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Abstract

A method for the nonparametric estimation of the Frequency Response Function (FRF) was introduced in [4] and later called
Transient Impulse Response Modeling Method (trimm). We present here a slightly improved version of the original method
and, more importantly, we thoroughly analyze the method in terms of bias and variance errors. This analysis leads to guidelines
for the choice of the design parameters in trimm. Our theoretical expressions for the bias and variance errors are validated by
simulations which, at the same time, highlight the effect of the design parameters on the performance of the method.
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1 Introduction

Frequency Response Function (frf) estimation is a clas-
sical problem in system identification. The identifica-
tion method may be either parametric, where the model
of the system is parameterized with a finite number
of parameters, often considerably less than the num-
ber of data points, or non-parametric where the num-
ber of parameters are as many as the number of data
points. In this paper we will focus on the latter. The non-
parametric estimates are often used in the initial stage
of the identification process to get insight into various
system properties, such as system order and noise char-
acteristics, and can guide the user in the model selection
in order to proceed with a more accurate parametric esti-
mate. Non-parametric frequency response functions are
also useful in their own right and are used intensively in
many engineering fields, for example in audio applica-
tions, power systems and vibration analysis.

The classical approach is to use spectral analysis, see,
e.g., textbooks like [1], [17], [7], [13]. The idea is to
smooth the raw Discrete Fourier transform (dft) esti-
mate using information from adjacent frequencies, or,
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equivalently, to use weighting of the correlation esti-
mates of different time-lags.

All nonparametric methods suffer from transient (or
leakage) errors and noise errors. Transient errors occur
when using a finite number of data and a non-periodic
input signal. This has for a long time been a major
deterrent against the use of nonparametric estimates of
the frf in the presence of non-periodic input signals.

However, by assuming the system to be finite dimen-
sional the leakage error can be analyzed in detail, see
[10], [8]. This analysis indicates that this error is highly
structured with a smooth frequency characteristic. In
[16] this property is explored to develop what is known
as the Local Polynomial Method (lpm), an alternative
to the classical frequency smoothing. The idea is to ap-
proximate the smooth leakage term by a Taylor series ex-
pansion and to simultaneously estimate the coefficients
of this expansion together with the frequency response
at one frequency at a time. The method has been demon-
strated to provide superior accuracy, as compared to
traditional smoothing algorithms, on a number of prob-
lems, see for example [11,12]. The method has been fur-
ther developed in [2,9].

Inspired by the lpm method, the Transient and Impulse
Response Modeling Method (trimm) was introduced in
[4]. The leakage error, or transient, is modelled with a
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finite impulse response model. To be able to simultane-
ously estimate both the fir parameters and the system
frequency response over the grid of dft frequencies, the
dft of the output measurements have to be recycled
and used several times. The main difference compared
to lpm is that the transient is globally parameterized
as opposed to locally in lpm. The global parameters are
then estimated using the whole data record. In lpm only
the data points in a local window around each frequency
are used to estimate the transient.

Some first attempts to analyze the trimm method are
given in [3,5]. The objective of this paper is to give a more
detailed variance and bias analysis of the method to be
able to guide the user in the choice of design parameters
and experimental settings. As the general problem, with
arbitrary system, input and noise sources is hard to an-
alyze, we will in this paper consider a few special cases.
Although the analysis is restricted, this gives some in-
sight into the inner workings of the method and we will
discuss the expected implications from this analysis to
more general cases. For the bias we will mainly study
the errors for second order systems with low damping.
The motivation for this choice is that most systems can
be written as sums of first and second order systems and
that the part with lowest damping introduces the largest
bias error [15]. We will also give some results for the case
when the system is highly damped.

The main contribution of this paper is first to present
the idea behind, and to summarize the previous work re-
lated to the trimm method. The second contribution is
to analyze the bias and variance errors of the estimated
frequency response function with trimm. This will al-
low us, in future work, to compare different estimation
methods and to give some user guidance on when and
how the different methods should be used.

The outline of the rest of the paper is as follows. In
Section 2 the frequency domain input-output relation is
shown that is then used in Section 3 to derive the trimm
method. In Section 4, bias and variance expressions for
trimm are derived. The results and their implications
in terms of the design choices of the trimm method are
discussed in Section 5. The bias and variance expressions
are then verified in Monte-Carlo simulations in Section 6
and applied to a vibrating steel beam experimental sys-
tem in Section 7. Finally, Section 8 concludes the paper.

2 The Input-Output Relation

Consider a linear discrete-time single-input single-
output (siso) system, G(q). The system is excited by
an input signal u(t) and the output y(t) is assumed to
be disturbed by additive measurement noise v(t). The
input-output relation can then be written as

y(t) = G(q)u(t) + v(t) (1)

where q is the forward shift operator andG(q) is a causal
rational function of q.

Equivalently, it can also be represented in state-space
form as

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) + v(t).
(2)

where x(t) is the state vector and x(0) = x0.

Taking the N -point dft

Z(k) =
1√
N

N−1∑
t=0

z(t)e−jωkt (3)

of the finite record of measured input and output data
{u(t)} and {y(t)}, t = 0, . . . , N − 1 gives the following
input-output dft relation [8] for k = 0, . . . N − 1

Y (k) =G(ejωk)U(k) + T (ejωk) + V (k), (4)

where ωk , 2πk
N are the dft frequencies. The leakage

term T is due to the non-zero initial condition and the
finite data record length. It is important to understand
that (4) is an exact relation between the finite input and
output data records [10,8].

To simplify the notation we write the frequency domain
expression (4) as

Yk = GkUk + Tk + Vk, k = 0, . . . , N − 1

where Xk = X(ejωk).

It has been shown that the transient term, evaluated at
ejωk can be expressed as [8]:

Tk =
1√
N
C(I − e−jωkA)−1(x0 − xN )

=
1√
N

N−1∑
t=0

CAt(I −AN )−1(x0 − xN )e−jωkt
(5)

where xN is the state at time t = N of the state space
realization (2). This special structure of the transient is
utilized in trimm.

Although the method presented in this paper can be ap-
plied to both random and deterministic input signals, we
will assume that both the input, u(t), and the disturbing
noise, v(t), can be described as filtered zero mean noise
with existing moments of any order. The dft of the in-
put and the noise are then asymptotically (N → ∞)
independent over the frequencies, circular complex nor-
mally distributed [13]. Furthermore we assume that the
system operates in open loop and thus u(t) is indepen-
dent of v(t).
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3 The TRIMM Method

The objective is to estimate the Frequency Response
Function G(ejωk) for the whole frequency grid, k =
0, . . . , N − 1. To perform this estimation we utilize the
exact relations (4) and also identify the transient term,
T . However, since there are onlyN/2 complex equations,
it is impossible to directly estimate the N complex un-
known parameters {Gk, Tk, k = 0, . . . , N−1}. To gener-
ate more equations we approximate Gk and Tk in a local
window of size 2L+ 1 around each frequency ωk.

To relate the frequency response at frequency ωk with
the frequency response at the neighbouring frequencies
ωk+r, r = −L, . . . , L we write

Yk+r = Gk+rUk+r + Tk+r + Vk+r
= GkUk+r + [Gk+r −Gk]Uk+r + Tk+r + Vk+r.

(6)
Using the definition of Gk we can now express the dif-
ference Gk+r −Gk in (6) as

Gk+r −Gk =
∞∑
t=1

g(t)
(
e−jωk+rt − e−jωkt

)
=

N−1∑
t=1

∞∑
p=0

g(t+ pN)
(
e−jωk+rt − e−jωkt

)
,
N−1∑
t=1

g̃(t)
(
e−jωk+rt − e−jωkt

)
(7)

where g(t) , CAt−1B is the impulse response of the
system (2) and g̃(t) =

∑∞
p=0 g(t+ pN).

The transient term Tk+r from (5) can be written as

Tk+r =
1√
N

N−1∑
t=0

τ(t)e−jωk+rt. (8)

where τ(t) = CAt(I −AN )−1(x0 − xN ).

Approximating (7) and (8) by truncated lower order
sums with n1 and n2 terms, respectively, and substitut-
ing these into (6) we get

Yk+r ≈ GkUk+r +
1√
N

n1−1∑
t=0

τ(t)e−jωk+rt

+

[
n2∑
t=1

g̃(t)
(
e−jωk+rt − e−jωkt

)]
Uk+r + Vk+r,

(9)
see [5] for details. In each frequency window, r =
−L, . . . , L, around the center frequency ωk the equa-
tions in (9) constitute a set of 2(2L + 1) real equa-
tions for the 2 + n1 + n2 real unknown variables Gk,

{τ(t), t = 0, . . . , n1 − 1} and {g̃(t), t = 1, . . . , n2}. Note
that each complex relation (9) counts for two real equa-
tions; note also that Gk is complex and thus counts for
2 unknowns, while the τ(t) and g̃(t) are real.

The variables g̃(t) and τ(t) are independent of the fre-
quency ωk and are hence global parameters. The main
idea of trimm is to setup a global Least Squares prob-
lem by assembling the 2N(2L+ 1) real equations (9) for
the N dft frequencies ω0, . . . , ωN−1 in the 2N+n1 +n2
real unknown parameters

G , [G0, . . . , GN−1]
T

θ2 , [τ(0), . . . , τ(n1); g̃(1), . . . , g̃(n2)]
T
.

(10)

Stacking the extended input-output relations (9) into
vectors gives

Y = Φ1G+ Φ2θ2 + E + V, (11)

where the vector E with elements

Ek+r =
1√
N

N−1∑
t=n1

CAt(I −AN )−1(x0 − xN )e−jωk+rt

+

N−1∑
t=n2+1

g̃(t)
(
e−jωk+rt − e−jωkt

)
Uk+r

(12)
accounts for the approximation errors due to the trun-
cated sums in (9) and Φ1 and Φ2 are appropriate regres-
sor matrices defined in Appendix A.

A least squares estimate of the transfer function G and
the surplus variables θ2 is then

{Ĝ, θ̂2} = arg min
G,θ2

‖Y − Φ1G− Φ2θ2‖22. (13)

This gives the following estimates

[
Ĝ

θ̂2

]
=

[
G(0)

θ
(0)
2

]
+

[
Φ∗1Φ1 Φ∗1Φ2

Φ∗2Φ1 Φ∗2Φ2

]−1 [
Φ∗1

Φ∗2

]
(E + V ) (14)

where G(0), θ
(0)
2 are the parameters of the true system.

Remark 1 The least squares problem (13) consists of
2N(2L+1) equations in the 2N+n1+n2 real unknowns,
where eachGk counts for 2 real unknowns. Even for mod-
est N and L the direct solution becomes computational
prohibitive. However, the problem has a certain structure
that can be exploited. In [4] and [5] it is shown how the
problem can be solved by solving a series of smaller least
squares problem.
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4 Error Analysis

In this section we will study the bias errors due to un-
dermodeling, and the variance errors due to noisy mea-
surements, of the trimm method. In both cases, we will
go beyond the general formulas by considering special
cases for which much more insight can be gained.

4.1 Bias of the frequency response function estimate

Since E{V } = 0 by assumption, and since Φ1 and Φ2

are independent of V , the bias of the estimates (14) can
be written as

E

{[
Ĝ−G(0)

θ̂2 − θ(0)2

]}
=

[
Φ∗1Φ1 Φ∗1Φ2

Φ∗2Φ1 Φ∗2Φ2

]−1 [
Φ∗1

Φ∗2

]
E

where the expected value is taken over the noise realiza-
tion. We see that the bias is proportional to the approx-
imation error E.

Since θ2 is a global parameter vector that depends on
the complete data record, the calculations become quite
involved. To simplify the calculations, we shall analyze
only the bias of frf, Ĝ, and we shall assume in the anal-
ysis of the bias that the true values of the surplus pa-

rameter vector, θ
(0)
2 , are known. By using this assump-

tion, the bias can be studied individually in the different
frequency windows. Although this assumption seems re-
strictive, it gives us a good approximation of the order
of magnitude of the bias error. Furthermore, simulations
will show that the expressions we derive using this as-
sumption approximate the true bias very well. Under
this assumption, the bias in the frf estimate can be
written as

E
{
Ĝ−G(0)

}
≈ (Φ∗1Φ1)−1Φ∗1E. (15)

To obtain more intuition about the bias error, we shall
consider separately the case where the dominating dy-
namics has low damping (poles close to the unit circle),
and the case of a highly damped system.

4.1.1 Bias for lightly damped systems

Any linear transfer function can be written as a sum
of first-order systems with complex or real poles. If the
poles are complex conjugate, their contribution can be
written as a second-order transfer function. The total
estimation error will be a sum of the error contributions
from the different first order systems in the sum. How-
ever the general case is hard to analyze and we will in-
stead look at the dominating term of the transfer func-
tion in the analysis of the bias i.e., the part of the sys-
tem containing the pole closest to the unit circle as this

will dominate the errors. We will hence assume, with-
out great loss of generality, that the system can be ap-
proximated by a second order system with two complex
conjugate poles similarly to what was done in [15] where
the bias error was analyzed for the Local Polynomial
Method.

Thus, consider the discrete time second-order system

G(z) =
z

z2 − 2λ cos(ωn)z + λ2
=

bp

z − p
+

b̄p̄

z − p̄
(16)

where

b =
1

2jλ sin(ωn)
, p = λejωn .

Here λ = 1 − ε is the magnitude of the complex con-
jugate poles of the systems and hence ε can be seen as
the damping of the system or the distance of the poles
to the unit circle. The lower the value of ε, the more
lightly damped the system will be and the higher the
resonance peak will be in the resonance frequency ωn.
Here we will study lightly damped systems, i.e., we con-
sider systems with ε close to zero. The maximum of the
transfer function amplitude is then obtained at the fre-

quencies ω = ± arccos(λ
2+1
2 cos(ωn)) ≈ ±ωn. Close to

the resonance frequency, ωn, the first term of (16) dom-
inates and we approximate the system by

G(z) ≈ bp

z − p
, for z ≈ ejωn . (17)

In Figure 1 the amplitude plot of the system (17) is
shown. We will see in the following that the 3 dB band-
width of the resonance peak will play a vital role in the
analysis. The definition of the 3 dB bandwidth, B3dB, is
the frequency band for which |G(ω)| > Gmax − 3 dB,
see Figure 1. One can show that for low damping the
bandwidth is B3dB = 2ε.

ωn

0

Gmax − 3dB

Gmax

B3dB

Fig. 1. The definition of the 3 dB bandwidth (in bold) of a
normalized second order lightly damped system around the
resonance peak at frequency ωn.

One possible state-space realization of the system
(17) around the resonance frequency is [A,B,C,D] =
[p, 1, pb, 0]. The (complex) impulse response of (17) can
be written as

g(t) = bpt = bλtejωnt for t ≥ 1.
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The maximum of the approximation error (12) is ob-
tained at the resonance frequency, i.e., at the frequency
ωk = ωn. At this frequency the approximation error is

En+r =
bp√
N

1

1− λN
λn1e−jωrn1 − λN

1− λe−jωr
(x0 − xN )

+
bUn+r
1− λN

(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)
,

(18)
see Appendix B for a complete derivation. The first term
in (18) stems from the unmodeled dynamics of the tran-
sient term while the second term is from the omitted im-
pulse response coefficients. Since the maximum element
of E is given in (18) we can already get some insight re-
garding the bias. For example, if n1 = N and n2+1 = N ,
the approximation error will be zero and consequently
the bias will be zero.

Inserting the approximation error (18) in (15) and
using the structure of Φ1, the bias at frequency ωn,

E
{
Ĝn −G(0)

n

}
, can be written as

bp√
N

1

1− λN
L∑

r=−L

λn1e−jωrn1 − λN

1− λe−jωr
U∗n+r(x0 − xN )∑L
q=−L |Un+q|2

+

L∑
r=−L

b

1− λN

(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)
· |Un+r|2∑L

q=−L |Un+q|2
,

(19)
where the terms corresponds to the unmodeled transient
elements and the unmodeled impulse response elements,
respectively. See Appendix D for details.

To further simplify the calculations of the bias we will
make two assumptions.

Assumption 2 The local frequency window width L in
(9) is small compared to the number of samples, N .

This assumption is not really restrictive since this is a
common choice of the design parameters in practice.

The bias (19) depends on the input signal u(t) (through
Un+r and xN ) used during the experiment. It is hard to
say more about the bias for a general input signal and
we will therefore only look at the case when the input is
a stationary stochastic process. This is still a fairly large
class of signals and is common in practice. Thus we make
the following assumption about the input signal.

Assumption 3 The input signal spectrum, Uk, is inde-
pendent over the frequencies, circular complex normally
distributed with variance E{|Uk|2} = σ2

u(k). Further-
more, the spectrum is sufficiently smooth so that σ2

u(n) ≈
σ2
u(n+ r) for r = −L, . . . , L for L not too large.

This assumption is fulfilled if the input u(t) is white
Gaussian noise, or asymptotically fulfilled (for N →∞)
if the input is filtered white noise [13]. Under Assump-
tions 2 and 3 and taking the expected value over the in-
put realizations, the bias (19) can be simplified. The re-
sults are summarized in Theorem 4. The notation O(x)
should be interpreted as a function that tends to zero at
least as fast as x.

Theorem 4 (Bias for lightly damped systems)
Under Assumptions 2 and 3, the maximum bias (19)
introduced by the approximation error is of the order

• If B3dB < 2π
N

E{Ĝn −G(0)
n } ≈ O

(
N − n1
NB3dB

)
+O

(
N − (n2 + 1)

NB3dB

)
• If B3dB > BTRIMM.

E{Ĝn −G(0)
n } ≈ λn1O

(
1

NB2
3dB

)
+
λN − λn2+1

1− λN
O

((
BTRIMM

B3dB

)2
)

Here BTRIMM , 2L 2π
N is the frequency width of the local

window used in trimm and B3dB , 2ε is the 3 dB band-
width of the system with resonance frequency ωn, see Fig-
ure 1. The expectation is taken over both the noise and
the input realizations. In both cases, the leftmost terms
stem from the undermodelling of the transient while the
right terms are due to the undermodeling of the impulse
response.

PROOF. See Appendix D.

The first case when B3dB < 2π/N corresponds to the
situation where only one frequency point of the local
window used in trimm is within the 3 dB bandwidth of
the resonance peak. The intuition behind the results in
this case is as follows.

Assume for simplicity that |Uk|2 = 1 for all k. The bias

of the estimate of the frequency response Ĝn due to the
truncation of the impulse response can then be written
as

E
{
Ĝn −G(0)

n

}
=

L∑
r=−L

En+r
|Un+r|2∑L

q=−L |Un+q|2

=
1

2L+ 1

L∑
r=−L

(
G̃n+r − G̃n

)
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where G̃k =
∑N−1
t=n2+1 g̃(t)e−jωk is the truncated fre-

quency response. Note that the principal shape of the
true system G(0) and the truncated system G̃ are the
same, for example they both have their maximum at the
same frequency, ωn. Since we only have one frequency
point in the 3 dB bandwidth, we have G̃n+r � G̃n for

r 6= 0 because G̃n is at the resonance peak. The bias due
to the truncation of the impulse response then becomes

E
{
Ĝn −G(0)

n

}
=

1

2L+ 1

L∑
r=−L

(
G̃n+r − G̃n

)
≈ 2L

2L+ 1
G̃n ≈ G̃n.

(20)

The proof of Theorem 4 shows that G̃n ∼ O
(
N−(n2+1)
NB3dB

)
and this gives the resulting bias. The bias is in this case
(almost) independent of L and is given by the frequency
response of the unmodeled dynamics at the resonance
frequency. The intuition is that the extra terms we add
by increasing L are much smaller that the point at the
resonance frequency. Note that if n2 is not to large then
the bias error is in the same order of magnitude as the
resonance peak and we cannot infer anything about the
system. Thus, this case should be avoided in practice.
The same reasoning holds for the bias due to the trun-
cated transient terms but with the difference that the
sum is of the form

E
{
Ĝn −G(0)

n

}
≈ 1

2L+ 1

L∑
r=−L

T̃n+r.

where T̃n+r is the truncated transient term,

T̃n+r =
1√
N

N−1∑
t=n1

τ(t)e−jωn+rt.

Again the transient has a maximum at the resonance
frequency ωn and Tn+r � Tn for r 6= 0. The bias of Ĝn
due to the truncation of the transient term can then be
written as

E
{
Ĝn −G(0)

n

}
≈ 1

(2L+ 1)

L∑
r=−L

T̃n+r ≈
1

(2L+ 1)
T̃n.

Again, in the proof of Theorem 4 it is shown that Tn ∼
O
(
N−n1

NB3dB

)
. The difference in the results between the

bias introduced by the truncation of the impulse re-
sponse and the transient is due to the different ways they
are estimated.

The second case is whenB3dB > BTRIMM, that is, all the
2L + 1 frequency points in the local window of trimm

are within the 3 dB bandwidth of the resonance peak.
Here the bias due to the undermodelling of the tran-
sient term depends on 1

B2
3dB

and the bias from the im-

pulse response is proportional to
(
BTRIMM

B3dB

)2
. The bias

is hence decreasing for decreasing local window width L,
for increasing number of samplesN , and for higherB3dB

bandwidth (lower resonance peak). The proof shows that
for B3dB > BTRIMM, the contribution of the neglected
impulse response coefficients to the error G̃n+r−G̃n can
be approximated as

G̃n+r − G̃n ∼
1

ε2

∞∑
m=1

ωmr
m!

The bias error due to the approximation of the impulse
response can then be written as

E
{
Ĝn −G(0)

n

}
=

L∑
r=−L

(
G̃n+r − G̃n

) |Un+r|2∑L
q=−L |Un+q|2

=
1

2L+ 1

L∑
r=−L

∞∑
m=1

ωmr
m!ε2

=
1

(2L+ 1)

L∑
r=−L

∞∑
m=1

ω2m
r

2m!ε2

≈ 1

(2L+ 1)ε2

L∑
r=−L

O
(
ω2
r

)
= O

((
BTRIMM

B3dB

)2
)

(21)
The terms for odd m have disappeared because the sum
is symmetric around zero. The proof for the transient
error is based on a similar observation.

Note that the result above only holds when |Un+r|2, or
σ2
u(n + r), are symmetric around the frequency ωn. If

the input spectrum is not symmetric, the even terms
do not disappear and the dominating terms will instead

be O
(
BTRIMM

B2
3dB

)
for the contribution to the neglected

impulse response terms and O
(

2L+1
NB2

3dB

)
= O

(
BTRIMM

B3dB

)
for the transient error. Thus, the bias error due to the
neglected impulse response elements is O( LN ): the larger
the window, the larger the bias error. Similar results for
the bias were obtained in [3] for general (higher order)
systems.

If the parameters and the system are such that 2π
N <

B3dB < BTRIMM, then a few but not all points in the
local bandwidth of trimm is in the 3 dB bandwidth of
the system. The bias will then be an interpolation be-
tween the results when all points in the local window of
trimm are within the 3 dB bandwidth and when only
one point is within the bandwidth. This can be seen as
follows. Introduce the constant Leff < L that repre-
sents the number of points within the 3 dB bandwidth.
Then the bias from the undermodeling of the impulse

6



response is proportional to

L∑
r=−L

(
G̃n+r − G̃n

)
≈

Leff∑
r=−Leff

(
G̃n+r − G̃n

)
Hence this bias error will mainly be dominated by the
points within the 3 dB bandwidth of the system and will
be the same as (21), save that L is replaced by Leff . The
main result from this section is hence that the number
of points used in the local window in trimm that are
within the 3 dB bandwidth of the system affects the bias
to a large extent.

We will discuss the results and consequences in more
detail in Section 5.

4.1.2 Bias for highly damped systems

We now study the bias error for the situation where the
system is highly damped. Instead of the second order
system (16) we now consider a first order discrete time
stable system with impulse response g(t) = αλt where
α is a real constant and λ is the real positive pole of
the system. Further we consider the highly damped case,
i.e., when λ � 1. Much of the analysis can be carried
over, save for the difference in damping. Redoing the
analysis for this case results in the following theorem.

Theorem 5 (Bias for highly damped systems)
For a system G(z) with impulse response g(t) = αλt,
with 0 < λ � 1 and where α is a constant, the bias
introduced by the approximation error (12) is given by

E{Ĝk −G(0)
k } ≈ λ

n1O

(
1

N

)
+ λn2+1O

(
B2

TRIMM

)
.

PROOF. See Appendix E.

It can be seen that the results for the highly damped case
are consistent with the results from the lightly damped
case, except that the damping ε does not appear in the
highly damped case. This is due to the assumption that
λ = 1− ε� 1.

4.2 Variance of the FRF estimate

In this section we study the variance of the estimates Ĝ of
the frequency response caused by the measurement noise
V . To get some insight into the problem and to make
it computationally tractable, we look at a few special
cases. At the end of this section the implications for the
general case will be discussed. In this subsection we will
study the how the variance of the frequency response is
affected by the choice of the design parameters L, n1 and

n2 and hence we will no longer assume that the surplus
variables θ2 are known.

First we assume that v(t) is zero mean white noise with
variance σ2

v . Then the covariance matrix of the estimated
frequency response and surplus variables (14) around
the bias is given by

E


[
Ĝ+Gb −G(0)

θ̂2 + θb − θ(0)2

][
Ĝ+Gb −G(0)

θ̂2 + θb − θ(0)2

]∗
=

[
Φ∗1Φ1 Φ∗1Φ2

Φ∗2Φ1 Φ∗2Φ2

]−1
σ2
v .

where Gb and θb are the bias in the frequency response
function and the surplus variables, respectively. The
variance of the FRF estimate can then be written as

E
{

(Ĝ+Gb −G(0))(Ĝ+Gb −G(0))∗
}

=
(

Φ∗1Φ1 − Φ∗1Φ2 (Φ∗2Φ2)
−1

Φ∗2Φ1

)−1
σ2
v .

(22)

We now argue that if the design variables n1 and n2 are
chosen small then Φ∗1Φ1 � Φ∗1Φ2 (Φ∗2Φ2)

−1
Φ∗2Φ1 and

that, as a result,

E
{

(Ĝ+Gb −G(0))(Ĝ+Gb −G(0))∗
}
≈ (Φ∗1Φ1)

−1
σ2
v .

We split the regressor matrix Φ2, into two parts Φ2 =
[Φa Φb] where Φa is the part that corresponds to the
transient terms, and hence contains no input signals,
and where Φb is the part related to the impulse response
coefficients. We first look at the case when n2 = 0, i.e.,
Φ2 = Φa, and we only estimate the transient terms.
Then all elements of Φa (Φ∗aΦa)

−1
Φ∗a satisfy∣∣∣[Φ2 (Φ∗2Φ2)

−1
Φ∗2

]
k,l

∣∣∣ ≤ n1
(2L+ 1)N

.

Due to space limitations, the details are left out but can
be found in [6]. Since the rows of Φ1 only have (2L +
1) non-zero elements, cf., (A.1), and these elements are
independent of N , we can always choose N large enough
so that Φ∗1Φ1 � Φ∗1Φ2 (Φ∗2Φ2)

−1
Φ∗2Φ1.

We now instead consider the case when n1 = 0 and
only the impulse response coefficients are estimated. We
assume that the input, u(t), is white Gaussian noise with
variance σ2

u. In [6] it is shown that the elements of Φ∗bΦb
are, in this special case, given by

[Φ∗bΦb]m,l = Nru(m− l)
L∑

r=−L

(
1− e−jωrm

) (
1− ejωrl

)
,

(23)
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where ru(τ) = 1
N

∑N−1
t=0 utut−τ is the sample auto-

correlation of the input. Since we have assumed that
u(t) is white, for large N we have ru(m − l) ≈ 0 if
m 6= l and Φ∗bΦb becomes diagonal. It is then possible

to bound the elements of Φ∗1Φ2 (Φ∗2Φ2)
−1

Φ∗2Φ1 as∣∣∣∣[Φ∗1Φ2 (Φ∗2Φ2)
−1

Φ∗2Φ1

]
m,l

∣∣∣∣ ≤∣∣∣∣∣ 3n2
Nσ2

u(2L+ 1)

L∑
r=−L

|Ul+r|2
∣∣∣∣∣

L∑
q=−L

|Um+q|2 =∣∣∣∣∣ 3n2
(2L+ 1)

L∑
r=−L

|Ul+r|2∑N−1
k=0 |Uk|2

∣∣∣∣∣
L∑

q=−L
|Um+q|2.

Again the details are left out but a complete derivation
is given in [6]. Since the input u(t) is white and L� N ,

the ratio |Ul+r|2∑N−1

k=0
|Uk|2

is small with high probability and

goes to zero as N goes to infinity. Furthermore, since
Φ∗1Φ1 is diagonal with elements

[Φ∗1Φ1]m,m =

L∑
q=−L

|Um+q|2

we have, for large enough N , that

Φ∗1Φ1 � Φ∗1Φ2 (Φ∗2Φ2)
−1

Φ∗2Φ1.

Hence we have shown in the two cases that, if N is large
enough and n1 and n2 are small, we can approximate the
variance of the frequency response function estimate Ĝ
as

E
{

(Ĝ+Gb −G(0))(Ĝ+Gb −G(0))∗
}
≈ (Φ∗1Φ1)

−1
σ2
v

= diag

{
σ2
v∑L

r=−L |U0+r|2
, . . . ,

σ2
v∑L

r=−L |UN−1+r|2

}
(24)

If the input is smooth over the 2L neighbours, expres-
sion (24) shows that the variance of the frf is propor-

tional to 1
2L+1

σ2
v

σ2
u

. The variance of Ĝ is thus proportional

to the noise variance and inversely proportional to the
input power in the local bandwidth used in trimm. A
wider bandwidth hence gives lower variance, which is a
very intuitive result. Note that the variance of Ĝ does
not decrease with increasing N , since adding more data
points also adds more Gk to be estimated.

Now consider the variance of the n1 and n2 global pa-
rameters τ(t) and g̃(t) (defined in (7) and (8)). Unlike
the estimate of the frequency response functionGk these

parameters are estimated using N data points. As a re-
sult their variance can be approximated as [3]

E
{

(θ̂ + θb − θ0)(θ̂ + θb − θ0)∗
}

= O

(
n1 + n2
N

)
σ2
u

σ2
v

If n1 and n1 are much smaller than the number of sam-
ples N the variance of the estimate of the global pa-
rameters are small and can be considered known in the
estimation of the frequency response. This explains the
derived result.

However, the above reasoning only holds if the variance
of the surplus variables is small. We see that Φ∗2Φ2 in
(23) depends on the correlation properties of the input
signal. For example, if the signal is highly correlated,
then Φ∗2Φ2 could be close to singular. The inverse will
hence be large and the estimate of the frequency response
function will be affected, cf., (23). If n1 and n2 are of the
same order as the number of samples N , the variance of
the global parameters will also affect the variance of the
frf estimate.

However, in practice we have observed that these results
seem to be good approximations of the variance even for
quite small N and for other types of input spectra than
considered here.

Finally, if the input is a stochastic process satisfying
Assumption 3, then using Lemma 6 in the Appendix
shows that the expected variance can be written as

E
{
|Ĝk +Gb −G(0)

k |
2
}

=
1

2L

σ2
v

σ2
u

, (25)

where the expectation is now also taken over the input
realization.

5 Discussion

In this section we will summarize and discuss the impli-
cations of the main results derived in the previous sec-
tions.

• The bias errors for second order systems with low
damping and for a first order system with high damp-
ing have been calculated in Section 4. The motivation
was that many systems can be written as a sum of first
and second order contributions by a partial fraction
decomposition and that the part with lowest damp-
ing dominates the bias error. Of course, if the term
with lowest damping has a small amplitude compared
to the other terms, this will not dominate the error.
Instead the bias should be considered as a function
of the frequency where the bias in each frequency is
decided by the local dominating system. The derived
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results are hence not only valid for the resonance fre-
quency of the system but can be used to gain insight
into the bias for the whole frequency response. We
also saw that similar results were obtained for the high
and low damping case indicating that the results are
more general than shown here. The main observation
is that the bias is to a large extent decided by the rela-
tion between the local bandwidth used in trimm and
the perceived 3 dB bandwidth in the local frequency
window.
• Looking at the approximation error term (12) which

represents the unmodeled dynamics, we observe that
the choice n1 = N and n2 = N − 1 gives zero approx-
imation error and consequently an unbiased estimate
of the frequency response function. However, this will
increase the variance of the estimate considerably.
• Increasing the number of samples N reduces the bias

since the local bandwidth used in trimm, BTRIMM,
is inversely proportional to N . If we are in the situa-
tion that B3dB < 2π/N , then the bias is not affected
much by the number of samples N . However, by in-
creasing N , eventually B3dB < 2π/N will not hold
and the bias will decrease as the number of samples
is increased. The variance of the FRF estimate is not
directly influenced by the number of samples as long
as n1, n2 � N . However, by increasing the number of
samples we can increase n1, n2 making the bias smaller
without changing the variance.
• The variance error of Ĝ is inversely proportional to the

local window widthL since 2L+1 data are used in each
local window to estimate the frequency response func-
tion. Thus, if the noise dominates, one should choose
a larger window width.
• The bias expressions derived in Section 4 are based on

the assumption that the input spectrum is symmet-
ric around the resonance peak. These results should
hold also for non-stochastic input signals as long as
they are symmetric around the resonance. For non-
symmetric signals the results are no longer valid. The
convergence rate will in this case be reduced with one
order, for example O((BTRIMM/B3dB)2) will now be
O(BTRIMM/B

2
3dB). These results are similar to the

bias expressions for more general model structures de-
rived in [3].
• It is seen in Theorem 4 that the bias is lower if L is cho-

sen such that the local bandwidth, BTRIMM = 2L 2π
N

is within the 3 dB bandwidth of the system. The case
when only one point in trimm is within the 3 dB band-
width should be avoided in practice. From equation
(20) we have that the bias of the estimate of the fre-
quency response function due to the undermodeling
of the impulse response was

E
{
Ĝn −G(0)

n

}
≈ G̃n.

Hence, the bias is in the same order as the true sys-
tem G(0) and there is basically no information about
the true system in the estimate. Therefore it is recom-

mended that L should be chosen such that BTRIMM <
B3dB.

Often the exact location of the resonance frequency
ωn of the continuous time system under consideration
is a priori unknown. In the bias expressions we have de-
rived we have considered the case when the frequency
grid is such that we have one data point exactly at the
resonance frequency. If this is not the case, the bias er-
ror at the resonance frequency will of course be larger.
This further strengthen the recommendation that in
practice one should choose the frequency resolution
in the experiment such that at least a few frequency
points are available in the 3 dB bandwidth of the sys-
tem in order to have one frequency point sufficiently
close to the resonance frequency.

From the above recommendations it is possible to
give a lower bound on the required measurement time.
If we want BTRIMM < B3dB then

2L
2π

N
< B3dB ⇔

N >
4πL

B3dB
=

2πL

ε
=

2πL

1− λ

Since L ≥ 1 the lower bound is N ≥ 2π
1−λ .

• Without any windowing there would be fewer equa-
tions than unknowns. Assuming thatN > (n1+n2)/4,
we observe that choosing L = 1 already gives more
equations than unknowns. Increasing L above this
value decreases the variance as shown in Section 4.2,
but it increases the bias as shown in Theorem 4.

• The parameters g̃(1), . . . , g̃(n2) are only needed to
produce approximations of Gk+r −Gk in the window
around the frequency k. If this window is chosen nar-
row (i.e., L small) then Gk+r is close to Gk and the
approximation need not be as precise as when L is
large, so that n2 can also be chosen small.

• From the previous results it is clearly seen that the
design parameter L is a trade-off between bias and
variance of the estimate of the frequency response.
Further insight into the working of the method can be
gained by looking at the extreme cases when L = 0
and L = N/2, i.e., the case when no smoothing is used
and the case when all available frequencies are used
in every local window, respectively. These two cases
were studied in [5].

The results were that trimm for the case L = 0
boils down to the well known empirical transfer func-
tion estimate (etfe) [7]. If the input is a realization
of a stochastic process then the etfe is an asymptot-
ically unbiased estimate of the transfer function but
the variance of the estimate does not decrease as the
number of samples N increases [7].

When L = N/2 is used the method basically corre-
sponds to estimating a fir-model for each frequency,
see [5] for details. The parameter L can thus not only
be seen as a smoothing factor but will also change the
method from a fully nonparametric method for L = 0
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to a parametric fir-estimation method for L = N/2.

6 Simulations

In this section the expressions for the bias and the vari-
ance of the trimm method will be verified by simula-
tions.

6.1 Bias errors

The first simulations will verify the bias expressions of
Theorems 4 and 5. Three different experiments will be
carried out where, respectively, the damping ε, the ra-
tio BTRIMM/B3dB and the user parameters n1, n2 are
varied. 500 Monte-Carlo simulations are performed for
each of the three experiments and the settings used are
N = 1000 and ωn = 125 · 2π/N .

6.1.1 Varying the damping

First the damping factor, and consequently the 3 dB
bandwidth, of the second order system is varied be-
tween 10−4.5 and 10−0.5. The settings for trimm dur-
ing the experiment are L = 2 and n1 = n2 = 20. Since
we know the true underlying system we can separate
the bias contribution from the unmodeled dynamics of
the transient from the bias contribution from the un-
modeled impulse response coefficients in the total bias
error. Figure 2a shows the bias contribution from the
unmodeled dynamics in the transient from the simula-
tion and the corresponding theoretical values from The-
orem 4.Correspondingly, Figure 2b shows the bias con-
tribution from the unmodelled impulse response coeffi-
cients. From the figures it is seen that the theoretical
decay of the bias error when the damping is increased,
closely matches the simulated bias.

6.1.2 Keeping L/B3dB constant

Next the ratio L/ε, and consequently BTRIMM/B3dB, is
kept constant. The parameters are selected such that
B3dB > BTRIMM, as this is the interesting case in prac-
tice. The local bandwidth L of the trimm method is
varied between 2 and 20 and the damping is changed as
ε = 10−2 ·L. Again we set n1 = n2 = 20. The simulated
bias contributions from the transient and the impulse re-
sponse are shown in Figure 3 and are again compared to
the theoretical values from Theorem 4. As expected from
the theory, the contribution from the transient response
is relatively unchanged from when only the damping ε
was varied, cf., Figure 2a as the first term in Theorem 4
is independent of L.

For the bias contribution from the impulse response we
expect that when the damping and L are increased the
decay should be much smaller since BTRIMM/B3dB is
constant. The resulting bias is however not expected to
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B
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(a) Bias due to undermodeling of transient response.
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B3dB/BTRIMM
B
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(b) Bias due to undermodeling of impulse response.

Fig. 2. Bias error for second order lightly damped system.
Simulated bias error ( ) and the theoretical values from
Theorem 4 are shown as ( ) and ( ). The bounds
for which the different terms are valid (B3dB < 2π

N
and

B3dB > BTRIMM) are shown as ( ).

be constant since the bias still decays as λn2+1, which is
a function of the damping ε. This is seen in the simulated
results in Figure 3.

6.1.3 User design parameters n1 and n2

According to Theorem 4, the bias error should decay
exponentially as the user design parameters n1 and n2
are increased as λn1+1 and λn2+1. To verify this we set
ε = 5 · 10−2 (such that BTRIMM < B3dB), L = 2 and
gradually increase n1 and n2 from 5 to 200. The result-
ing bias errors are shown in Figure 4 together with the
theoretical values from Theorem 4. Again, the theoreti-
cal and the simulated results are consistent.

6.2 Variance Errors

To verify the variance expression from Section 4.2 the
following simple fir system is studied

G(z) = 0.8z−1 + 0.6z−2 − 0.3z−3.

Since we are only interested in the variance error we
start by setting n1 = n2 = 3 in which case we get no
bias errors. A zero mean white Gaussian noise input
with variance σ2

u = 1 is used as input and N = 1000
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(a) Bias due to undermodeling of transient response.
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(b) Bias due to undermodeling of impulse response.

Fig. 3. Bias error for second order lightly damped system
when BTRIMM/B3dB is kept constant. Simulated bias error
( ) and the theoretical values from Theorem 4 are shown
as ( ).

data points are collected. The output is disturbed with
Gaussian white noise with variance σ2

v = 0.25. The local
window used by trimm, L, is varied as L = [1, 2, 4, 8, 16]
and the variance of the estimation error of the frf is
calculated over 500 Monte-Carlo simulations with a new
realization of the input and the noise in each iteration.
Since n1, n2 � N we expect that the variance should be

E|Ĝk −G(0)
k |

2 ≈ σ2
v

σ2
u

1

2L
. (26)

In Figure 5 the simulation results and the theoretical
values are shown. We note that the simulated variance
error is closely matched by the theory.

In Section 4.2 we concluded that for small n1 and n2
the variance of the frf will be unaffected by n1 and n2.
Next we look at how large the parameters n1 and n2
can be chosen before the variance of the frf is affected.
We use the same settings as before, but now for a fixed
L = 3. Instead we vary n1 = n2 from 3 to 500. The mean
over all frequencies of the resulting variance error is cal-
culated and compared to the theoretical variance (26).
It is seen that for low n1 and n2 the theoretical vari-
ance is a good approximation. For example, up to about
n1 = n2 ≈ 70 the error from the theoretical value is less
than 10%. However, for higher n1, n2 the approximation
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(a) Bias due to undermodeling of transient response.
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(b) Bias due to undermodeling of impulse response.

Fig. 4. Bias error for second order lightly damped system
when the user parameters n1 and n2 are increased. Simulated
bias error ( ) and the theoretical values from Theorem 4
are shown as ( ).
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Fig. 5. Variance of frf estimates for different local windows
L. Simulated variance ( ) and theoretical variance ( ).

is insufficient and the variance is heavily influenced also
by the choice of n1 and n2.

6.3 General System

In this section we study the estimation error for a more
general system. The amplitude plot of the system is
shown in Figure 7. The input signal is white Gaussian
noise with unit variance, the disturbance noise is l also
white noise with unit variance, and N = 2000 data sam-
ples are used. We use n1 = n2 = 10 and we vary L from 1
to 20 and check the bias and the mean square error. For
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each value of L, 500 Monte-Carlo simulations are per-
formed with a new input and noise realization in each
simulation. Hence, we calculate the error over both noise
and input realizations. In Figure 6 the bias at three spe-
cific frequencies are shown together with the theoretical
values from Theorem 4. The first two frequencies are at
the two resonance peaks (ω = 0.49 and ω = 1.50) and
the third one is at frequency ω = 1.13 in between the two
resonance peaks. In this setup the local window width
used in trimm is contained in the 3 dB bandwidth of the
first resonance peak for L . 17. Thus we expect from
Theorem 4 that the bias error should grow as O(L2) for
L . 17. The bias in the first resonance peak is closely
matched for L up to about 15. For L > 15 the error is no
longer expected to grow as (2L)2. For the other two fre-
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Fig. 6. The bias error in three different frequencies as a
function of the local bandwidth of trimm. Simulated bias
( ) and theoretical bias O

(
(2L)2

)
( )

quency points the 3 dB bandwidth is much larger than
20 and hence BTRIMM < B3dB for all values of L shown
in Figure 6. The correspondence between simulated and
theoretical values of the bias error is reasonably good,
except for low values of L. One possible explanation is
that in the proofs of the bias expressions we have used
approximations like L(L+1) ≈ L2 that are not valid for
small L.

In Figure 7 the mean over the Monte-Carlo simulations
of the squared estimation error at each frequency is
shown for five different values of L. It is seen that around
the resonance peak the error increases as L is increased,
indicating that around this frequency the bias error dom-
inates. For other frequencies the error decreases as L
increases. Here, the variance error dominates over the
bias error since the 3 dB bandwidth is high in these fre-
quencies. Furthermore, the errors around the resonance
peak increase proportionately to (2L)2, where the bias
error is dominating, while the errors in the other fre-
quencies drop like 1/2L, where the variance error dom-
inates, agreeing with what is expected from Theorem 4
and the discussions on the variance in Section 4.2.

7 Experimental Illustration

In this section we will demonstrate the applicability of
the trimm method to a real life problem. This small
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Fig. 7. The mean of the squared estimation error for
L = 1, 5, 10, 15, 20. True system is shown as ( ) and the
arrow indicates increasing L.

example and the experimental data is taken from the
vibrating steel beam example in [16]. The system has
very low damping which generates long transient effects.
The beam is excited by a mini-shaker and the excita-
tion signal is generated by a waveform generator. The
applied force to the beam and acceleration of the beam
are measured. The objective of the experiment is to find
a model from the force input to the acceleration of the
steel beam. For a more detailed description of the ex-
perimental setup, see [16]. In the analysis of the trimm
method in this paper we have assumed that the input is
exactly known. However, in this example the force input
is measured and it is therefore contaminated with noise.
In [16] an instrumental variables approach was proposed
as a remedy to this problem. Denoting the known ref-
erence signal from the waveform generator as r(t), the
input force u(t) and the output y(t), an estimate of the
frequency response function from force to the accelera-
tion is given by

Ĝyu(ωk) =
Ĝyr(ωk)

Ĝur(ωk)
, (27)

where Ĝyr(ωk) and Ĝur(ωk) are transfer function esti-
mates from r to y and from r to u, respectively. Since the
reference r is known exactly, it is possible to estimate
the two transfer functions using trimm.

Two experiments are performed. In the first experiment
the beam is excited with a periodic multisine excitation.
The period of the multisine is N = 1024 points. A total
of M = 50 periods of data are collected. These data will
be used to find an estimate of the transfer function Ĝyu
using (27). The two tranfer function estimates in (27)
are calculated as

Ĝ(per)
yr (ωk) =

1
M

∑M
i=1 Y

[i](k)
1
M

∑M
i=1R

[i](k)

where the index [i] indicates the dft spectrum from the
i:th period of the data. The estimate Ĝur(ωk) is calcu-
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lated in the same way. In the estimation of the trans-
fer functions only the last M = 36 periods are actually
used. This is done to remove the effects of the initial
transient. This gives a highly accurate estimate of the
transfer function that will be used for comparison with
trimm. For more details, see [16].

In the second experiment the system is excited with a
random binary reference signal with the same length as
the periodic signal. From this data we will estimate the
transfer function using trimm. The parameters n1 and
n2 are chosen as n1 = n2 = 18. Three different tun-
ings of the trimm window width L will be used: L = 2,
L = 32 and L = 70. The results are shown for these
three different window widths in Figure 8: the top figures
show the results over the whole frequency axis, while in
the bottom figures we focus our attention to the second
resonance peak (located approximately at 940 Hz). For
L = 2 the frequency response estimate is noisy but as
L is increased it becomes increasingly smooth. The am-
plitude of the second resonance peak has highest am-
plitude for L = 32. Looking in more detail at the two
transfer functions Gyr and Gur (not shown here) it is
seen that Gyr is smooth around the resonance frequency
while Gur has a small amplitude and is noisy around the
same frequency. This is due to the fact that at the reso-
nance frequency the system is very flexible and it is hard
to inject power at this frequency. Hence we get a small
signal to noise ratio in the measurement of the force u.
As shown in the analysis in the paper the variance de-
creases but the bias increases when L is increased. Since
we have poor SNR at the resonance frequency a relativly
large L is needed. However, when L is increased to 70,
the estimate of the magnitude of the frequency response
is lower. This indicates that the bias error dominates
and the estimate will be biased. Hence, L = 32 seems to
be a good compromise between bias and variance error.
This tuning also gives results that are close to the high
accuracy estimate from the periodic data.

One interesting observation from the estimate using the
periodic data is that some of the resonance peaks are not
visible. This is due to that the period length is 50 times
shorter than the random input sequence and hence the
resolution is 50 times smaller. This makes it hard to es-
timate the peak values using periodic data. This demon-
strates the strength of the new non-parametric methods
in that they are able to produce higher resolution esti-
mates while maintaining similar accuracy.

As a final remark, in this example we have used the same
tuning when estimating both Gyr and Gur. By using
different tunings, the estimate of Gyu could potentially
be improved.
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Fig. 8. The estimated frequency response function Ĝyu using
trimm ( ) and using the periodic data ( ).

8 Conclusions

In this paper the bias and variance expressions for the
estimation of the frequency response function using the
trimm method was derived. The bias was studied first
for a second order system with low damping since many
systems can be written as sums of first and second order
systems and the part with lowest damping dominates
the error. The main observation is that the ratio between
the local bandwidth used in trimm and the 3 dB band-
width of the system to a large extent decides the bias.
The results are not only valid in the resonance peak of
the system but can be used to understand the bias error
for more general systems. That is, the bias error in each
frequency is a function of the damping of the local domi-
nating system in each particular frequency window. This
analysis has allowed us to connect system properties and
the choice of user parameters with the performance of
the method.

The variance of the estimated frf was also studied. The
main result here is that if the user design parameters n1
and n2 are small compared to the number of samples,
the variance will be proportional to the ratio between
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the noise variance in the frequency and the input power
over the local frequency window. The analysis in this
paper is similar to the analysis of the Local Polynomial
Method in [11,12,15]. This makes it easy to compare the
performance of the different methods and give guidelines
to the user when which method should be used and how.
This is a topic for future research.

Another open question is how to estimate the noise spec-
trum with trimm. In some applications estimating the
noise spectrum can be as important as estimating the
frf itself, see for example [14]. In [3] one way to esti-
mating the noise spectrum with trimm was presented,
however, it is not clear that this is the optimal way.

In Section 7 we applied TRIMM to real data. In the ex-
ample we focused on the tuning when looking at the sec-
ond resonance peak only. It is not necessarily so that the
tuning of the parameters that are good around this reso-
nance peak are good around other frequencies. This is a
weakness of the trimm method compared to lpm, for ex-
ample, that is completely local and where the estimates
are independent in the different frequency windows. This
being said, it should be possible to make trimm local by
estimating new parameters in each frequency window;
however this is a topic for future research.
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A Regressor matrices for the least squares
problem (13)

The regressor matrices for the extended input–output
vector (11) used in the least squares problem (13), are
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given by

Φ1 =


Ū0 0

Ū1

. . .

0 ŪN−1

 , Φ2 =
[
Φa Φb

]
, (A.1)

where Ūk = [Uk−L, . . . , Uk+L]T is a vector of the inputs
in the frequency window around ωk and

Φa =


1√
N

1√
N
e−jω0−L · · · 1√

N
e−jω0−Ln1

...
...

...

1√
N

1√
N
e−jωN−1+L · · · 1√

N
e−jωN−1+Ln1

 ,

Φb =


φ(0,−L, 1) · · · φ(0,−L, n2)

...
...

φ(N − 1, L, 1) · · · φ(N − 1, L, n2)

 .
where φ(k,m, n) =

(
e−jωk+mn − e−jωkn

)
Uk+m.

B Approximation error

The approximation error (12) for the system (17) can be
written as

En+r =
1√
N

N−1∑
t=n1

CAt(I −AN )−1e−jωn+rt(x0 − xN )

+

N−1∑
t=n2+1

g̃(t)
(
e−jωn+rt − e−jωnt

)
Un+r

=
bp√
N

1

1− λN
N−1∑
t=n1

λtejωnte−jωn+rt(x0 − xN )

+ b

∞∑
p=0

λpN
N−1∑

t=n2+1

λt
(
e−jωrt − 1

)
Un+r

=
bp√
N

1

1− λN
λn1e−jωrn1 − λN

1− λe−jωr
(x0 − xN )

+
bUn+r
1− λN

(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)
.

C Technical Lemmas

Lemma 6 Let
√
2

σu
Uk = Xk + jYk for k = 0, . . . , N − 1

be zero mean, independent complex normally distributed,
random variables with covariance

E

{[
Xk

Yk

] [
Xk Yk

]}
= I

then

(1)

E

{
U∗k+qUk∑L

r=−L |Uk+r|2

}
=

{
1

2L+1 if q =0

0 otherwise

(2)

E

{
U∗k+q∑L

r=−L |Uk+r|2

}
= 0

(3)

E

{
1∑L

r=−L |Uk+r|2

}
=

1

σ2
u

1

2L

PROOF. To save space, the proof is given in [6].

Lemma 7 Let
√
2

σu
Uk be a sequence of indepen-

dent complex random variables with distribution
√
2

σu
Uk ∼ CN

([
0

0

]
,

[
1 0

0 1

])
for k = 0, . . . , N − 1. Fur-

thermore let x0 be an given initial state of the system (2)
and let xN be the final state when the corresponding time

realization u(t) = 1√
N

∑N−1
k=0 Uke

jωkt, t = 0, . . . , N − 1

is applied to the system (2). It then holds that

E

{
U∗k+q(x0 − xN )∑L
r=−L |Uk+r|2

}
=

− 1

(2L+ 1)
√
N

N−1∑
τ=0

AN−τ−1Bejωk+rτ .

PROOF. The proof is based on straighforward calcula-
tions using the relation between the final state of the sys-
tem and the input sequnce and application of Lemma 6.
The complete proof can be found in [6].

D Proof of Theorem 4

Using the structure of Φ1, see (A.1), it can be shown
that the bias at a frequency ωk is given by

E
{
Ĝk −G(0)

k

}
= E

{∑L
r=−L U

∗
k+rEk+r∑L

q=−L |Uk+q|2

}
. (D.1)

We will now look at the specific frequency ωn where the
approximation error En+r is given by (18). Inserting the
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approximation error (18) into (D.1) gives

E
{
Ĝn −G(0)

n

}
=

L∑
r=−L

bp√
N

1

1− λN
λn1e−jωrn1 − λN

1− λe−jωr
E

{
U∗n+r(x0 − xN )∑L
r=−L |Un+r|2

}

+

L∑
r=−L

b

1− λN

(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)

× E

{
|Un+r|2∑L

r=−L |Un+r|2

}
.

(D.2)
Note that the first term in (D.2) stems from the under-
modeling of the transient while the second term stems
from the undemodeling of the impulse response.

The two expected values in (D.2) are given by Lemma 7
and Lemma 6, respectively. For the system with low
damping (17), the bias (D.2) can be written as

E
{
Ĝn −G(0)

n

}
=−

L∑
r=−L

bp√
N

1

1− λN
λn1e−jωrn1 − λN

1− λe−jωr
1

(2L+ 1)
√
N

×
N−1∑
τ=0

λN−τ−1ejωn(N−τ−1)ejωn+rτ

+

L∑
r=−L

b

1− λN
1

2L+ 1

×
(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)
=− bpe−jωn

(2L+ 1)N

1

1− λN

×
L∑

r=−L

λn1e−jωrn1 − λN

1− λe−jωr
1− λN

1− λe−jωr
e−jωr

+
b

1− λN
1

2L+ 1

×
L∑

r=−L

(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)

=
bpe−jωn

(2L+ 1)N

L∑
r=−L

λN − λn1e−jωrn1

(1− λe−jωr )2
e−jωr

+
b

1− λN
1

2L+ 1

×
L∑

r=−L

(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)
.

(D.3)

By Assumption 2 gives L � N . Furthermore, we have

assumed that the damping ε is small. This implies that

1− λe−jωr ≈ 1− (1− ε)(1− jωr) =

ε+ jωr − jωrε ≈ ε+ jωr, for r = −L, . . . , L. (D.4)

Hence the bias expression (D.3) can be written as

bpe−jωn

(2L+ 1)N

L∑
r=−L

λN − λn1e−jωrn1

(ε+ jωr)2
e−jωr

+
b

1− λN
1

2L+ 1

×
L∑

r=−L

(
λN − λn2+1

ε
− λN − λn2+1e−jωr(n2+1)

ε+ jωr

)
.

(D.5)

We will now study the bias expression (D.5) for two
different cases.

D.1 The case when ε < 2π
N

In this first case, we assume that ε < 2π
N and it follows

that |ε| < |ωr| = 2π
N |r| for r 6= 0. Hence the dominating

term in the first sum in (D.5) is obtained for r = 0 since∣∣∣∣ 1

ε2

∣∣∣∣ > ∣∣∣∣ 1

(ε+ jωr)2

∣∣∣∣ for r 6= 0.

The terms of the second sum in (D.5) is zero for r = 0.
Since |ε| < |ωr| for r 6= 0, these terms can be approxi-
mated as(
λN − λn2+1

ε
− λN − λn2+1e−jωr(n2+1)

ε+ jωr

)
≈ λN − λn2+1

ε
.

Hence the bias (D.5) can be approximated as

E
{
Ĝn −G(0)

n

}
≈ bpe−jωn

(2L+ 1)N

λN − λn1

ε2

+
b

1− λN
2L

2L+ 1

λN − λn2+1

ε
.

Furthermore, since ε� 1 we also have

λn = (1− ε)n ≈ 1− nε,
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and

E
{
Ĝn −G(0)

n

}
≈ bpe−jωn

(2L+ 1)N

(1−Nε)− (1− n1ε)
ε2

+
b

1− (1−Nε)
(1−Nε)− (1− (n2 + 1)ε)

ε

=
bpe−jωn

2L+ 1

n1 −N
Nε

+ b
(n2 + 1)−N

Nε

=
1

2L+ 1
O

(
n1 −N
Nε

)
+O

(
(n2 + 1)−N

Nε

)
. 2

D.2 The case when ε > 2π
N L

The second case is when ε > 2π
N L, or equivalently, when

B3dB > BTRIMM. Again we start from the expression of
the bias (D.5).

First consider the bias contribution from the undermod-
eling of the transient:

bpe−jωn

(2L+ 1)N

L∑
r=−L

λN − λn1e−jωrn1

(ε+ jωr)2
e−jωr . (D.6)

In the considered case ε > 2π
N L = ωL and we make

the approximation ε + jωr ≈ ε for r = −L, . . . , L. The
contribution to the bias (D.6) can thus be approximated
as

bpe−jωn

(2L+ 1)N

L∑
r=−L

λN − λn1e−jωrn1

ε2
e−jωr

=
bpe−jωn

(2L+ 1)Nε2

(
λN (e−jωL − ejωL+1)

ejω1 − 1

−λ
n1(e−jωL(n1+1) − ejωL+1(n1+1))

ejω1(n1+1)−1

)
,

(D.7)

where ω1 = 2π
N . Since L � N , the first term of (D.7)

can be approximated accurately by

λN (e−jωL − ejωL+1)

ejω1 − 1
=

λN
1− jωL − (1 + jωL+1) +O(ω2

L)

1 + jω1 +O(ω2
1)− 1

= λNO(2L+ 1).

(D.8)
The second term of (D.7) can, after some calculations,
be written as

λn1
(e−jωL(n1+1) − ejωL+1(n1+1))

ejω1(n1+1) − 1
,= −λn1

sin ω2L+1(n1+1)
2

sin ω1(n1+1)
2

.

(D.9)

Straightforward calculations gives that the maximum of
the term

sin ω2L+1(n1+1)
2

sin ω1(n1+1)
2

, (D.10)

is obtained at n1 = −1 with the maximum value being
2L+ 1. Furthermore, the term (D.10) is oscillating and
decaying as n1 is increased. However, the decay is slower
than for λn1 and hence the decay of the term (D.9) is
dominated by λn1 . The second term in (D.7) can thus
be approximated as

λn1(e−jωL(n+1) − ejωL+1(n1+1))

ejω1(n1+1)
≈ λn1O(2L+ 1).

(D.11)

Using (D.7), (D.8) and (D.11), the complete contribu-
tion to the bias due to the undermodeling of the tran-
sient, (D.6), is given by

bpe−jωn

(2L+ 1)N

L∑
r=−L

λN − λn1e−jωrn1

(1− λe−jωr )2
e−jωr ≈

bpe−jωn

(2L+ 1)Nε2
(
λNO(2L+ 1)− λn1O(2L+ 1)

)
≈ λn1O

(
1

Nε2

)
= λn1O

(
1

NB2
3dB

)
,

(D.12)

where the last approximation is due to that λn1 ≤ λN

and thus λn1 is the dominating term.

Next we consider the bias contribution from the under-
modeling of the impulse response. In this case the ap-
proximation (D.4) is insufficient as higher order terms in
the Taylor approximation will be needed. Let us take a
step back and instead work with the contribution to the
bias due to the undermodeling of the impulse response
given in (D.3). Some straightforward calculations, uti-
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lizing λ = 1− ε, gives (with scaling b
1−λN

1
2L+1 removed)

L∑
r=−L

(
λN − λn2+1

1− λ
− λN − λn2+1e−jωr(n2+1)

1− λe−jωr

)

=

L∑
r=−L

(
λN − λn2+1

ε
− λN − λn2+1e−jωr(n2+1)

1− (1− ε)e−jωr

)

=

L∑
r=−L

(
(λN − λn2+1)(1− (1− ε)e−jωr )

ε(1− (1− ε)e−jωr )
−

ε(λN − λn2+1e−jωr(n2+1))

ε(1− (1− ε)e−jωr )

)
=

L∑
r=−L

(
(λN − λn2+1)(1− e−jωr )− ε(λN (1− e−jωr )

ε(1− (1− ε)e−jωr )

− λn2+1e−jωr (1− e−jωrn2))

ε(1− (1− ε)e−jωr )

)
.

(D.13)
Since ε is small by assumption, we can approximate the
contribution (D.13) as

b

1− λN
1

2L+ 1

L∑
r=−L

(
(λN − λn2+1)(1− e−jωr )
ε(1− (1− ε)e−jωr )

)
,

(D.14)
By Assumption 2, L � N and we approximate e−jωr

with the second order Taylor series around r = 0:

e−jωr = e−j
2π
N r ≈ 1− j 2π

N
r +

(
j

2π

N
r

)2

.

Hence, (D.14) can be approximated as

b

1− λN
λN − λn2+1

2L+ 1

L∑
r=−L

1−
(

1− j 2πN r +
(
j 2πN r

)2)
ε2

=
b

1− λN
λN − λn2+1

(2L+ 1)ε2

L∑
r=−L

j
2π

N
r +

(
2π

N
r

)2

.

(D.15)
Since the sum in (D.15) is symmetric around r = 0, the
even terms sum to zero and (D.15) can be written as

b

1− λN
λN − λn2+1

(2L+ 1)ε2

(
2π

N

)2
L(L+ 1)(2L+ 1)

3

=
b

1− λN
λN − λn2+1

ε2

(
2π

N

)2
L(L+ 1)

3

=
λN − λn2+1

1− λN
O

((
BTRIMM

B3dB

)2
)
.

(D.16)

To summarize, the complete bias expression is approxi-

mated by

E
{
Ĝn −G(0)

n

}
≈ λn1O

(
1

NB2
3dB

)
+
λN − λn2+1

1− λN
O

((
BTRIMM

B3dB

)2
)
,

where the two terms stems from the undermodeling of
the transient (D.12) and the impulse response (D.16).

E Proof of Theorem 5

The impulse response of the system is given by
g(t) = αλt. Note that this is a special case of the im-
pulse response considered in the low damping case in
Section 4.1.1, g(t) = bλtejωnt, when b = α and ωn = 0.
The bias expression (D.3) is thus valid.

By the assumption 0 < λ � 1 we have λN � λn1 and
λN � λn2+1 and we can approximate (D.3) as

− α

(2L+ 1)N

L∑
r=−L

λn1e−jωr(n1+1)

+ α
1

2L+ 1

L∑
r=−L

λn2+1
(
e−jωr(n2+1) − 1

)
.

(E.1)

The terms e−jωr(n1+1) and e−jωr(n2+1) are approxi-
mated by Taylor series expansions around r = 0 and
the bias (E.1) can be simplified to

− α

(2L+ 1)N

L∑
r=−L

λn1O(1)

+ α
1

2L+ 1

L∑
r=−L

λn2+1 (1−jωr(n2 + 1)

+ O
(
ω2
r(n2 + 1)2

)
− 1
)

= − α

(2L+ 1)N
λn1O(2L+ 1)

+ α
1

2L+ 1

L∑
r=−L

λn2+1O(ω2
r(n2 + 1)2)

= λn1O

(
1

N

)
+
αλn2+1

2L+ 1
O

((
2π

N

)2

L3(n2 + 1)2)

)

= λn1O

(
1

N

)
+ αλn2+1O

((
2π

N

)2

L2

)

= λn1O

(
1

N

)
+ λn2+1O

(
B2

TRIMM

)
,

(E.2)

where BTRIMM , 2 2π
N L.
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