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Abstract—This paper addresses the problem of identifiability
of dynamical networks in the case where the vector of noises on
the nodes does not have full rank. In the full rank noise case,
network identifiability is defined as the capability of uniquely
identifying all three transfer function matrices composing the
network from informative data. This includes the noise model,
which can be uniquely defined when the noise vector has full
rank. When the noise vector has a singular spectrum, it admits
an infinite number of different noise models and the definition
of network identifiability must be adapted to demand that the
correct noise spectrum be identified from informative data rather
than a specific noise model. With this new definition, we show
that a network with rank reduced noise is identifiable under the
same conditions that apply to a network with full rank noise.

I. INTRODUCTION

This paper deals with the identifiability of dynamical net-
works in which the vector of noise signals acting on the
nodes may have a singular spectral density matrix, hereafter
called spectrum. An important particular case of this situation,
which has received attention in the recent literature, occurs
when some nodes of the network are noise-free. In order to
understand the problem, and the contribution of this paper, we
first briefly recall the progress made in the last five years on
the question of identifiability of dynamical networks.

Let us start by defining the class of networks considered in
this paper. We consider networks whose nodes are connected
by directed edges made up of causal linear time-invariant
systems described by their transfer functions. The node signals
wi(t) may, in addition, be excited by known external signals
ri(t), by noise signals vi(t), or by a combination of both.
Thus, the vector w(t) of node signals obeys the following
network model w(t) = G(q)w(t) + K(q)r(t) + v(t), where
q−1 is the backward shift operator, G(q), called the network
matrix, describes the internal dynamics of the network, K(q)
describes the way in which the external signals act on the
nodes, and v(t) is assumed to be a stationary noise vector,
of which some elements may be zero, with spectrum Φv(z).
The matrices G(q) and K(q), whose elements are causal real
rational transfer functions, will be described in more detail in
Section II.
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A central problem in the identification of such networks
from data is the question of network identifiability. It can be
simply stated as follows. Given an actual “true” network, and
assuming that I am allowed to apply sufficiently rich excitation
signals r(t) to it, can I then exactly recover the matrices G(q)
and K(q), and the spectrum Φv(z) from the signals {w, r}
measured on this true network?

The study of this problem has proceeded stepwise, as
always. It has first been observed that, generically, this task
is impossible unless some prior information is available about
some structural properties of the network, such as a priori
known elements, diagonal structure, etc [1]. A first series
of results on network identifiability have then been obtained
under the assumption that the noise spectrum Φv(ω) is positive
definite, i.e. the noise vector v(t) has full rank.

Under the latter assumption, it is well known that the
noise vector v(t) admits a uniquely defined model as the
output of a white noise driven filter, i.e. v(t) = H(q)e(t),
where H(q) is a square, stable and stably invertible real
rational matrix with the property that H(∞) = I , and
where e(t) is a white noise vector with positive definite
covariance matrix Σ. As a result, the network model can then
be replaced by w(t) = G(q)w(t) + K(q)r(t) + H(q)e(t),
where H(q) is uniquely defined from Φv(z). For networks
with full rank noise, the network identifiability question stated
above was thus reformulated as: under what conditions (in
the form of prior knowledge on the structure of the network)
can I uniquely recover the triple G(q),K(q), H(q) from the
measured signals {w, r}, assuming again that I have applied
sufficiently rich excitation signals r(t) to the network?

The next observation was to remark that the network model
can be rewritten as an Input-Output (I/O) model w(t) =
T (q)r(t) + N(q)e(t), where T (q) = (I − G(q))−1K(q)
and N(q) = (I − G(q))−1H(q) are transfer function ma-
trices that are uniquely defined by the network matrices
G(q),K(q), H(q); in addition, due to a property of the net-
work matrix G(q) to be described later and to H(∞) = I ,
this I/O model also has the property that N(∞) = I . Now
it is well known from system identification theory that, under
those conditons, the I/O model T (q), N(q) can be uniquely
identified from {w, r}, assuming again that r(t) is sufficiently
rich.

A result of this observation is that the network identifiabiliy
property, defined above as the possibility to identify the triplet
[G(q),K(q), H(q)] from measured data {w, r}, could now
conveniently be replaced by an easier definition, in terms of
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mapping between transfer function matrices. More precisely,
an alternative and convenient definition of network identifiabil-
ity is to state that the true network model [G(q),K(q), H(q)]
is identifiable if the mapping from [G(q),K(q), H(q)] to
[T (q), N(q)] described above is invertible, i.e. if we can
recover [G(q),K(q), H(q)] from the identified [T (q), N(q)].
It is easy to understand that this is generically impossible,
and hence the task is to find conditions on the structure of the
true G(q),K(q) and H(q) (in the form of prior knowledge
on that structure) such that the mapping becomes invertible.
A number of conditions for network identifiability have been
obtained for the situation of full rank noise in [1], [2], [3].

Recently, attention has turned to the situation where some
nodes are noise-free [4] and to the more general situation,
which encompasses the previous one, where the noise vector
v(t) does not have full rank [5], [6]. A first solution to this
new situation was proposed in [4] by adopting a network iden-
tifiability definition that depends on the identification criterion.
Another solution was presented in [5], [6] by assuming that a
subvector of the noise vector is known to have full rank. The
main contribution of the present paper is to show that such
restrictions are not necessary. Indeed we shall show that the
definitions of network identifiability adopted for the full rank
case in [2] and [3] can be naturally extended to the situation
of rank reduced noise by exploiting properties of the spectral
factorization of singular spectra.

It is well known from spectral factorization theory that,
when a stationary noise vector v(t) is not full rank, there
is no uniquely defined realization v(t) = H(q)e(t) with
e(t) white noise. Thus, it makes no sense to demand that
G(q),K(q), H(q) be uniquely recovered from an identified
T (q), N(q) since such unique H(q) is not defined. How-
ever, what does uniquely characterize the true network is
G(q),K(q) and Φv(z). Therefore, in the case where v(t) does
not have full rank, the definition of network identifiability has
to be adapted. It now refers to whether one can uniquely
recover G(q),K(q) and Φv(z) from data {w, r}. If some
of the components of v(t) are zero (i.e. in the case where
some nodes are noise-free), then the network will only be
called identifiable if the data allow one to discover that the
corresponding rows and columns of the identified Φv(z) are
zero.

Our first contribution will be to show that the network
identifiability problem can again be recast as a two-step
problem: first the identification of an I/O model [T (q),Φv̄(z)],
or [T (q), N(q), Q], where Φv̄(z) is the spectrum of the noise
v̄(t) of the I/O model, and where [N(q), Q] is a factorisation of
Φv̄(z) as Φv̄(z) = N(z)QNT (z−1); next the recovery of the
true G(q),K(q) and Φv(z) from this identified I/O model. An
important observation here is that the noise model [N(q), Q]
of the I/O model is not unique, because the noise vector of
the I/O model is not full rank whenever the noise vector of
the network is not full rank. This problem will be addressed
using properties of spectral factorization for singular spectra.

Our second contribution will be to show that sets of suffi-
cient conditions that provide network identifiability in the full
rank noise case also provide network identifiability in the case
where the noise on the network has a singular spectrum. The

main message therefore is that, when the noise on the network
nodes has a singular spectrum, the tools used for the full rank
case have to be slightly adapted but network identifiability
conditions can be obtained that are identical to those for the
full rank case.

The paper is organized as follows. In Section II we define
precisely the class of networks under study, including their
rank-defficient noise structure, and define the notation. Next
we discuss, in Section III, the factorizations of rational spectra,
showing the two families of such factorisations that exist, the
relationships between them, and the impossibility of defining
uniquely a factorisation for a singular spectrum. Motivated by
this impossibility, we adapt the definition of identifiability of
networks, and this new definition is presented in Section IV
along with our main results. These results show that network
identifiability conditions presented previously remain valid
under this adapted definition. In order to clarify our theoretical
findings, in Section V we present in detail a case study of a
network with three nodes, one of which is noise-free, where we
perform the identification of the I/O model and then recover
the network model and the noise spectrum. Finally, Section
VI summarizes our conclusions.

II. PROBLEM STATEMENT

We consider a “true” dynamical network

w(t) = G0(q)w(t) +K0(q)r(t) + v(t) (1)

with the following properties:
• w(t), r(t), v(t) are vectors of dimension L
• G0(q) and K0(q) are matrices of rational functions
• G0(q) is the network matrix, whose elements G0

ij(q)
are proper transfer functions and with G0

ii(q) = 0
• there is a delay in every loop from one wj(t) to itself.
• the network is well-posed so that (I−G0(q))−1 is proper

and stable.
• all node signals wj(t), j = 1, . . . , L are measurable.
• ri(t) are known external excitation signals that are

available to the user in order to produce informative
experiments for identification.

• v(t) ∈ <L is a wide-sense stationary stochastic process
with power spectral density (spectrum) Φv(z).

• the external excitation signals ri(t) are assumed to be
uncorrelated with all noise signals vj(t), j = 1, . . . , L.

• q−1 is the delay operator.
Before we proceed, we recall the notion of an admissible

network matrix, defined in [3].
Definition 2.1: : A network matrix G(q) is called admissible

if its diagonal elements are zero, all the Gij(q) are proper,
(I − G(q))−1 is stable, and there is a delay in every loop
going from one wj(t) to itself.

From now on, we will drop the dependence on t, z and
q whenever it creates no ambiguity. We shall consider the
general case where the spectrum Φv may be singular, and
we shall simultaneously treat the case where some of the
components of v are zero and where the vector made up of its
non-zero components may not be of full rank. We thus split up
the noise vector into two subvectors, one for the noisy nodes,
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one for the noise-free nodes. Without loss of generality, we
reorder the nodes such that the last L− p are noise-free. The
true network is then defined as follows:(

w1

w2

)
=

(
G0

11 G0
12

G0
21 G0

22

)(
w1

w2

)
+

(
K0

11 K0
12

K0
21 K0

22

)(
r1

r2

)
+

(
v1

0

)
(2)

where dim(w1) = dim(v1) = dim(r1) = p, dim(w2) =

L− p, and where the noise vector v ∆
=

(
v1

0

)
is defined by

its spectrum

Φv(z) =

(
Φv1(z) 0

0 0

)
(3)

where v1 has rank q ≤ p. The rank of v1 is defined as the
normal rank of its spectrum Φv1(z), i.e. the rank of Φv1(z) at
almost all z [7]. The corresponding true I/O model is now:(

w1

w2

)
=

(
T 0

11 T 0
12

T 0
21 T 0

22

)(
r1

r2

)
+

(
v̄1

v̄2

)
(4)

where T 0 = (I − G0)−1K0 and the I/O noise v̄ ∆
=

(
v̄1

v̄2

)
has a spectrum

Φv̄(z) = (I −G0(z))−1Φv(z)[(I −G0(z−1))−1]T (5)

The network identifiability problem with rank-reduced noise
is then the following. From (w, r) data, and with r sufficiently
rich, we can identify the matrix T 0 and a noise model for the
noise v̄ of (4) having spectrum Φv̄ . The question is then: under
what network identifiability conditions (in the form of prior
knowledge on the true network) can we recover the network
matrices (G0,K0) and a network noise model v = H(z)e
with cov(e) = Σ such that

H(z)ΣHT (z−1) = Φv(z) =

(
Φv1(z) 0

0 0

)
(6)

It is important to note that, in the case of a singular noise
spectrum Φv there is no true noise model v = H0(z)e for the
true network (2), but only a true noise spectrum defined by
(3) with the property that the blocks (1, 2), (2, 1) and (2, 2)
are zero because there is no noise on the node signals w2.
As a result, in terms of network identifiability, what matters
are conditions that guarantee that the spectrum Φv of (3) is
recovered exactly despite the fact that there are an infinity of
possible noise models for the I/O model (4). This is where
the problem of network identifiability with noise-free and/or
rank-reduced noise models differs from the full rank noise
case, where a unique noise model H can always be used,
with the property that H is stable, inversely stable and has
H(∞) = IL.

In order to address this problem, we recall some standard
properties of the factorization of singular spectra.

III. FACTORIZATION OF SINGULAR RATIONAL SPECTRA

The major early results on factorization of rational spectra
can be found in [8], where the continous time case was treated.
Extensions to the discrete-time case can be found in [9], [10].

In [11] the set of all equivalent spectral factors was described,
based on a discrete-time extension of [8], but only for the
case of full rank vector noise processes. Few results on the
characterization of all equivalent spectral factors can be found
for the case of singular spectra, the reason being that in this
case one can define two families of spectral factors, one using
square factors, the other one using non-square factors. We now
describe these two sets of factorizations.

A. The two families of spectral factors for singular spectra

Let Φv(z) be a real rational spectral density matrix with
dimension L×L, and with normal rank q ≤ L, assuming that
the rank is identical almost everywhere. Then essentially two
different sets of factorizations can be defined, one with H(z)
of dimension L× q and one with H(z) of dimension L× L.

Factorization 1: [8], [9], [12] Φ(z) = H(z)HT (z−1)
where H(z) is causal, real rational and stable, of dimension
L × q, and of normal rank q. This factorization is unique up
to right multiplication by a real orthogonal matrix P . Thus,
if H0(z) is one factor, then any other factor is of the form
H(z) = H0(z)P where PPT = Iq .

If the spectrum Φ(z) has rank q, it can be decomposed as
a sum of rank 1 terms: Φ(z) =

∑q
l=1 hl(z)h

T
l (z−1). This

decomposition is not unique. The hl(z) in this decomposition
correspond to the columns of H(z) in a factorization of type
1 of Φ(z) = H(z)HT (z−1).

Factorization 2: [10], [13] Φ(z) = H(z)ΣHT (z−1) where
H(z) is causal, real rational, stable and inversely stable, of
dimension L × L, with H(∞) = IL. With this factorization,
Σ is a real symmetric matrix with dimension L×L, rank equal
to q, and is unique.

The use of Factorization 2 lends itself to the use of
Prediction Error (PE) identification methods. Indeed, since
H(z) is invertible and H(∞) = IL, predictions can be
formed by ŷ(t|t− 1) = H−1(q)G(q)u(t) + (1−H−1(q))y(t)
and the prediction errors can easily be expressed as
ε(t) = y(t) − ŷ(t|t − 1), where this error is simply zero at
the noise-free outputs.

We observe that, unlike the case of a full rank noise
process where a uniquely defined factorization exists [11],
when the noise has a reduced rank, such unique factorization
cannot be defined, whether factorization 1 or factorization 2
is used. Clearly there exists a relationship between these two
factorizations, which we establish in the next subsection.

Example 3.1: Consider a noise vector with L = 3 such that
v2(t) = 2v1(t), v3(t) ≡ 0 and let φ1(z) be the spectrum of
v1(t). Then p = 2, q = 1 and the spectrum of this vector is
given by

Φv(z) =

 1 2 0
2 4 0
0 0 0

φ1(z).

Let g(z) be the unique stable and minimum phase spectral
factor of φ1(z), i.e. φ1(z) = g(z)g(z−1). Then a Factorisation
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2 can be obtained for this spectrum for any H(z) of the form1

H(z) =
1

g(∞)

 g(z) 0 a(z)
0 g(z) b(z)

a(z) b(z) c(z)


where b(z) is any strictly causal transfer function, a(z) =
−2b(z), a(∞) = b(∞) = 0, c(z) is any causal transfer
function such that c(∞) = g(∞), while Σ is uniquely defined
as

Σ = φ1(∞)

 1 2 0
2 4 0
0 0 0


As for Factorisation 1, we have

H(z) =

 1
2
0

 g(z)

as the unique factorisation since q = 1.

B. Relationship between the two families of spectral factors

Consider first factorization 1; thus let Φ(z) =
H(z)HT (z−1) where H(z) has dimension L × q with
normal rank q. Let Hq(z) be any q × q submatrix of
H(z) that is nonsingular at ∞, and let S denote the set of
corresponding rows. Now define the L × L matrix H1(z) as
follows

H1(z)
∆
=
[
H(z) H̄(z)

]
(7)

where the q rows of H̄(z) that belong to the set S are zero, and
its L − q remaining rows form any paraunitary matrix V (z),
of dimension (L − q) × (L − q), i.e. V (z)V T (z−1) = IL−q .
Since V (∞) = IL−q , it follows from the above construction
that H1(∞) is nonsingular.

Now define H̃(z)
∆
= H1(z)(H1(∞))−1 and Σ

∆
=

H(∞)HT (∞). It then follows that

H̃(z)ΣH̃T (z−1)

= H1(z)(H1(∞))−1H(∞)HT (∞)(H1(∞))−THT
1 (z−1)

= H1(z)

(
Iq
0

)(
Iq 0

)
HT

1 (z−1)

= H(z)HT (z−1)

with the property that H̃(∞) = IL. This shows how to
construct a factorization of the form 2 from a factorization
of the form 1. It also shows that Σ is uniquely defined in
factorization 2, while H̃(z) is not unique by virtue of the
freedom in the choice of the paraunitary matrix V (z).

We now start from a L × L factorization 2 of Φ(z) and
we show how to construct a L× q factorization of type 1 for
Φ(z). Thus, let Φ(z) = H(z)ΣHT (z−1) with H(∞) = IL

1Not all H(z) matrices for Factorisation 2 are in this form.

and rank(Σ) = q. We can then factor Σ as Σ = MMT where
M is lower triangular with nonnegative diagonal elements:

M =



x 0 0 0 0 . . . 0

x x 0 0
...

...
...

...
...

. . .
...

...
...

...
...

... x
...

...
...

...
...

...
...

...
...

...
x x . . . x 0 . . . 0


∆
=
(
M1 0L×(L−q)

)

(8)
where dim(M1) = L× q and M1 has full column rank. Now
define H̄(z)

∆
= H(z)M1 and note that dim(H̄(z)) = L × q

with

H̄(z)H̄T (z−1) = H(z)M1M
T
1 H

T (z−1)

= H(z)MMTHT (z−1)

= Φ(z).

Thus, the factorization Φ(z) = H̄(z)H̄T (z−1) is of type 1.

IV. NETWORK IDENTIFIABILITY WITH REDUCED RANK
NOISE

As stated in the introduction, in the case of a singular
noise spectrum we have to adapt the definition of network
identifiability to account for the fact that the noise model is
non-unique. On the other hand, it is important to require that
a network is called identifiable if the data let us identify the
correct noise spectrum, and in particular the fact that some
nodes are noise-free, which represents structural information.

Consider the “true” network (1) defined by the triple
S = [G0,K0,Φv] and its corresponding true I/O description
[T 0,Φv̄] defined by

T 0(z)
∆
= (I −G0(z))−1K0(z) and

Φv̄(z)
∆
= (I −G0(z))−1Φv(z)(I −G0(z−1))−T (9)

Just as in previous work on network identifiability, the def-
inition of network identifiability relies on the following ob-
servation. Applying a sufficiently rich excitation signal on the
true network, and collecting the {w, r} data, one can identify
an I/O model [T̃ (z), Φ̃v̄], or [T̃ (z), Ñ(z), Q], where [Ñ(z), Q]
is any factorisation of Φ̃v̄ . Different methods can be used for
this open-loop identification; one possible method would be
to identify T (z) by an instrumental variable method, compute
the residuals v̄ = w − T̃ (z)r, and then model v̄ using a
stochastic realization method. From this identification one gets
a T̃ (z) that is uniquely defined and converges asymptotically2

to T 0(z), while Ñ(z) and Q are non-unique but have the
property that, asymptotically, Ñ(z)QÑT (z−1) = Φv̄ , where
Φv̄ was defined in (9).

We then adopt the following definition for the identifiability
of the true network model.
Definition: Identifiability of the network. The “true” dy-
namical network (1) is identifiable if there exists no other
network [G̃(z), K̃(z), Φ̃v(z)] 6= [G0(z),K0(z),Φv(z)], with

2as the number of data tends to infinity
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G̃(z) admissible, such that (I − G̃(z))−1K̃(z) = T 0(z) and
(I − G̃(z))−1Φ̃v(z)(I − G̃(z−1))−T = Φv̄(z).

This definition is an extension to the case of networks with
reduced rank noise of Definition 2 in [3], which relates to
the identifiability of the true network. For networks with rank
reduced noise vectors we can now extend Theorem 5.1 of [3]
and characterize the set of all network models that produce
the same I/O model.

Theorem 4.1: The set of all network models that pro-
duce an I/O model Mio = [T (z) Φv̄(z)] is given by
{[G̃(z), K̃(z), H̃(z), Σ̃]} where
• G̃(z) is any admissible network matrix of size L× L
• K̃(z) = (I − G̃(z))T (z)
• H̃(z), Σ̃ is any pair such that Σ̃ is real symmetric and
nonnegative definite with

H̃(z)Σ̃H̃T (z−1) = (I − G̃(z))Φv̄(z)(I − G̃(z−1))T (10)

Proof: We first show that the set of network matrices described
above produces the correct I/O model Mio = [T,Φv̄]. Indeed,
the corresponding I/O model is defined by T̃ = (I−G̃)−1K̃ =
T and Φ̃v̄ , or by T̃ = (I − G̃)−1K̃ = T , Ñ = (I − G̃)−1H̃
and Q̃ = Σ̃. From this it follows, using (10) that

Φ̃v̄ = ÑQ̃Ñ∗ = (I − G̃)−1H̃Σ̃H̃∗(I − G̃)−∗ = Φv̄

where A∗(z)
∆
= AT (z−1) and A−∗(z)

∆
= [AT (z−1)]−1.

Conversely, let [G̃, K̃, H̃, Σ̃] be any network that produces
the correct T and Φv̄ with G̃ admissible. Then we must have
(I−G̃)−1K̃ = T and (I−G̃)−1H̃Σ̃H̃∗(I−G̃)−∗ = Φv̄ . Pre-
and post-multiplying by (I − G̃) yields the desired result.

With the definition of network identifiability in our hands,
we now use the spectral factorization results of section III
to show that a network with a singular noise spectrum is
identifiable under a same set of sufficient conditions that
applies for a network with full rank noise.

A. Network identifiability with reduced rank noise using Fac-
torization 1

Consider a true network with L−p noise-free nodes defined
by (2)-(3), and consider that its noise vector is modeled using
Factorization 1:

v =

(
v1

0

)
= H0e

∆
=

(
H0

1

0

)
e (11)

with dim(H0
1 ) = p × q and cov(e) = Iq with q ≤ p. A

corresponding true I/O model is then(
w1

w2

)
=

(
T 0

11 T 0
12

T 0
21 T 0

22

)(
r1

r2

)
+

(
N0

1

N0
2

)
e (12)

where
[T 0 N0] = (I −G0)−1[K0 H0]. (13)

The respective noise models are:

v =

(
v1

0

)
∆
=

(
H0

1

0

)
e and v̄ =

(
v̄1

v̄2

)
∆
=

(
N0

1

N0
2

)
e

(14)

with cov(e) = Iq . Now the network identifiability problem is
as follows. We identify an I/O model [T (z), N(z)] from data
using Factorization 1 for the modeling of the noise v̄. The
question then is: under what prior knowledge conditions on
[G0(z),K0(z), H0(z)] can we recover a noise model for the
network that will have the correct form

v =

(
H1

0

)
e, (15)

that is with the property that v2 = 0 and H1(z)HT
1 (z−1) =

H0
1 (z)(H0

1 (z−1))T = Φv1(z), where Φv1(z) was defined in
(3). In other words, under what conditions on the excitation
structure do we recover the information of which nodes
are noise-free and the correct spectrum for the noise vector
on the other nodes? We establish the following sufficient
condition for network identifiability, which are identical to
those established in Theorem 6.1 of [3] for the full rank noise
case.

Theorem 4.2: Let the true network be (1)-(3) and let H0(z)
be any factorization Φv(z) = H0(z)[H0(z−1)]T . The true
network is identifiable if the matrix [K0(z) H0(z)] contains
L known and linearly independent columns.
Proof: We first compute the noise model of (12) as a function
of the noise model (11) of the true network (2)-(3):

N0 =

(
N0

1

N0
2

)
=

(
A−1H0

1

(I −G0
22)−1G0

21A
−1H0

1

)
with

A
∆
= I −G0

11 −G0
12(I −G0

22)−1G0
21 (16)

Since the noise vector v̄ of (14) has rank q ≤ p ≤ L, it can be
modeled using a noise realization resulting from Factorization
1 and it is possible to identify from (w, r) data an I/O model
of the following form:(

w1

w2

)
=

(
T11 T12

T21 T22

)(
r1

r2

)
+

(
N1

N2

)
e (17)

where dim(N1) = p×q, dim(N2) = (L−p)×q and cov(e) =
Iq . From the properties of Factorization 1, we know that such
noise model is not unique, but that they all have the same
covariance cov(e) = Iq , and that any two noise models of
dimension L× q are related by an orthogonal matrix P ∈ <q .
This means that the identification of the I/O model (17) using
Factorization 1 will asymptotically yield a L× q noise model
that is related to the noise model (16) of the true I/O model
by(

N1

N2

)
=

(
N0

1

N0
2

)
P =

(
A−1H0

1P
(I −G0

22)−1G0
21A

−1H0
1P

)
(18)

for some P such that PPT = Iq . We show that there is
no other network model [Ḡ, K̄, H̄] 6= [G0,K0, H0], using
Factorization 1 for the noise model, that can produce the I/O
model (17) with a noise model belonging to the set (18).

Suppose such [Ḡ, K̄, H̄] exists. Then, necessarily:

(I − Ḡ)−1K̄=(I −G0)−1K0 and
(I − Ḡ)−1H̄H̄∗(I − Ḡ)−∗=(I −G0)−1H0(H0)∗(I −G0)−∗

(19)
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By assumption, there exists a L×L submatrix W of [K0 H0]
that contains L known and linearly independent columns,
and the same columns are therefore known in [K̄ H̄].
Extracting the corresponding equations from (19)-(19) yields
the following set of equations:

(I − Ḡ)−1W = (I −G0)−1W (20)

We now write Ḡ = G0 + ∆G, observing that ∆G has
zero diagonal elements since Ḡ and G0 are both admissible.
Substituting in (20) shows that this expression is equivalent
with ∆G(I−G0)−1W = 0, where W and 0 have size L×L.
This represents a set of L×L linearly independent equations
for the L×L unknown elements of ∆G, from which it follows
that ∆G = 0, and hence Ḡ = G0. It then follows from (19)
that K̄ = K0. It remains to show that any network noise
model H̄ that is reconstructed from any one of the I/O noise
models (18) has the correct spectrum, i.e. H̄H̄∗ = Φv . Since
Ḡ = G0 we have(

H̄1

H̄2

)
= (I −G0)

(
N1

N2

)
(21)

This leads to the following set of equations:

H̄1 = (I −G0
11)A−1H0

1P −G0
12(I −G0

22)−1G0
21A

−1H0
1P

H̄2 =−G0
21A

−1H0
1P + (I −G0

22)(I −G0
22)−1G0

21A
−1H0

1P

from which it follows that H̄1 = H0
1P and H̄2 = 0.

Thus, the network noise model H̄ has been reconstructed
with the correct noise spectrum, showing that v2 = 0 and
Φv1 = H̄1H̄

∗
1 = H0

1 (H0
1 )∗.

We illustrate the theorem with the following example. Con-
sider the 3-node network with rank reduced noise: w1

w2

w3

=

 0 G12 G13

G21 0 G23

G31 G32 0

 w1

w2

w3

+

 K1r1

0
0


+

 0 0
H1 0
0 H2

( e1

e2

)
(22)

with cov
(
e1

e2

)
=

(
1 1
1 1

)
∆
= Σ, so that q = rank(v) = 1.

By factorizing Σ as Σ = LLT as in (8), we can alternatively
express the noise model of (22) as

v =

 0
H1

H2

 e with cov(e) = 1 (23)

It then follows from Theorem 4.2 that the network is identifi-
able if K1, H1 and H2 are known and not identically zero. It
is easy to verify that this is indeed the case.

B. Network identifiability with reduced rank noise using Fac-
torization 2

We now show that the same result holds true when we use
Factorization 2 for the modelling of the rank-reduced noise
in the I/O model. This has the advantage that we can then
use a Prediction Error method for the identification of the

corresponding I/O model since it has a noise model N(z) that
is stable, stably invertible and with the property that N(∞) =
IL.

Thus suppose that we model the true I/O model (4) using
factorization 2 for its noise model:(
w1

w2

)
=

(
T11 T12

T21 T22

)(
r1

r2

)
+

(
N11 N12

N21 N22

)(
e1

e2

)
(24)

We define by v̄ the noise vector of this true I/O model, and
we note that

Φv̄(z) = N(z)Q[N(z−1)]T (25)

with N(∞) = IL, cov
(
e1,
e2

)
= Q, and rank (Q) = q ≤ p.

We can then factorize Q = LLT where L is as in (8), and
define Ñ(z)

∆
= N(z)L. Thus Φv̄(z) can be refactored as

Φv̄(z) = Ñ(z)ÑT (z−1) = N1(z)NT
1 (z−1) (26)

where N1(z) is the submatrix formed from the q first columns
of Ñ(z).

The identification of an I/O model of the form (24) con-
verges to a model with T = T 0 and a noise model for v̄ that
has the correct spectrum Φv̄ with the properties (25). We have
shown that it can be transformed to a noise model v̄ = N1(z)e
with dim(N1) = L×q and cov(e) = Iq . Therefore the network
identifiability result of Theorem 4.2 applies to this case as well.

C. Network identifiability with reduced rank noise based on
the spectrum of the I/O model

We have defined identifiability of the true dynamical
network as the possibility of recovering the true network
[G0(z),K0(z),Φv(z)] uniquely from the transfer matrix
T 0(z) and the spectrum Φv̄(z) of its I/O model. In this sub-
section, we show that a standard network identifiability result
for networks with full rank noise can be applied to the rank
reduced noise case by reconstructing [G0(z),K0(z),Φv(z)]
directly from T 0(z) and Φv̄(z), without the use of a noise
model for either the network or the I/O description.

Theorem 4.3: Let the true network be described by (1) with
a noise spectrum described by (3). Then the true network is
identifiable if the matrix K0(z) is known to be diagonal and
of full rank.
Proof: Consider that we have obtained T 0(z) and Φv̄(z)
from the identification of the I/O model. From K(z) = (I −
G(z))T (z), and knowing that K(z) = diag(ki), i = 1, . . . , L
and that the diagonal elements of G(z) are zero for any admis-
sible G(z), we first compute the diagonal elements of K(z)
as ki = 1

t−ii
where t−ii are the diagonal elements of [T 0(z)]−1.

G(z) is then obtained as G(z) = I −K(z)[T 0(z)]−1. Finally,
we compute Φv(z) from

Φv(z) = (I −G(z))Φv̄(z)(I −G(z−1))T . (27)
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V. A CASE STUDY

In this section, we present a case study that illustrates the
result of Theorem 4.3 and the procedure proposed in its proof.
Consider the following 3-node true network with rank reduced
noise. w1

w2

w3

=

 0 −0.3z−1 + 0.8z−2 −0.5z−1

z−1 0 0
0 0.5z−1 0

 w1

w2

w3


+

 r1

r2

r3

+

 v1

v2

v3

 (28)

with

cov

 v1

v2

v3

 =

 0.1 0.1 0
0.1 0.1 0
0 0 0

 ∆
= Φv (29)

Thus, there is no noise on the third node and the same white
noise with variance 0.1 enters the first two nodes. The input
matrix of the true network is the identity matrix, i.e. K0(z) =
I3, but we assume that the only prior knowledge available
to the user is that K0(z) is diagonal with nonzero diagonal
elements. Identifying the diagonal elements of K0(z) will thus
be part of the identification of the network, along with the
identification of the network matrix G0(z) and of the noise
spectrum Φv .

The corresponding true I/O model is given by:

T 0(z) =
1

1+0.3z−2−0.55z−3
−0.3z−1+0.55z−2

1+0.3z−2−0.55z−3
−0.5z−1

1+0.3z−2−0.55z−3

z−1

1+0.3z−2−0.55z−3
1

1+0.3z−2−0.55z−3
−0.5z−2

1+0.3z−2−0.55z−3

0.5z−2

1+0.3z−2−0.55z−3
0.5z−1

1+0.3z−2−0.55z−3
1+0.3z−3−0.8z−3

1+0.3z−2−0.55z−3


We perform a simulation experiment based on N = 4×104

data to check whether we can recover the network model (28)-
(29) from an I/O model that is identified first. Since the white
noise generation in Matlab is not perfect, the realization of
a noise with spectrum given by (29) yields a signal whose
spectrum is presented in Figure 1. It is clear from the figure
that the rank is indeed one, but it is not exactly white noise,
for the spectra are not perfectly flat. So, what we can expect
to recover from the identification experiment is the spectrum
in Figure 1, and not the one in equation (29).

The experiment consists of the application of uncorrelated
white noises with variance 1 to the three inputs ri and of white
noises vi with covariance given in Figure 1, and the collection
of the corresponding wi data. From these data, the estimate
T̂ (z) (Eq. (30) on top of the next page) was obtained by an
instrumental variable method for the transfer matrix T 0(z)
from r(t) to w(t).

We then compute the predictions ŵ(t) = T̂ (z)r(t) and
estimate the noise v̄(t) by the prediction residuals, that is
ˆ̄v(t) = w(t)− ŵ(t). The spectrum of this vector is calculated
by FFT, giving the estimate Φ̂v̄ for the spectrum of v̄(t) shown
in Figure 2.

Before proceeding to the recovery of the network model
from this identified I/O model, we verify the quality of the
identified I/O model by computing the spectrum Φ̂v of the

Fig. 1. Φv,true obtained by simulation with N = 40, 000 data

Fig. 2. Φ̂v̄ : spectrum of the noise of the estimated I/O model

network model that would be obtained from the estimated Φ̂v̄
if the true network matrix were known. From (5) we compute

Φ̂v(z) = (I −G0(z))Φ̂v̄(z)(I −G0(z−1))T (31)

This estimated Φ̂v is presented in Figure 3, where it is seen
that we have indeed recovered the original noise spectrum up
to a very good precision. In order to quantify this assessment,
we compare the estimate with the actual noise by forming
the error Φerror(z) = Φv − Φv,true, computing its energy
Eerror =

∫ 2π

0
Φerror(e

ω)dω and normalizing it to the energy
of the noise Ev =

∫ 2π

0
Φv,true(e

ω)dω; the normalization is
done by dividing each element by tr(Ev). This yields the
following normalized error matrix:

Eerror,norm =

 1.3× 10−4 3.1× 10−5 3.4× 10−3

3.1× 10−5 8.5× 10−5 3.4× 10−3

3.4× 10−3 3.4× 10−3 3.7× 10−5


We now proceed to the recovery of the network quantities

G0(z), K0(z) and Φ0
v from the estimated T̂ (z) and Φ̂v̄ using

the procedure described in the proof of Theorem 4.3. This
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T̂ (z) =


1

1−0.0003626z−1+0.2996z−2−0.5502z−3
−0.2997z−1+0.5503z−2

1−0.0006292z−1+0.2996z−2−0.5501z−3
−0.5005z−1

1−0.000895z−1+0.2989z−2−0.551z−3

1z−1

1−0.0008495z−1+0.2992z−2−0.5505z−3
1

1+0.000545z−1+0.2996z−2−0.5503z−3
−0.5006z−2

1+0.001842z−1+0.2988z−2−0.5508z−3

0.5001z−2

1−0.00085z−1+0.2993z−2−0.5506z−3
0.5z−1

1−0.0005506z−1+0.2995z−2−0.5503z−3
0.9999−0.001888z−1+0.2984z−2−0.8013z−3

1−0.001735z−1+0.2988z−2−0.5507z−3

 (30)

Fig. 3. Φ̂v spectrum of the network model, reconstructed from the estimated
I/O model using the true network matrix G0(z)

Fig. 4. Φ̂v spectrum of the network model, reconstructed from the estimated
I/O model using the estimated network matrix Ĝ(z)

results, after all coefficients of order 10−5 or smaller have
been rounded up to zero, in the following estimates:

K̂(z) =

 1.0001 0 0
0 1.0001 0
0 0 1.0000



Ĝ(z) =

 0 −0.2996z−1 + 0.8006z−2 −0.5005z−1

1z−1 0 0
0 0.5000z−1 0


We see that only errors of the order of 10−4 or smaller appear
in all elements.

Finally, from the estimated Φ̂v̄ and Ĝ we can now compute
the estimated Φ̂v using expression (31) with G0(z) replaced by
Ĝ(z). This yields the spectrum presented in Figure 4, which
is an excellent estimate of the real spectrum shown in Figure
1.

VI. CONCLUSIONS

We have shown in this paper how to extend the network
identifiability results for networks with full rank noise vectors
to networks with rank reduced noise, which includes networks
that may have no noise on some nodes. Our methods and
results have been based on properties of the spectral fac-
torization of singular noise spectra. Essentially two different
forms of spectral factorization have been proposed in the
statistics literature for the factorization of such spectra. We
have established the relationship between these two types of
spectral factors.

On the basis of these spectral factorization results, we have
shown how the definition of network identifiability can be
adapted to the case of networks with rank reduced noise.
Our main contribution has been to show that standard network
identifiability results for networks with full rank noise apply
unchanged to the case of networks with rank reduced noise.
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[1] J. Gonçalves and S. Warnick, “Necessary and sufficient conditions for
dynamical structure reconstruction of LTI networks,” IEEE Transactions
on Automatic Control, vol. 53, no. 7, pp. 1670–1674, 2008.

[2] H. Weerts, A. Dankers, and P. Van den Hof, “Identifiability in dynamic
network identification,” in USB Proc. 17th IFAC Symp. on System
Identification, Beijing, P.R. China, 2015, pp. 1409–1414.

[3] M. Gevers, A. Bazanella, and A. Parraga, “On the identifiability of dy-
namical networks,” in USB Proc. IFAC World Congress 2017. Toulouse,
France: IFAC, July 2017, pp. 11 069–11 074.

[4] H. Weerts, P. Van den Hof, and A. Dankers, “Identifiability of dynamic
networks with part of the nodes noise-free,” in 12th IFAC Workshop
on Adaptation and Learning (ALCOSP), vol. 49, no. 13. IFAC
PapersOnLine, 2016, pp. 19–24.

[5] ——, “Identification of dynamic networks with rank-reduced process
noise,” in Proc. IFAC World Congress, 10562-10567, Ed. Toulouse,
France: IFAC, July 2017, pp. 10 562–10 567.

[6] ——, “Identifiability of linear dynamic networks,” to appear in Auto-
matica. Also arxiv.org/abs/1609.00864, 2017.

[7] M. Gevers, A. Bazanella, X. Bombois, and L. Mišković, “Identification
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