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The Determination of Optimum Structures 
for the State  Space Representation of 

Multivariate Stochastic Processes 
VINCENT WERTZ, MICHEL GEVERS, MEMBER, IEEE, AND EDWARD J. HANNAN 

Abstract-When  identifying  a  model for a  multivariate  stationary sto- 
chastic process, an  important  problem is that  of  determining  the  structure 
of the  state-variable  model.  Several  “overlapping“  parameterizations can 
usually be fitted to a  given  process,  and  the  question arises as  to which 
structure  leads to the  most  accurate  parameter estimates. The accuracy of 
parameter estimates is often measured  by  the  determinant  of  the  Fisher 
information  matrix.  We  show  that  all  admissible  structures will give 
asymptotically  the same value to this criterion. For finite data some 
structures may still be  better  than  others,  and two heuristic  structure 
estimation  methods  are  analyzed. Some simulation  results  are also pre- 
sented. 

I. INTRODUCTION 

A N important  and widely studied problem in  the 
theory of identification of linear systems  is the prob- 

lem of determining the structure of a state space represen- 
tation of the type 

x, = Fx, -, + Ke, 

y, = Hx,. (1 .I) 

Here y, is a stationary purely random stochastic vector 
process, e, is a vector  white  noise of the same  dimension as 
y,, and x, is the state. In multivariable  systems. the struc- 
ture estimation problem does not consist  only of the de- 
termination of the dimension of the state vector x, (as is 
the case for single-input-single-output systems); it also 
involves the determination of a special structure (or pa- 
rameterization) for the F, K. and H matrices  such that they 
can be uniquely determined in a parameter estimation 
procedure. These structures are problem-dependent, Le.. 
there is no universal structure that could  be  used  for all 
multivariable linear systems of the same order. Another 
difficulty  is that a given  system  can often be  uniquely 
parameterized RGth more than  one structure. Hence the 
structure estimation problem is to first determine a set of 
admissible structures for a given y, process and then to 
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choose the “best” structure within that set, i.e., the struc- 
ture withn which the parameter estimation problem will be 
best conditioned. 

Ths  problem has been given partial answers by various 
authors (see  [1]-[8] and [18]), but most of the proposed 
methods are based on heuristic arguments. They are mainly 
based on the idea that the components of the state vector 
should be  selected in such a way that they are as orthogo- 
nal as possible to one  another. The motivation behind this 
idea is that this should make the  parameter estimation 
problem well-conditioned. In fact, we show in t h s  paper 
that if the determinant of the information matrix is  used as 
the criterion to be maximized, then all admissible struc- 
tures are  asymptotically equivalent. This will be our  main 
result. The paper is  organized as follows. In Section I1 we 
discuss what is meant by admissible structures, and we 
show that some constraints  on the  choice of these struc- 
tures can lead to a minimum number of parameters to  be 
estimated. 

In Section 111 we  give the main  result of this paper. Since 
this is an asymptotic result, the problem remains as to 
which structure to choose  when  only a finite number of 
observations is available. In addition, other criteria could 
be used, such as the trace (rather than the determinant) of 
the information matrix, which  might enable one to dis- 
criminate between  various  admissible structures. Sections 
IV and V provide  heuristic answers to this question. Fi- 
nally. we give some simulation results in Section  VI. 

The main body of this paper is the work of  V. Wertz and 
M. Gevers. The results of Section 111 triggered the interest 
of E. J. Hannan? who provided the Appendix. The theorem 
proved in the Appendix is important because  it  specifically 
establishes that the main  result of this paper, namely 
Lemma 3.1. is  valid  also  in the case  where certain elements 
in  the  system  matrices are constrained. 

Finally. we want to stress that the problem  discussed in 
this paper is  whether or not  and how an optimal  structure 
can be  selected among a finite number of equivalent state 
space representations. The more  general question of how to 
define uniquely identifiable parameterizations for mul- 
tivariable state space and  ARMA models  is treated in [21]. 
using an algebraic-geometric approach  and the concept of 
intrinsic invariants. 
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11. STATEMENT OF THE  PROBLEM 

We  will be dealing hereafter only with linear  stationary 
full-rank  stochastic processes y, that  can  be modeled by 
finite-dimensional state  space  representations 

x ,  = Fx, - + Kef 

y, = H x , .  (2.1) 

y, is  the  observation process of dimension p ,  x ,  is  the  state 
vector of dimension n,  e,  is a  Gaussian white noise, also of 
dimension p ,  and F, K, H are  constant matrices of ap- 
propriate dimensions. We consider that  the  components of 
the y,’s, t E 2, span  a  Hilbert  space H .  The  stochastic  input 
e,  can  then be viewed as  the  innovation of the y, process, 
defined as follows: 

A 
e,  = Yr - A l l  - 1 (2.2) 

where the  one-step-ahead  predictor of y,, is  the 
projection of y, onto  the space (YL;’), the closed linear 
subspace of H spanned by the  components of y, for 7 G 
c - 1. By the  Gaussian  assumption 

$[,[ - 1 e E{ y, G I?;!}. 

The  identification of the  structure of a  state space rep- 
resentation such as (2.1) consists of  1) the  determination of 
the dimension n of the  state vector and 2) the  location, in 
the matrix F, of the  parameters  to be estimated. 

In  fact,  as we shall show later,  the  determination of the 
structure of the model for  the process y, leads  to some 
entries of the. F matrix being set to 0 or 1, and  thus  not 
having to  be  estimated.  The  location of these “0” and “1” 
entries is an  important  part of the  structure  determination 
because it reduces the number of unknown parameters  and 
ensures  that  the  estimation  problem will be “well posed.” 
This aspect also constitutes  the main difference between 
the  identification of a  multivariate process and  that of a 
univariate process. 

We  now  show that  the  structure  determination problem 
amounts  to  the selection of a  particular basis in the predic- 
tion  space  spanned by the  components of 9, +kl, e 
E( y,+,lYL ,> for k = 0,1, . . 

Consider  the following impulse response representation 
for y, : 

30 

y, = H i e , - , .  (2.3) 

Then Hi = HF‘K, and, because of the  fact  that  the  innova- 
tions  are  a zero-mean white-noise process, we may write 

i = O  

j j f + k p  as 
50 

j r + k l r  = H i e r + k - r -  (2.4) 
i =  k 

Note  that  the filtered estimate jjrl, is  equal  to y,. We  now 
define  the Np-dimensional prediction vector E,‘’ as follows: 

Using (2.4)  we can write 

r el 

1201 

1 
l i l  

where H.v,m is a semi-infinite Hankel  matrix  defined as 
follows: 

I :  H,  H I  a * .  

H I  H2 * * *  

HN, M 
- 

Because of the assumption  that  the process y, is of finite 
order n,  the  rank of the matrix HN,M is less than or equal 
to n whatever the values of N and M. Hence, for N 
sufficiently large, we can choose n independent rows in 
Hh’.m and correspondingly n independent  components of 
the  prediction vector E” that will constitute  a basis for  the 
space  spanned by all the  components of v. Let x ,  be  the 
vector formed with these independent  components of tN. 
Then it is easy to show that x ,  can be related to x, - by the 
equation 

x ,  = F X , - ~  + Ke, (2.6a) 

and  that y, is  a  linear  combination of x ,  as follows: 

y, = H x , .  (2.6b) 

Equations (2.6a) and (2.6b) together constitute  a  state 
space  representation  for  the process y,. 

The following definition will be very  useful in  the sequel. 
We define h ,  the  structural vector of the  state space rep- 
resentation,  as  the vector containing  the indexes of the 
rows of Hh’,m (or equivalently, the  components of the 
prediction vector) that have been chosen in  the  basis (to 
form x , ) .  

We shall now illustrate by a simple example the  fact  that 
several entries of the F matrix can be made 0 or 1. Suppose 
we have a process y, of dimension 2 (i.e., p = 2) and of 
order  3 (i.e., n = 3). If  we are looking for an  arbitrary  basis 
of the  prediction space, it  is clear that many selections of 
three  independent  components of the  prediction vector can 
be made. We therefore introduce some restrictive  condi- 
tions  for  the selection of a basis. First,  note  that because of 
the form of the  Hankel matrix if thejth component 
of $,+ilr: is in  the  span  of  the preceding components 
of the  prediction vector p7 then so will be j:+ k , z  for k > i .  

Secondly, since y, is a  full-rank process, it is clear that 
the  first p components of the  prediction vector are 
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independent. Hence, we impose  two conditions on the 
selection of the  basis: condition I )  if i E h ,  then i - p E h,  
and condition 2) i E h for i = 1,2,. ‘ p .  

Definition 2.1: If the selection procedure obeys condi- 
tions 1) and 2), then the corresponding structural vector h 
will  be  called  “nice.” If the state x, is formed by  selecting n 
components of obtained from a nice structural vector 
h,  then the corresponding F, K ,  H structure will  be  called 
“admissible.” 

Returning to our simple  example, and subject to condi- 
tions 1) and 2), there will  be  only  two  possible  choices for a 
basis of the prediction space, corresponding to the  nice 
structural vectors h , = (1,2,3)  and h = (1,2,4). The F ma- 
trix corresponding to h ,  is 

F,= x x x [: : :i 
where X denotes parameters to be estimated. With h ,  the 
matrix F can take two forms as follows: 

x x o  x x x  
x x x  x x x  

F2,=  ( 0  o 1 j or F,,= ( 0  o 1 1 .  

The matrix F,, corresponds to the situation where p:+ lies 
in the span of 9:, and j;,. The matrix F2, can also be seen 
as the result of a procedure selecting the first independent 
components of the predictor space,  while the matrix F,, 
could be the result of a procedure selecting the “best” 
independent components of the prediction space,  subject to 
conditions 1) and 2). In this paper, we shall not insist on 
selecting the first n independent components of p, but 
rather the “most linearly independent set” in a sense that 
will  be made precise  later. The objective  will be to obtain a 
well-conditioned parameter estimation problem. In the 
above example this will correspond to choosing  between 
the admissible structures F, or F,2, depending on whether 
or not the components corresponding to h , or h , constitute 
the  “most linearly independent set.” 

An advantage of this approach is that it  allows  overlap- 
ping between different parameterizations, as was stated by 
Glover and Willems [9], Rissanen and Ljung  [4], and Van 
Overbeek and Ljung [ 5 ] ,  and hence  it  is  possible to change 
parameterization via a similarity transform during the 
parameter estimation process without losing any informa- 
tion. 

Now  it is not  easy to define the “best” independent 
predictors. One selection procedure has been proposed by 
Ljung and Rissanen [3], [4] using some complexity ideas. 
However, their method was  based on heuristic arguments 
and did not relate the choice of the “best” basis to the 
errors of the parameter estimates in  that given  basis. 
Clearly, the optimal choice  would be the parameterization 
that leads to the  most accurate parameter estimates. As- 
suming a maximum  likelihood estimation method is  used 
to estimate the parameters, then an optimal structure would 
be the parameterization for  which the determinant of the 
Fisher information matrix Me is  maximized,  with 

where 

is a row  vector. The main  result of this paper is that all 
structures of the  same order will  asymptotically  give the 
same value to the criterion J = logdet M (provided, of 
course, that each state vector is made up of independent 
components of the prediction vector or independent linear 
combinations of these). 

Since our result  is an asymptotic result, the question 
remains as to whether or not any one structure would be 
better conditioned than others when only a finite observa- 
tion record is available  for the estimation of the  parameters 
of H ,  F, and K.  Since finite data results are very  scarce, the 
answer to this question is far from trivial. This justifies the 
use of heuristic approaches to select the “best” indepen- 
dent set of predictor components. In Section IV we briefly 
present the method of Rissanen and Ljung, and we pro- 
pose a modification to make their search method iterative. 
In Section V we present an alternative procedure, also 
based on heuristic arguments, whose  major advantage is 
that it  requires  less computation. 

We conclude this section by justifying the use of the 
model  (2.6) and conditions 1) and 2) for the selection of 
the components of the  basis.  We  shall  show that this leads 
to a minimum number of unknown parameters to be 
estimated. 

The example illustrates a more general  result,  namely, 
that the rows of the matrix F are of two different types: 
type 1) (0 0 1) or more generally (0 . . .  0 1 O . - - O ) ,  
and type  2) (X X X ) ,  i.e., fully parameterized. In fact, 
from the way F expresses  the linear dependences in the 
prediction vector  (see,  e.g., [ 101. [ 1  l]), one can see that there 
are n - n, type 1) rows  in F. where n , is the number of 
rows of the first  block  row of Hx,  ~ (n, G p )  that  are 
selected  in  the  basis. The rows of H are also of type 1) or 
2). and there are n ,  type 1) rows in H .  Hence, there are nn, 
parameters to be estimated in F and ( p - n l ) n  in H.  The 
total number of parameters in F and H is np, indepen- 
dently of the value of n ,. However, n , does have an effect 
on the number of unknown parameters in K. 

Instead of the Markovian model  (2.6) one can also 
choose  the  following model: 

x,+ , = Fx, + Kpe, 

y, = Hx,  + e,. (2.8) 

This model  is obtained if the prediction vector $.‘ is 
started with rather than We  now  examine the 
number of parameters to be estlmated in various struc- 
tures. 

Case I :  Consider the state space representation (2.6). 
i) If x, is  chosen so as  to satisfy 

one can  see that H = [ I  01, K = 
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number of parameters  to be estimated is 2np - p 2 ,  where n 
is the dimension of the  state of model (2.6). 

ii) If x, is chosen so as to satisfy condition 1) only, then 
the  number of parameters is 2np - n , p ,  where n ,  < p .  

iii) If x, is chosen without satisfying conditions 1) and 
2), the  number of parameters  to be estimated  in F may be 
greater  than 2np - n ,p .  

Case, 2: Consider now the  state  space  representation 
(2.8). 

i)  With  condition 1) being satisfied, the  number of 
parameters to be estimated is 2Ep, whether or  not  condi- 
tion 2)  is satisfied. Here E is the dimension of the  state of 
model (2.8). 
ii) With  neither  condition 1) nor 2)  being satisfied,  the 

number of parameters may be  greater  than 2Ep. 
Note  that  the  number of states n of model  (2.6) is,  in 

general, larger than  the  number of states E of model (2.8). 
For  a comparison of models (2.6) and (2.8),  see the discus- 
sion in, e.g., [ 191, [20]. 

Following this analysis, it  is  reasonable  to  restrict  the 
selection of basis vectors to "nice" structural vectors, i.e., 
to impose conditions 1) and 2). 

111. ASYMPTOTIC EQUIVALENCE OF h L  CANONICAL. 
FORMS 

Two important  methods  for  parameter  estimation  are 
the  prediction  error method and  the maximum likelihood 
method. In the case of Gaussian  innovations,  it is well 
known that these methods yield asymptotically efficient 
parameters, i.e., the covariance matrix of the  estimation 
errors  is asymptotically equal  to  the inverse of the  Fisher 
information  matrix M,. Therefore,  it seems logical to  try to 
discriminate between various structures by maximizing 
some scalar measure of this information  matrix over all 
admissible structures.  The most obvious (and widely used) 
criterion  is  the  determinant of the  information  matrix; this 
corresponds  to minimizing the  determinant of the asymp- 
totic  error covariance matrix. 

We shall show in this section that all structures F, K ,  
and H containing the same  number of parameters will 
asymptotically yield the same value for  the  determinant of 
the  information matrix. This result is important because it 
shows that, at least asymptotically, all such structures  are 
equivalent as far  as  the accuracy of the  parameter  estimates 
is concerned if this criterion is used. As a consequence, this 
criterion is unable  to  discriminate between  two admissible 
structures  for  the  same process. 

The main argument is contained in the following lemma. 
Lemma 3.1: Let F, K ,  H and F*, K*, H* be the matrices 

of the  state  space  representation (2.1) in two different 
structures  and  let T be the n X n transformation  matrix 
from  the  triple ( F ,  K ,  H )  to  the  triple (F*,  K*, H*), i.e., 

F* = TFT-' 
K* = T K  
H* = H T - ' .  (3.1) 

Then  the  absolute value of the Jacobian of the  transforma- 

tion from the  parameters  in ( F ,  K ,  H )  to  the  parameters in 
(F* ,  K", H*)  is equal  to 1. 

Proof: Let 8 be the k-vector of all parameters  in 
F, K ,  Hand  8* the  corresponding k-vector for E*, K*, H*. 
We recall that  in  a general one-to-one  functional  transfor- 
mation from the variables 8 to  the variables 8* = f ( f ? ) ,  the 
Jacobian of the  transformation is the  determinant of the 
matrix C defined by 

.==($). ae ae* 

Writing 8; = f i (B, ,  8 , ; .  . , e , )  and  taking  the  differential of 
this expression, we have de; = C aO~,*/a8,(d$) and  hence 
de* = C(d8) .  

Thus we see that  the  transformation of the  differential is 
linear  and  that  the  Jacobian  is  the  determinant of this 
transformation. We shall now  look at the  transformation 
from the variables in F,  K ,  H ,  and T to  the variables in E$, 
K*, H*, and T. This is indeed a  one-to-one  transformation. 
Given F, K ,  H ,  T ,  then P, K*, H*, and T are uniquely 
determined and  the converse is also true.  In  particular, we 
shall  study  the  transformation between the  differential of 
these matrices. 

Following (3.1) and because ( d T - ' ) =   - T - ' ( d T ) T - ' ,  
we have 

dF*=(dT)FT-'+T(dF)T-'-TFT-'(dT)T-' 
d K * = ( d T ) K + T ( d K )  

d H * =   ( d H ) T - I -   H T - ' ( d T ) T - '  

dT = dT. ( 3 4  

Hence 

T - ' ( d F * ) T = T - ' ( d T ) F +   d F -   F T - ' ( d T )  

T- ' (   dK*)  = T - ' (   d T )  K + dK 

( d H * ) T = d H -   H T - ' ( d T )  

T - ' ( d T )   = T - ' ( d T ) .  (3.3) 

Let 

T- '( dF*) T = dF* 

T- l (   dK*)  = dK* 

(dH*)  T = dH* 

d W =   T - ' ( d T ) .  (3 -4) 

Then (3.3)  becomes 

dF* = ( d W )  F + dF - F (   d W )  

d K * = ( d W ) K + d K  

diT* = dH - H (   d W )  

d W =   d W .  (3.5) 

The  transformation from ( F ,  K ,  H ,   T )  to ( E $ ,  K*, H*,  T )  
can  be viewed as the  composition of three  transformations 
as shown in  the following diagram: 
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J 
( F ,   K ,  H ,  T )  + ( F * ,  K * ,  H * ,  T )  

Jl .1 
+ 

J2 
( F ,  K*, I F ,  w). 

To each of these transformations there corresponds a 
Jacobian J ,  J1, J,, J3, which  is the determinant of the trans- 
formation of the differentials, and 

J =  J l*J2*J3 .  (3.7) 

Let us now  look at the  following transformation: 

d Y =  A ( d X )  (3.8) 

where Y,  A ,  and X are matrices of compatible dimensions. 
By defining dy (respectively, d x )  as a vector obtained by 

putting the columns of the matrix dY (respectively, d X )  
under  one another, (3.8)  is transformed into 

dy = ( I @ A )  du (3  -9) 

where ( A @  B) is the direct product of the  matrices A and 
B, defined by 

I .  al1B u,,B . . .  y_bj 
A @ B =  : 

a n l B  . . .  a,mB 

In a similar  way, a transformation of the type 

dY= (dX)B (3.10) 

leads to 

dy = ( B ' @ I )  dx. (3.1 1) 

If A and B are square matrices of orders r and s. then the 
following  is a well-known property of the  direct product 

det(A@B) = (det  A)'(det B)" .  (3.12) 

Using this, it is now  easy to compute the  value of the 
Jacobians in (3.6) as follows:  by  (3.4d). (3.9), and (3.12). 
J, = det(T) - "; by (3.5) and the  fact that d W  does not 
depend  on dF, dK,  dH,  J2 = 1; by  (3.4).  (3.9).  (3.11). and 
(3.12). J3 = det(T)" and hence J =  J1J2J3 = 1, which  com- 
pletes  the proof. 

The proof of Lemma 3.1 assumes  implicitly that the 
parameters of F, K ,  H are free, and  that the  elements of T 
are differentiable functions of F, K .  and H. Now in order 
to apply Lemma  3.1 to our problem, we must  make sure 
that the  lemma  is  valid also for the case  where  the  matrices 
F, K ,  H and F*, K * .  H* are restricted to the  set of admissi- 
ble structures, Le.. where certain elements of these  matrices 
are constrained to be 0 or 1. It  is  shown  in  the Appendix 
that Lemma  3.1 does apply to this case. 

We  can  now  prove  the  following  theorem. 

Theorem 3.1: Given  two  admissible parameterizations 
with the same number of parameters for the same process 
of order n ,  then the determinants of the information 
matrices corresponding to these  two parameterizations are 
identical. 

Proof: Let 8 and e* be the vectors of parameters 
corresponding to the two parameterizations ( F ,  K ,  H )  and 
(F*:  K*,  H*). The information matrices Me and M,. are 
related by' 

Hence det Me, = (det( a8/aO*))2det M,. By Lemma 3.1 
det( af?/ae*) = 1, and hence det Me* = det Me. 

It follows  immediately  from Theorem 3.1 and the discus- 
sion above that, in the Gaussian case and with a maximum 
likelihood estimation scheme, any two parameterizations 
will  asymptotically  yield the same  value  for the determi- 
nant of the parameter error covariance matrix. 

Of course other criteria could be used that might be  able 
to discriminate,  even  asymptotically,  between different ad- 
missible structures. 

An  important consequence of our results of this section 
is that  attention should be directed toward finite data 
results: some parameterizations might  be better condi- 
tioned than others if only a finite data record  is  available. 
Since  theoretical results are difficult  to obtain for finite 
data. we shall  now turn to two suboptimal structure esti- 
mation methods that  are based on the idea of selecting the 
"most independent components" in the state vector. 

Iv. A METHOD BASED ON THE CONCEPT OF 
COMPLEXITY 

In this section. we sketch a method proposed  by Ljung 
and Rissanen  [3].  [4] and based on the  concept of complex- 
ity of a random vector  defined  by  Van  Emden  [12].  We 
shall  also propose a new iterative procedure that is closely 
related to that of Ljung and Rissanen. 

Complexity  is, in fact. a measure of the interaction 
between the components of a random vector. The more 
interaction there  is,  the  larger the complexity.  Van Emden 
shows that the  complexity can be  expressed  using the 
covariance  matrix and derives  the  following  expression: 

[d.\-,/ao,. . . a\-;as, I. 
' I f  I is a scalar and B is a k-vector. then a.y,,'aB denotes the row vector 
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l n  
C =  - - log(nh,) (4.1) 

2 j = l  

where A i  are  the eigenvalues of the covariance matrix of the 
random vector (provided this covariance matrix has  been 
normalized so that  its  trace equals 1). 

Suppose now that we know the covariance matrix R; of 
EN and  that  the  order of the process, n, is also known. 
Then  one  can  compute  the complexity of various subvec- 
tors of order n of tN because the  corresponding n X n 
covariance matrices are  submatrices of R;. The  idea  pro- 
posed in [3] is then to select as  the  state  that subvector of 
EN that  has  the smallest complexity among all subvectors 
of dimension n that obey the  conditions 1) and 2) of 
Section 11. The  components  obtained  in this way are called 
by  Ljung and Rissanen the  “most  independent  compo- 
nents” of yv. The  procedure they  suggest is as follows. 

i) Compute  estimates of the  predictors Prit ;klr  by first 
fitting  a high-order autoregressive model to  the  data. 

ii) Compute  the  sample covariance matrix R; from the 
estimated  predictions. 

iii) For  a given  value of n,  compute  the complexity of 
various submatrices of R;, subject to  the  constraints  that 
the p X p upper left submatrix of R; is always included 
and  that  the j t h  row of the matrix R; is chosen only if the 
( j  - p)th row is also chosen. (These constraints  amount to 
meeting conditions 1) and 2) of Section 11.) 

iv)  Select the basis for the  predictor space that  corre- 
sponds to the  submatrix with smallest complexity. 

v) Repeat  the  procedure  for higher order models and 
take  the  order  that minimizes a  criterion such as  Akaike’s 
AIC criterion. 

A major disadvantage of this method is  that  one needs to 
first  estimate  the covariance matrix of the  prediction vector 
by fitting  a high-order autoregressive model to the data 
and then computing sample predictions. However, the  pro- 
cedure has the following interesting  feature: if the  parame- 
ters of the F matrix are estimated by least squares, one  can 
show  (see [ 131) that the covariance matrix of the  error of 
the  parameter  estimates  is related to  the inverse of the 
submatrix of R; selected  by the  procedure of Ljung and 
Rissanen. This seems to  justify using the  matrix R;  as a 
starting  point  for  the selection of the basis components, 
even thou& this matrix is not directly available. It also 

using the  fact  that  the inverse of a  matrix A’ = 

where b is  a vector and a is a  scalar, is given by  the 
following inversion formulas: 

where 
E = A - ’  + A-’brb%-’ 
g =  - A-’bc 

E =  [ a -  bTA-’b]-’. 

(Hence, no  other  matrix inversion is needed once the p X p 
submatrix A - has been computed.) 

v) Select the  submatrix for which the trace of the inverse 
is minimized. 

vi) Repeat the last two steps with all (n + l)X( n + 1) 
submatrices  that  contain  the selected n X n submatrix  and 
whose additional row and column is chosen so as  to satisfy 
condition 1)  of Section 11. 

vii) A  stopping  criterion is needed. One  criterion  that 
seems to work well in practice is to  stop when J =  
l/n tr [( A ’ )  - ’1 does  not decrease anymore. This is justified 
by the fact that when the order of the  submatrices  is 
greater  than the actual  order of the process, these sub- 
matrices will be  ill-conditioned. Their inverses will be large 
and so will be J. 

V. A Q - R FACTORIZATION METHOD 

In this section, we present a new method of structure 
identification, based on  the  assumption  that  a “good” 
structure will be one  in which the  predictors selected to 
form  the basis of the  prediction space are most indepen- 
dent. We will first assume, as has been done by Akaike [7] ,  
that we have chosen M E N large enough so that H (  Y,‘- M )  
(i.e., the  Hilbert space spanned by the  components of 
y ( t  - k )  for 0 Q k Q M )  is close enough to the  space 
H( Y i  ,). This allows us to replace the analysis of depen- 
dence of the j /+klr  by the analysis of dependence of the 
yr+kl t . r  -j - M ,  which are defined as the  projections of yj+k 
onto  the  space H (  Y,‘- M ) .  

Denote by y‘- and TiAr the vectors - 
suggests minimizing some scalar measure of the inverse of 
the various submatrices of R ;  in  order  to  discriminate _”’ j !‘j 
between the  corresponding  subvectors of y. With this Kt- M = T:.N = (5.1) 
idea  in mind, we suggest the following procedure. 

The first two steps  are  identical  to those in Ljung and Yr- M Yr+ X 

Rissanen’s method. and by X,  ,, X,,, and E,, the covariance and cross-covari- 
iii) compute  the inverse of the  upper  left p x p subma- ante mat*ces 

trix of R;. 
iv) for  an  order n equal  to p + 1,  select  all the ( p + 1) X 

( p + 1) submatrices of R , ,  which contain  the p X p upper 
left  submatrix,  and such that  condition 1)  of Section I1 is 
also satisfied. Compute  the inverses of these submarrices, E22 = E {  Yz- M (  qr- $j) ‘} . (5.2) 
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By the full-rank assumption Z,, is positive definite so that 
we can have 

for  some nonsingular  matrix 
Let  us  perform the following transformation: 

Now y/7 k , r ,  - ,w admits  a representation 

where 

Hence, the elements of the ( k p  + j) th row of the matrix 
EI2Es1/* are  the  coordinates of jjj+k,f,r - in  the basis 
Z:- Therefore, because of (5.5), we can replace the 
analysis of independence of the components p;+ ,,<, - by 
the analysis of independence of the rows of EI2E;’/’. 
Now, a well-known (and numerically well-conditioned) 
method  to search for the most independent rows of a given 
matrix  is to perform a Q - R factorization by  means of 
Householder transformations (see [ 141 and [ 151) with  row 
interchange. 

The method we propose  is thus as follows. 
1) Compute  an upper-triangular square  root of i.e.. 

an  upper-triangular matrix Z\i2  such that Z;{’Z\{‘ = Z 22 

(Cholesky factorization). 
2) Compute  the  product  Zi2Z;1/2.  Note  that the first p 

rows of this product  are lower triangular. This saves p steps 
in  the subsequent Q - R factorization procedure. 

3) Compute  a recursive Q - R factorization of Z,2Z;i/2 
using  Householder transformations, where the triangulari- 
zation is always  performed on the row leading to the 
largest pivot. 

4) Stop  when the pivots do  not significantly decrease 
any more. 

We briefly illustrate  one  step of the Q - R factorization. 
After k steps of the triangularization procedure, we have 

the following factorization: 

where S,  is the  product of k permutation matrices, Pk is the 
product of k Householder transformation matrices, and T, 
is  a lower-triangular matrix of the following form: 

0 

0 
_ 
- 

It is clear from the  structure of Tk that  the Euclidean 
norm of the rows in T22 are  the distances of the  last 
( N  + 1)p - k rows of Tk to  the space spanned by the  first k 
rows. From  the  properties of Householder transformations, 
the pivot of the next triangularization step is the Euclidean 
norm of the selected row in T22. So choosing the row 
leading to the largest pivot amounts to choosing the row 
with the largest projection onto the space orthogonal  to  the 
span of the first k rows.  This is what we call the  “most 
independent” row. 

Upon completion of the triangularization procedure, the 
following factorization is obtained: 

where S is a  permutation matrix, T is a lower-triangular 
matrix (at least for  its first n rows), and P is a  product of 
Householder transformation matrices  (which implies that 
P’P = PPT = I ) .  The  permutation matrix S indicates which 
components of are  to  be chosen in  the basis. In  order 
to be consistent with the analysis at the end of Section 11, 
we should also introduce some constraints in the  procedure 
of row selection for the triangularization: the first p rows 
are to be triangularized, and  one  can choose the j t h  row 
only if the ( j  - p)th row has already been  chosen.  These 
constraints  are taken in order  to meet conditions 1) and 2) 
of Section I1  which,  we recall, lead to  a smaller number of 
parameters  to  be estimated. 

We should also add  that with a few more computations 
(i.e.. the solution of a linear system of equations with 
triangular matrix) one can easily obtain estimates of the 
parameters of the F matrix, which can  be used as  initial 
values for a maximum likelihood algorithm (see Canuto 
and Menga [SI). 

We  now  show that  our triangularization method can also 
be related very  nicely to Akaike’s  method 171 which is 
based on  a canonical correlation analysis on the vectors of 
future  and  past observations (see Anderson [ 161). We shall 
not go  back in detail to this method, but we recall that  it 
amounts  to  a singular value decomposition of the matrix 
2iT~’2212Z;1/2  and that the idea of the canonical corre- 
lation analysis in this case is to search for independent 
linear combinations of the vector xi,\, which are most 
correlated with independent linear combinations of M .  

Actually, in Akaike’s  method, this only  gives the  number of 
independent  components of a subvector of the prediction 
vector, and hence it leads to  the choice of the first indepen- 
dent  components of the  prediction vector in the basis. It is 
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not possible with this method to discriminate between 
various  independent  components  and to take  the  “most 
independent” ones, and  the reason for this is that  the 
canonical  correlation analysis uses linear  combinations  of 
q:N rather  than single components of this vector. By 
searching for the single components of q:,,,, that  are most 
correlated with independent  linear  combinations of the 
past,  one  can establish a close relationship between our 
procedure  and  the method of Akaike. 

In the  canonical  correlation analysis, one searches in  a 
first  step  for two vectors a, and y, such that aTZ12yI is 
maximized subject to aTX,,a, = yrZ,,y, = 1. In  a second 
step, two linear  combinations a2Y,:, and y2yIL ,+, are 
sought, which are  orthogonal to the  first ones, and which 
have maximum correlation with one  another. Now consider 
the following variations. 

In  the  first  step we maximize U , ( Z , ~ ) ~ , ~ ~ ,  where a, is a 
scalar, ( Z , 2 ) j ,  is the j,th row of X,,, y, is  a vector of 
dimension ( M  + l)p, under  the  constraints u: = 1, yrZ,,y, 
= 1. The maximum is taken over the values of a,, y,, and 
the indexj,.  For the second step, we maximize a,(Z,,)j,y2, 
j ,  * j , ,  under  the  constraints u: = 1, yTZ,,y, = 1, yTZi2yI 
= 0, and so on. 

With computations similar to  those of the  canonical 
correlation analysis, this amounts to finding two matrices 
A and r such that A’A = I and A is a  permutation  matrix 
(with possibly  some changes of sign), TrZ,,T = I ,  and 

A’Z,,r = T. (5.9) 

T i s  a  lower-triangular matrix with decreasing pivots. If  we 
compare (5.8) and (5.9), we can  identify S with A and 
Z,’ /2P with r, and hence establish  the equivalence be- 
tween the two approaches. 

In this section we have proposed a new structure estima- 
tion method as  an  alternative  to  the method of Rissanen 
and Ljung. It is based on another heuristic definition of 
“most  independent rows” of a matrix. We do not claim 
that this new method is superior from a theoretical point of 
view.  However, from a  computational  point of  view, our 
method has  the major advantage  that it works with the 
covariance function of the  observation process, R,, which 
can be readily estimated from the  data, while the method 
of Rissanen and Ljung works with the covariance of the 
predictors, R ; ,  which requires that  the  data be filtered 
first, using an AR  model that  has  to be identified. 

VI. SIMULATION RESULTS 

In this section, we present some siniulation results in 
order  to  compare  the various methods that we  have intro- 
duced. Data sequences have  been generated from the 
Markovian model  as follows: 

Xk = AX, - -k Be, 

= 

1207 

TABLE I 
P A R A ~ ~ E R  VALUES FOR MODEL 1 

~ 

A =  
1 

- 0 . 5 0   4 . 8 3   - 0 . 6 3   0 . 7 2   3 . 3 8   - 3 . 1 3  

0 . 2 0  -3 .67  0 .50  

- 0 . 5 8 1  ‘1=[-2.5 

-0 .22  - 2 . 4 2  -0.19 -0 .36  - 0 . 6 9  

- 1 . 5 5  2 2 . 5 0  -2.8: 3 . 6 9  15 .13  -14.8E 

C I =  [ - 7 . 0  3 8 . 0  16 .0  9 . 0  

-4 .39  85 .33  37.5 17.92 I 
I I 

TABLE I1 
PARAMITER VALUES FOR MODEL 2 

A =  2 

-0.1 0 0 .65  I 0 0 0  0 1 ’2=[ i . 2 5  i.81 

0 0  0 1 

-213   -5 f3  -0 .25  I 

A number of different models has been simulated,  but 
for reasons of brevity, we restrict ourselves here to two 
models which will hopefully give a sufficient illustration  for 
the previous section.  In  both models, yk  is a two-dimen- 
sional vector process, xk is of dimension 4, and ek is  a 
two-dimensional Gaussian white noise with mean zero  and 
unit covariance matrix.  Tables I and I1  give the values of 
the matrices A ,  B ,  and C for each of the two models. 

In  the  first model, the  entries of the  matrices have been 
chosen such that  the  third row of the  Hankel matrix HN, 
is nearly in  the  linear  span of the  first two  rows. Hence, the 
best structural vector of the process is h I = (1,2,4,6). 

The second model has been taken from a  paper by H. El 
Sherief and N. K. Sinha [ 171; using their own method, they 
find  the  structural vector h ,  = (1,2,3,4) for this model. 

In the sequel, the method of Ljung and Rissanen will be 
referred to  as the LR method,  the  variant  that we have 
introduced  in Section IV d l  be called WGl, while the QR 
factorization  procedure will be called method WG2. 

Table I11 shows the results of the  three  methods  applied 
to the first model. Note  that in the LR method,  the 
program computes  the complexity of all admissible struc- 
tures for each different  order; method WG1, on  the  other 
hand, is recursive: for an  order n, only those structural 
vectors are considered which contain all the rows selected 
in  the  optimal ( n  - 1)th order  structural vector. The  stop- 
ping criterion J used with WGl has been defined at the 
end of Section IV. 

All three  methods reject the  odd rows in  the  structural 
vector. (Recall that  the first p rows are always chosen 
following condition 2) of Section 11.) The LR method gives 
no  estimate of the  order.  In  the WGl method,  the  criterion 
J = l / n  tr(A’)- is minimum for n = 4,  while in  method 
WG2,  after  the  triangularization of  row 4  (third  step of the 
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TABLE 111 
METHODS LR. WG 1. A h D  WG2 APPLIED TO MODEL 1 

R method 
ouqlexity 

4-37 
3.72 f 

T 
7.49 

5.00 * 

6.72 

8.71 
7.17 * 

9.86 

9.08 

WGI method 

trace 
4.27 

4.03 * 

21.52 

4.14 + 

21.68 
7.01 + 

J - 
I . 3 3  

I .04 

1.40 

- 

e lec ted  
row 

1 

2 

6 

8 

I O  

I pivot1 

0.408 

0.054 

O.ll0 

0.104 

0.100 

0.105 

procedure) the decrease of the pivots is not significant 
anymore,  which suggests an order 3. 

Finally, we add  that  the use of Akaike’s  canonical corre- 
lation method [7] on  this model leads  to  the  structural 
vector h = (1:2,4). 

In  Table IV  we see that  the three methods lead to a 
structural vector h = (1,2,3,4) if the supposed order  is 4, 
but if n = 3, the LR method leads to h = (1.2,3) while the 
other two  methods indicate h = (1.2,4). The estimation of 
the order in WG1 leads to n = 3,  while  visual inspection of 
the pivots in WG2 leads to n = 4. Again, the simulation 
of Akaike’s  method leads to h = (1,2,4). 

The conclusion we have drawn from  our  simulations is 
that in most cases (with results of Table IV being the sole 
exception) method WG1 seems to give the best estimate of 
the  order of the model.  We recall that Akaike’s  method 
gives an  order estimate, but does not select a  “best basis,” 
while the LR method  does not estimate the  order,  but 
selects a  “best basis” within a prescribed order. As for 
method WG2, a  better  criterion  than  the visual inspection 
of the decrease of the pivots could probably  be  found. 

We  believe that all three methods give fairly good results 
for the  determination of the  structure, the advantage of the 
methods WG1 and WG2 being that they  provide  some 
estimate of the  order  as well,  which  avoids the  fitting of too 
many parameterizations. 

VII. CONCLUSION 

There are several ways of defining a “best”  parameteri- 
zation for the  representation of a  stationary finite-dimen- 
sional multivariate stochastic process. But  obviously a 
logical method  would be to select the  structure  that mini- 
mizes  some scalar measure of the  information matrix that 
corresponds  to each parameterization. We  have  shown  here 
that the determinants of all these information matrices are 
asymptotically equivalent, and  that this criterion is there- 
fore  unable to discriminate between different structures. at 
least asymptotically. This does not mean that  other criteria 
might  not be able to discriminate, or that some structures 
might not  be  better  than  others when  only a finite data 
record is available. Two heuristic schemes  have therefore 

Order 

5 

TABLE IV 
METHODS LR. WG 1. AND WG2 APPLIED TO MODEL 2 

tructural   vecto l  
rethod LR 
molplexi  ty 

0.92 - 
1.14 

2.06 - 
2.68 

4.08 

7.17 

3.76 - 
7.91 

6.24 

method W;l 1 method WG? 
s e l e c t e d  ! -.ivotl t race  row 

7266.8 

0.230 

0.063 

0.062 

0.063 

been  analyzed in some detail, and simulation results have 
been presented. 

APPENDIX 

The interesting argument in Section 111 establishes that if 
F, H1 K and F”? H*, K* are related by  (3.1),  where T is a 
differentiable function of F, H ,  K 1  the  Jacobian determi- 
nant  of  the  transformation from FI H ,  K ,  to F*. H*, K* is 
unity. However, for  the  application of this result to  the 
systems studied in Section I1 we must restrict F, H ,  K to 
satisfy the reachability and observability conditions 

rank [ K ?  F K ,   F ~ K , .  . - 1  
=rank[H’,F‘H‘,(F‘)’ H’,...]= n. (A.l) 

In  addition,  the F, H ,  K considered in Section I1 are re- 
stricted  to  the set of “nice”  structures (i.e.,  they contain 
“zeros” and “ones” in fixed places and only 2np free 
parameters). 

This is a very “thin” set in  the set of all F, HI K .  
Consequently,  it is not apparent  that Theorem 3.1 holds, or 
in what  sense it holds. 

Consider the Hankel  matrix H :  
- 

H(1) H(2)  H(3) . . .  
H ( 2 )  H(3)  H(4) . * .  

H =  H(3)  H(4) H ( 5 )  . . . 

- .  

or, alternatively, H X , =  [see below  (2.5)].  Since the theories 
for H and Hz.= are essentially the same, we shall, for 
brevity, henceforth  speak  only of H .  Call M ( n )  the set of 
all systems F. H ,  K ,  satisfying (A.1).  Then H is of rank n 
for a system in M ( n )  and, as is explained in Section 11, we 
may  choose as  a basis for the rows of H a  set of rows of the 
form 

r ( u : j ) ;  u = l ; . *  ,n , ;  j = 1;. . , p ;  Z n , = n  (A.2) 

where r ( u ,  j )  denotes  the j t h  row of the uth block of p 
rows. 
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Let U({n,}) be the subset of M ( n )  for which the rows in 
(A.2) are linearly independent.  Then,  for  suitable ai,( u) ,  

f " J  

r ( n i  + 1, i ) +  a i , ( u ) r ( u ,  j )  = 0, 
j = l  u=.1 

i = l ; - - , p .  (A.3) 

Let hj , (u )  be  the element in row i, c o l u m j  of H( u) .  Then 
the 2np numbers 

a i ; ( u ) ,  u=l;-,n;; 

hi, t u ) ,  u = 1,. . . ,n i ;  i ,  j = 1 ; - -  ,P 

coordinatize U({nJ}, i.e.,  they map  that  set,  in  a  one-to-one 
manner,  on Euclidean space of dimension 2np. The  union 
of the U({ n,}) is, of course, M (  n).  If a?,( u),  hTJ( u )  are  the 
coordinates of the  same  point  in M ( n )  in  the  coordinate 
system corresponding  to V({nT}), En; = n,  then of course 
the a?,(n), hy,(n) are  functions of the a. . ( u ) ,  h j j ( u )  and 
indeed, as is well known, they are  analytlc  functions  on 
u({n,})n U({n;}). Indeed,  the proof  given  below shows 
that they are  finite  rational  functions.  This shows that 
M( n )  may be topologized  as an  analytic manifold and each 
V({ n,} is dense  in M( n) .  

I J .  

We  wish to prove the following theorem. 
Theorem A.1: The  Jacobian of the  transformation  from 

the a,,(u),  h , , (u )  to  the a:,(#), hTJ(u) is unity if each of 
these sets of functions on M ( n )  is arranged  in  dictionary 
order according to  i, then j ,  then u, with i, j ,  ti increasing 
from 1 to  the maximum possible value. 

Of course, the same theorem is true  for H,, cc. The result 
is, in  a sense, special to these parameterizations.  For exam- 
ple, it clearly is not  true if one such parameterization is 
given  by aIJ(u)'  h , ( u )  and  the  other by 2aT,, hT,(u). It is 
possible that  the theorem may be proved more simply via 
Lemma 3.1, but  that is not obvious. 

Proof: We may think of the  transformation from the 
unstarred  to  the  starred  quantities as the  product of a 
sequence of transformations in each of which one of the 
indexes, n,, is increased by unity,  and  one is decreased by 
unity, the others being unchanged. Thus, if n ,  = 2, n 2  = 3, 
n3 = 4, nT = 5 ,  n; = 1, n; = 3, we may consider (2,3,4) -+ 

(3,2,4) + (4,1,4) -+ (5,1,3).  It is therefore necessary and 
sufficient to prove the result for  the case where n, + n j  + 1, 
n k  + nk - 1, nu = n:, a * j ,  k. It is then clearly necessary 
and sufficient to prove the result when ny = n I + 1, n; = n 
- 1, n .  = n*,j  * 1,2. We must assume that a 1 2 ( n 2 )  * 0, for 
otherwise from (A.3), Y( n + 1,l)  is a  linear  combination of 
the r( u,  j ) ,  other  than r(n2,2), and so the set of rows of H 
corresponding  to the nT is not linearly independent.  Con- 
versely, if a I 2 ( n 2 )  * 0 these rows are linearly independent 
and  the  point in M ( n )  lies  in U({n,})n U({n?}). Thus 

J J  

putting aI l (nT)  = 1. Also using (A.3) f0r.i = 1 and (A.4) we 
may express the aTJ ( u )  as follows. 

j = ] , . .  . ,p,  u = 1;. -,nj*. 

Here,  in  addition to a , , (n f )=  1, we have put ail(ny)=O 
for i = 2; . . ,p and a,,(O) = 0 f o r j  = 1; . -,p. 

a ~ j ( u ) = a l J ( u ) / a 1 2 ( n 2 ) ,  j = l ; * . , p ;  u=l ; - ,~Zg .  

i = 3 ; . . , p ;   j = l ; . - , p ;   u = l ; . . , n ? ,  

with ai,(nT) = 0, i = 3 7 . .  ' ,P. 

To evaluate laaT,(u)/aa,,(u)l we take  i  in  the  order 
i=2,3;- . ,p, l   andaintheorder  1,3; . . ,p,2.Forifixed 
(a  fixed) we order  the row first  according  to j increasing ( b  
increasing) and  then u increasing ( u  increasing), except 
that we take aTl(nT) last (a,,(n,) last)  in the set of n rows 
for each i  (in  the set of n columns for each a). We shall 
now  show that  the  Jacobian matrix, aa:J(u)/da,b(u)7 is 
upper  triangular  and  that  its  determinant  is . 

( -  1)Pyn-'a12(n2)-J'. 
First, . 

a a ; j ( u )  

a a u b ( D )  
= 0, a 2 2 .  

Thus all blocks below the main diagonal  are  null  and we 
need only evaluate  the  determinants of the  diagonal blocks. 
Now 

Thus  the  top  left-hand block is itself upper  triangular. 
Since 

this  upper  left-hand  block  has  determinant 
-{a12(n2)}-n-1. The blocks da; (u ) /aa , , (u ) ,  i = 3,4,. . -, 
p. are again upper  triangular with diagonal elements unity 
save for aa?l(n;)/aa,2(n2) = -{a12(n2)}- ' .  Thus  the 
product of the  determinants of these p - 2  diagonal blocks 
is {- ( ~ , ~ ( n ~ ) } - p + ~ .  Finally, aaTJ(u) /da2 , (u )  is also up- 
per triangular. Indeed for j = 1, u = n y ,  b = 2, v = n2  the 
derivative is unity whle otherwise 

so that  the  determinant is ( ( ~ , ~ ( n ~ ) ) n - ~ .  Thus laa;(u)/  
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8aob(o)l is (- 1 ) P + ” - ’ a I 2 ( n 2 ) - P ,  as  stated above. 
Since 8a$(u>/8hab(u)  = 0, we need only evaluate 

8 h ~ j ( u ) / 8 h , , ( u ) .  This is 8i08,b6uo unless i = 1, u = n;, a = 2. 
u = n ,  when we obtain - 6jba12(n2).  Thus  the  determinant 
is {- a l 2 ( n 2 ) } P  and  the  Jacobian  determinant required for 
the theorem is,  in the  ordering of rows and columns used  in 
this proof, ( - 1)“ - I .  Reordering rows and columns in  the 
natural  order  stated  in  the theorem we obtain  the required 
result. 

In order  that (2.8) should represent  a  stationary process 
with e,  the  innovation sequence, then  it is necessary and 
sufficient that k ( t )  = H{zI,  - F } - ‘ K  + IP should be ana- 
lytic  for IzI 2 1  and detk(z)* 0, IzI > l. If det k ( z ) *  0, 
1 1 1  z 1, then the resulting set of F, H ,  K is an open sub- 
manifold of M ( n )  so that precisely the same result holds. 

Although the  Jacobian  determinant of the  transforma- 
tion is unity,  it  is evident that  the smallest and largest 
eigenvalues of the  Jacobian  matrix  approach 0 and m, 
respectively, as the edge of a  coordinate neighborhood is 
approached. If a  stationary  random process is para- 
meterized by points in M ( n ) ,  then one might seek to check 
the  appropriateness of a  coordinate system through the 
information  matrix. 

Although its  determinant is independent of the  partition, 
n = Z n j ,  used to define a  coordinate system, the eigenval- 
ues will not be. It might be computationally difficult to 
determine these eigenvalues, but  the trace is easy to com- 
pute.  The  determinant will be useful  in checking whether n 
is too large as the  information matrix will be singular when 

r -  13 JU. 

REFERENCES 

M. Hazewinkel and R.  E.  Kalman, “On invariants.  canonical  forms 
and  moduli  for  linear  constant  finite  dimensional  dynamical sys- 
tems,” in Proc. CNR  CISM  Symp. Algebraic Sysr. Theon. Udine. 
1975. 
M. Hazewinkel,  “Moduli  and  canonical  forms  for  linear  dynamical 

4, 1976. 
systems, 11: The  topological case.” Math. svst .  Theon.. vol. IO. no. 

L. Ljung and J. Rissanen, “On canonical  forms.  parameter  identifi- 
ability and the concept of complexity.”  in Proc. IFAC Symp. 

J. IZlssanen and L. Ljung,  “Estimation of optimum  structures  and 
Identification. Tbilisi.  U.S.S.R., 1976.  vol.  3. 

parameters  for  linear  systems,”  in Proc. CXR  CISM  Symp.  Alge- 
brarc Syst. Theoty, Udine, 1915. 
A. J. M. Van Overbeek  and L. Ljung. “On line  structure  selection 
for  multivariable  state  space  models,” in Proc. IFAC Svmp. Identifi- 
cation Paramqfer Est.. Darmstadt,  Germany. 1979,  vol. I .  
J. Rissanen, Minimax entropy  estimation of models  for  vector 
processes,”  in System Identification: Advances and Case Studies. R. 
Mehra  and  D.  Lainiotis, Eds. New York: Academic.  1976. 
H. Akaike. “Canonical  correlation  analysis of time  series  and  the 
use of an information  criterion,”  in System Identification: Adcances 
and Case Studies, R.  Mehra and D. Lainiotis, Eds. New York: 
Academic, 1976. 
E Canuto  and G. Menga, “On line  identification of multivariable 
linear  stochastic systems,” in Proc. IFAC Symp. Discontinuom 
Comput. Contr. Syst., Prague,  $zechoslovakia, 1977. 
K.  Glover  and J. C.  Willems. Parameterizations of linear  dynami- 
cal  systems:  Canonical  forms  and  identifiability.” I E E E  Trans. 
Automat. Con,!T., vol.  AC- 19, Dec.  1974. 
J. Rissanen, Basis of invariants and canonical  forms  for  linear 
dynamic  systems,” Automatica, vol. IO, 1974. 
L.  M. Silverman,  “‘Realization of hex dynamical  systems,” I E E E  
Trans. Auromar. Contr., vol. AC-16.  Dec.  1971. 
M. Van Emden,  “Analysis of complexity,” Math. Cent.  Tracts. vol. 
35, Amsterdam,  The  Netherlands, 1971. 

processes,”  Ph. D. dissertation,  Louvain  Univ..  Louvain-la-Neuve, 
V. Wertz,  “Structure  selection  for the identification of multivariate 

G. H.  Golub, V. Klema,  and  G. W. Stewart, “Rank degeneracy  and 
Belgium,  May  1982. 

least  squares  problems,”  Stanford  Univ.,  Stanford, CA. Tech. Rep. 
Stan. CS76.559, Aug. 1976. 

[I51 G. H.  Golub  and  G. P.  H. Styan, “Numerical  comDutations  for 
univariate  linear  models,” J .  Siat. Compur. Simulatioi. vol. 2. pp. 

[ 161 T. W .  Anderson. An Introduclion to Multicanate Staristical Analysis. 
New York: Wiley. 1958. 

[ 171 M. El Sherief and  N.  K.  Sinha.  “Determination of the  structure of a 
canonjcal  model  for  the  identification of linear  multivariable  sys- 

tadt.  Germany.  Sept. 1979, vol. 1. 
terns. in Proc. IFAC S-vmp. Identification Parameter Est.. Darms- 

[ 181 G.  Picci, “Some  numerical  aspects of multivariable  systems  identifi- 
cation,” in Proc. Workshop Numer. Methods S w t .  Eng. Problems, 

[I91  M. Pavon.  “Stochastic  realization  and  invariant  directions of the 
Lexington,  KY,  June 1980. 

matrix  Riccati  equation.” SIAM J .  Contr.  Optimiz., vol. 18, pp. 
155- 180. Mar. 1980. 

[20] E. J.  Hannan,  “The statistical  theory of linear  systems,” in Develop- 
ments in Statisfirs,  vol. 2. P. Krishnaiah, Ed. New York:  Academic, 

[21] M. Gevers  and V. Wertz, “On the  problem of structure  selection for 
the identification of stationary  stochastic processes.” in Proc.  IFAC 
Symp. Identification Parameter Est., Washmgton,  DC.  June 1982. 

253-214.  1973. 

1979. pp. 83-121. 

Vincent  Wertz was born in Liege,  Belgium, in 
1955. He received the  Engineering degree in  ap- 
plied  mathematics and the Ph. D. degree  from 
Louvain  University,  Louvain-la-Neuve. Belgium, 
in 1978 and 1982.  respectively. 

Since September 1978,  he has been  a  Research 
Assistant  at  the  Laboratoire  d’Automatique et 
d’Analyse des Systemes. Louvain  University. 
From  July 1980  to Januaq 1981, he  was on leave 
at the  Department of Electrical  Engineering, 
University of Newcastle. N.S.W.. Australia,  where 

he  was sponsored by a  fellowship of IRSIA  (Institut  pour  la  Recherche 
Scientifique dam 1’Industrie  et  1’Agriculture). From  February 1981 to  July 
1981,  he  was an Assistant  at  the  Centre  Universitaire  de Stif. Algeria. His 
main  interests  are in multivariable  systems and in system  identification. 
His Ph.D.  dissertation will be on the subject of parameterization and 
identifiability of multivariable  systems. 

Michel Gevers (S’66-S’70-M72) was born in 
Antwerp, Belgium, in 1945. He received the elec- 
trical engineering  degree  from  Louvain  Univer- 
sity, Louvain-la-Neuve. Belgium. in 1968, and  the 
Ph.D.  degree  from  Stanford  University,  Stanford. 
CA. in 1972. 

He  went to Stanford  University. where  he was 
supported by a  Harkness  fellowship and then an 
ESRO/NASA fellowship. in  1969, following a 
one-year  research  assistantship  in  the  Solid  State 
Laboratory,  Louvain  University. Since  1972 he 

has  been  Assistant  Professor  and.  subsequently.  Professor  at  the 
Laboratoire  d’Automatique  et d‘Analyse des  Systemes at Louvain  Univer- 
sity. He was head of the  laboratory  from 1976 to 1980. In 1980  he was on 
sabbatical  leave at the  University of Newcastle,  N.S.W.,  Australia. His 
main  research  interests  are in estimation,  identification,  stochastic 
processes. and  multivariable system theory. He has done  applied  work on 
hydrological,  biomedical, and industrial  problems.  He is the  author or 
coauthor of about  forty  papers  and  conference  papers. 

. Edward J. Hannan was born  in Melbourne, 
Australia,  in 1921. He received the Bachelor’s 

~~ degree  in commerce  (business  administration)  in 
1949. 

He  received h s  early  education  in  Melbourne. 
He  commenced  a  five-year  period of Army senice 
in an infantrq.  battalion  in 1940. In early  1946 he 
commenced his tertiary  education  under an assis- 
tance  scheme for  ex-senicemen.  After  some in- 
troduction  to  elementary  mathematics  and  statis- 
tics during  his degree. he continued  to  study 

mathematics while he worked as an economist with what is  now  the 
Reserve Bank of Australia. In 1953  he w‘as sent by this institution to study 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-27, NO. 6, DECEMBER 1982  121 1 

for one  year at  the newly formed  Australian  National  University,  Canberra. interest in problems of a  geophysical  nature has arisen from  consulting 
He has remained at ANU since  then  and  has  worked  almost  entirely in with  geophysicists  and  oceanographers. His most  recent  work has pre- 
the field of time  series  analysis, in which he has published two books. His dominantly  been  in  the  statistical  theory of linear  systems. 

Regulator Synthesis Using (C, A ,  B)-Pairs 

Abstract -The  concept of a (C, A ,  B)-pair of subspaces was introduced 
in an earlier  paper  by the author to study problems  of  compensator  design. 
Here, it is shown that the  same  concept  plays  a  basic  role  in  the  theory of 
tracking  and  regulation.  From  a few fundamental  properties, the main 
results of regulator theoq are  derived  in  a  relatively  simple  and  straightfor- 
wrard manner.  Another  new  feature is that we are  able to allow the presence 
of an  unknown  input,  thereby unifying the fields of “tracking and  regula- 
tion” and “disturbance decoupling.” AU results are  fully conshuctive, and 
an example is given to illustrate the theory. 

I.  INTRODUCTION 

I T IS often  true  that insight in  the  practical  handling of 
a  computational  problem  depends crucially on which 

theoretical  concepts  are used to describe the basic question 
of solvability. Thus,  the invertibility of a matrix can  be 
described in terms of its  determinant  or  in terms of its 
singular values, but from a numerical point of  view the  first 
standpoint is much  less significant than  the second. It is 
always desirable to have at least a clear conceptual  frame- 
work available. 

In this paper, we consider servo and  regulator problems 
for linear multivariable systems. The basic solvability ques- 
tion has been studied extensively during  the  past  decade, 
mostly within the  state-space framework that we shall also 
use; see, for  instance, [1]-[9]. (191 will be our main refer- 
ence.) The  purpose of the present paper is to  put  forward  a 
new concept which can be used to  obtain  the  solution of 
the regulator problem in  a  direct  and  transparent way. Our 
method is to be compared with the  procedure of [9],  which 
proceeds stepwise from “restricted” problems (using state 
feedback with certain  restrictions)  to  “extended”  problems 
(using dynamic  output feedback). Of course, the  “ex- 
tended” version is the form in  which the  problem  has  to be 
solved ultimately, and  the main benefit of our  approach is 
that  it considers output feedback directly, without any 
intermediate steps. The key concept is that of a 
“(C, A ,  B)-pair of subspaces,” which relates  to  dynamic 
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output feedback in roughly the same way as the concept of 
“ ( A ,  B)-invariant subspace’’ relates to state feedback. The 
notion of a (C, A ,  B)-pair  has been used before by the 
author [14] to study  stabilization by dynamic  output feed- 
back. 

An interesting  feature of our  method, which acts  as  a 
further  corroboration of its  naturalness,  is  that it is able to 
bring  the  disturbance decoupling aspect  into  the  regulator 
problem. Up to now, the topics of “tracking  and regula- 
tion”  and  “disturbance decoupling” have been treated 
separately;  the  solution of the  latter  problem involving 
dynamic  output feedback is quite recent [lo]-[13]  and  it 
has,  in  fact, been the origin of the  notion “ ( C ,  A ,  B)-pair” 
(see [ 141).  We  give a unified formulation from which both 
the tracking and regulation problems  and  the  disturbance 
decoupling problems can be recovered as special cases. 
This general formulation  has an appealing  form: we con- 
sider  a system which has two kinds of inputs,  one  that  is  at 
the controller’s disposal  and  one  that  is  controlled by 
“nature,”  and which also  has two kinds of outputs, of 
which one describes the goal of the  control  and  the  other 
gives the available information. 

For  the general problems we shall pose, an algorithm 
will be given  which checks their solvability, and we shall 
also give a method to  construct  a  solution if one exists. 
While our  treatment of these problems is thus completely 
constructive,  it is not claimed that  the presented algorithms 
are  optimal with respect to numerical behavior. However, 
coming back to  the  point  made  at  the beginning of this 
paper, it is believed that  the  conceptual  clarification will be 
helpful  to  improve  practical  solution  methods. 

We lay down some notation  and terminology in Section 
I1 where we also give the  definition of a “(C, A ,  B)-pair.” 
The next  two sections give some basic results involving 
(C, A ,  B)-pairs; these are Theorem 3.1, which will be 
needed for  the  “necessity”  part of our  later results, and 
Theorem 4.1 which will be used for  the  constructive side. 
We shall pose the generalized regulator  problem  in two 
different versions, depending  on  the  stability  requirements. 
In Section V we consider “output  stability,”  and  “maximal 
stability”  is  treated in Section VI. Complete  solutions of 
both problems are given, together with specializations to 

0018-9286/82/1200-1211$00.75 01982  IEEE 


