 3) = {0}. This shows that applying either r3 6= 0 or
e3 6= 0 is a necessary and sufficient condition for the generation of informative data,
and thus for convergence of the parameters a1,a2,b to their true values. Additional
signals at other nodes may reduce the variance of these estimates, and hence of Ĝ12,
since I(θ) is given by (14), which leads to the following covariance of the estimate:

P
θ̂ N =

λ1

N
[I(θ 0)]−1 I(θ) =

1
2π

∫ 2π

0

{
3

∑
1
[ViV ?

i Φri +ViV ?
i λi]

}
dω (21)

where N is the number of data used in the identification and λi is the variance of ei.
We illustrate our informativity analysis and the effect of different scenarii of ex-

ternal excitation on parameter variance by calculating the variance from (21) using
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the following true parameters: a1 =−0.3,a2 = 0.8,b =−0.5,c = 0.5. We consider
there different scenarii: excitation of r3 alone, excitation of r3 and r1, and excita-
tion of all inputs. In all cases, the inputs are white noise with unit variance, while
a white noise with variance λ1 = 2 is present in the first equation - the one that is
used for prediction error identification. The variances of the parameter estimates are
calculated for N = 2,000 data.

Table 1 below shows the different experimental scenarii and the corresponding
values of the covariance matrix - note that the individual variances of each parameter
correspond to the diagonal elements of this matrix. Recall that either e3 6= 0 or r3 6= 0
is necessary and sufficient for informativity. Sufficiency is confirmed in the first
part of the Table, which gives a finite covariance for the first scenario where only
node 3 is excited. Necessity is confirmed by simulations, which yield an infinite
covariance matrix if identification is performed with r3 = e3 = 0. Notice in the Table
how the variances are reduced as excitation in the other inputs is added, although this
reduction is very slim in the variance of parameter b. Identical covariance matrices
are obtained if r3 = 0 while e3 6= 0 is applied with the same unit variance as that
used for r3.

Table 1 Covariance matrices using white-noise (WN) inputs and data length N = 2,000; all inputs
have variance equal to one, and λ1 = 2

r1(t) = 0,r2(t) = 0,r3(t) =WN,
e1(t) =WN (λ1 = 2), e2(t) = 0 and e3(t) = 0

P(θ̂ N) = 10−5

4.76 1.09 1.09
1.09 7.35 −5.56
1.09 −5.56 11.5


r1(t) =WN,r2(t) = 0,r3(t) =WN,

e1(t) =WN (λ1 = 2), e2(t) = 0 and e3(t) = 0

P(θ̂ N) = 10−5

 3.27 0.754 0.752
0.754 5.95 −5.57
0.752 −5.57 11.4


r1(t) =WN,r2(t) =WN,r3(t) =WN,

e1(t) =WN (λ1 = 2), e2(t) = 0 and e3(t) = 0

P(θ̂ N) = 10−5

 2.49 0.576 0.573
0.576 5.21 −5.58
0.573 −5.58 11.4
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5 Conclusions

We have described two major problems of current research interest in the identi-
fication of dynamical networks: the identification of the whole network (both the
topology and the transfer functions) and the identification of a particular module
embedded in the network. For the first problem, we have shown that there is a fun-
damental identifiability problem and we have described the set of all indistinguish-
able networks; this parametrization has allowed us to obtain sufficient conditions
for identifiability by imposing constraints in the form of prior knowledge on the ex-
citation structure. For the second problem, a major open problem is that of finding
informative excitation experiments. We have illustrated on a simple 3-node network
how the experiment conditions affect informativity, as well as the variance of the
estimated parameters.
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