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A paradigm is developed for combining successive stages of closed-loop 
least-squares identjkation and frequency-weighted LQG model-based con- 
trol design. The model&g and control design phases have objective 

functions related to ultimate achieved performance. 
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Abstrart-Many practical applications of control system 
design based on input-output measurements permit the 
repeated application of a system identification procedure 
operating on closed-loop data together with successive 
refinements of the designed controller. Here we develop a 
paradigm for such an iterative design. The key to the 
procedure is to account for evaluated modelling error in the 
control design and, equally, to let the closed-loop controller 
requirements determine the identification criterion. With an 
H2 control problem, this is achieved by frequency weighting 
the linear-quadratic Gaussian (LQG) control criterion with 
filters that reflect the closed-loop plant/model mismatch, and 
by filtering the identifier signals used in a least-squares 
identification scheme in a logical and mutually supportive 
fashion. 

1. INTRODUCTION 

In very many practical control applications it is 
the case that an initial controller is applied to the 
process, after which on-line measurements may 
be taken on the closed-loop system. Further, the 
amount of such data is effectively unlimited. In 
such circumstances one may use these newly 
acquired closed-loop measurements to generate 
more appropriate (but not necessarily more 
complex or arbitrarily accurate) models and 
better feedback control laws, as opposed to, say, 
a once-off robust design based on a model 
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identified in open loop, and which does not 
utilise process performance measurements. Our 
aim here is to develop a strategy for successive 
improvement of control laws using system data 
and experiments. We shall also extend robust 
control design methods to apply to identified 
plant models and conversely to focus identifica- 
tion on the provision of models for control 
design pruposes. 

In performing a control design for a plant 
system P and disturbance model H based on 
models p and A, it is important to separate 
logically the design process itself from the 
achieved closed loop operating on the real plant. 
The design loop is depicted in Fig. 1, and takes 
place on an imaginary or simulated feedback 
loop involving p, fi and C. The achieued loop, 
however, incorporates H and P in feedback with 
the controller C designed on the design loop, as 
is illustrated in Fig. 2. The importance of 
distinguishing these loops is that, while the 
ultimate purpose of the control design is centred 
on the achieved loop, the design itself takes 
place on the designed loop. Certainly equiv- 
alence methods operate under the principle that 
the design takes place on the designed loop as if 
(p, #) were the real plant, while robust 
methods endeavour to accommodate known, 
assumed or measured differences between 
(P, H) and (p, A) t o ensure that features evident 
in the designed loop are generally preserved in 
the achieved loop. These features focus typically 
on robust stability and robust performance. 

Here we shall use explicitly these two loops 
and analyse experimental data from each with a 
succession of designed controllers operating. 
Because we have the capacity to perform such 
experiments, we may use this data to develop 
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Fig. 1. Design loop. 

better controller designs. This is at the heart of 
out iterative design approach. 

In addition to adjustment of the controller 
design, the plant model p also may be better 
selected for the control purpose.? This is, in a 
sense, the converse question to robust control 
design, because it treats the issue of modifying 
the plant/model mismatch to permit better 
correspondence between the designed and 
achieved loops. Just as the nominal plant plus a 
description of the modelling error determine the 
robust control design, so too does the plant plus 
existing controller dictate desirable distribu- 
tions of modelling error. 

An early discussion about the interactions 
between model error distribution and control 
design can be found in a beautifully informative 
paper of Skelton (1989) that remained unnoticed 
for too long.* That paper raises and illustrates a 
number of the important questions related to the 
connection between model errors and control 
design, and it concludes on the necessity of 
iterative design. The interplay between identfi- 
cation and control design in the context of 
least-squares (LS) and linear-quadratic Gaus- 
sian (LQG) criteria was first discussed by 
Bitmead et al. (199Oa, b). 

The question of model identification for 
control design has been broached recently by 
several authors, with a clear indication given of 

Fig. 2. Achieved loop. 

t We shall abbreviate the notation of the complete plant 
(P, H) and model (p, A) by P and B respectively, where this 
does not introduce confusion. 

t It was brought to the attention of the authors in 1993. 

the advantage of collecting the data in closed 
loop; see e.g. Liu and Skelton (1990), Zang et al. 
(1991), Schrama (1991), Bayard et al. (1992), Lee 
et al. (1993), Hjalmarsson et al. (1994a, b), 
Astr6m (1993) and Astriim and Nilsson (1994). 
Once again, the data available from closed-loop 
experiments will permit the fitting of more 
appropriate models, and iterative design will 
incorporate successive phases of closed-loop 
modelling and controller design. 

Skelton (1989) and Schrama (1992a) have 
argued for the necessity of iterative control 
designs in the joint identfication and control 
design problem, mainly on the basis of bias error 
arguments. Hjalmarsson et al. (1994a) have 
demonstrated the superiority of such iterative 
schemes in the case of variance errors on the 
estimated transfer function models. 

1.1. Global and local problems 
If one views the controller design problem in 

the large then it may be considered as a search 
for a controller C that minimises a global design 
criterion J for the true plant P (and possibly H): 

J global = JR c), 

where the objective function is minimised over 
all possible controllers C in some class %. The 
criterion J and/or the class % might include some 
robustness measures. To conduct this design 
requires knowledge of P. 

Since the actual plant is unavailable to us, our 
control design may not proceed from P. One 
way to resolve this problem is to introduce a 
model p, together (possibly) with some quan- 
tification of model uncertainty, L(P, p). (In 
classical H, control design L(P, f’) is assumed to 
be god-given, while in classical LQG design 
certainty equivalence is used, i.e. L(P, fj) = 0.) 
In this more realistic situation the minimisa- 
tion of J(P, C) is replaced by the minimisation 
of an alternative model-based criterion 
J”(p, L(P, p), C), yielding a designed con- 
troller e = e(B, L(P, B)). 

Applying this designed controller c in closed 
loop with the actual plant then yields the 
achieved cost: 

J global 2 J(P, t’) = J(P, e’(p, L(p, p))). 

In a criterion-based control design schema, 
whether off-line or iterative, the performance of 
the scheme is to be evaluated by the eventual 
achieved cost, not by the designed cost. What 
distinguishes our approach from robust control 
design is the use of achieved controller 
performance measures. Our replacement for the 
infeasible direct minimisation of Jglobal with 
respect to C by the alternative criterion Jc, 
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which is a function of P and its uncertainty, 
brings with it the requirement to provide a 
model P and a measure of its error L. These we 
choose to do by system identification with a 
criterion J’ also connected to the global control 
objective, and the definition of a modified (i.e. 
not certainty equivalence) LQG control design. 
Thus the philosophy of the paper is to perform 
simultaneous identification and control design. 
The construction of the design criteria Jc and Jr 
will be so that their minimization will imply good 
performance properties for Jglobal. 

One might propose a systematic minimisation 
of the achieved cost Jglobal over all (P, C) in some 
class. However, it is in no way clear how this 
might be achieved. As an alternative, we pose 
successive Zocaf problems in which coordinate- 
wise optimization is attempted using the local 
criteria Jc and J’. Fixing P and L(P, P) and 
minimising J,c(C, pi) over C yields a local control 
design problem. Similarly, fixing C and 
minimising the local identification criterion 
Jf(C,, p) over P yields a local identification 
problem. 

We shall consider throughout this paper that 
we are in the practically relevant situation where 
P is unknown, where P is obtained by 
identification using real data, and where the 
identification is performed over a class of 
parametrized models that does not necessarily 
contain the true system: thus P may suffer from 
unmodelled dynamics. 

1.2. Robustness and model-based design 
As mentioned above, robustness is generally 

concerned with the implication of dynamical 
properties from the designed loop to the 
achieved loop. Of particular importance are 
robust stability, where the asymptotic stability of 
the designed system is preserved for the actual 
closed loop system, and robust performance, 
where some quantification of closeness of 
achieved and designed performance is desired. 
Robust performance is clearly conditional on 
robust stability although, as we shall see, is often 
also antagonistic to it. 

Sufficient conditions for robust stability (for 
additive uncertainty) are given usually by (see 
e.g. Doyle et al., 1992), 

II P-B PC -~ 
II P 1+Bc, 

<I, 

or 

II P-B PC 
~ <l. 

II P l_tPC, (2) 

Each of these formulations displays the critical 
interplay between the (relative) modelling error 

and the control design (via the complementary 
sensitivity function). Our successive iterative 
components will take cognisance of these 
conditions, firstly in generating a controller and 
secondly in providing a new model. In 
neoclassical robust control design the robust 
stability condition is treated as a constraint on 
the controller C. We extend its interpretation 
here to include the role of placing constraints on 
the permissible distribution of modelling errors. 
Some degree of plant/model mismatch is 
unavoidable, and the control objective must 
determine the preferred distribution. 

Suppose that we have a true plant system with 
input-output relationship described by 

(3) 

where P(z) is a strictly proper rational transfer 
function, u, is the input, and u, is an 
unmeasurable disturbance acting on the output 
y,. It is assumed here that u, can be modelled as 
the output of a filter H(z) driven by white noise 
e,. Also we are given a parametrised model set 

“4X 4 {P(z, e), 8 E D, = Rd}. (4) 

together with (possibly) a fixed (non- 
parametrised) noise model u,‘. A particular 
model in that model set, driven by an input UT, 
will produce an output signal described by 

y;(e) = P(z, e)u; + u:, 
u/ = A(z)e: 

for a particular value of the parameter 8, where 
P is a strictly proper transfer function. The 
noise model fi is the designer’s best estimate (or 
guess) of the actual noise model H; it is driven 
by white noise e:. (A could be included as part 
of the identification, but, for simplicity only, here 
we take it fixed.) 

In this paper we consider a regulation 
problem, where the controller C(z) is to be 
designed to minimise the effect of the distur- 
bance on the plant output y,. Our control design 
objective is to achieve a high disturbance 
rejection performance on the design loop of Fig. 
1, while at the same time guaranteeing robust 
stability performance, i.e. achieving stability on 
the achieved loop of Fig. 2 as well as a 
disturbance rejection performance that is near 
the designed performance. Consider a particular 
measure of the achieved disturbance rejection 
performance H/(1 + PC). Notice that this 
objective function can be written as 

H H A A p=p-- 
1+pc 1+pc 1+lic+1+Bc. 
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By using the double triangle inequality, as 
suggested by Schrama (1992b), the performance 
of the two loops may be linked by the following 
relationships:? 

(6) 

II&II + IK &-~~ll~lli~ll~ 
(7) 

From the above inequalities, one discerns that 
plant and model performance will be close if the 
following performance robustness measure is 
small: 

JP'A ~_ IK H A 

1+X Ill 1+IV * 
(8) 

We shall see in the sequel that joint 
minimisation of both these robustness measures 

((1) or (2) and (8)) is not always feasible when 
the plant does not belong to the model set. This 
will have repercussions in the selection of the 
balance between iterative design for perfor- 
mance and that for the stability robustness, 
which will be reflected in the frequency 
weightings chosen for the identification and the 
controller design. 

1.3. Contribution 
The major contribution of this paper is the 

development of an iterative data-driven 
identification/control design schema whose con- 
trol aim is to improve iteratively the achieved 
performance. This is accomplished by the 
combination of two novel features. 

The least-squares (LS) identification of a new 
model is performed on closed-loop data 
obtained on the real plant controlled by the 
previously computed controller, and with a 
deliberately selected data filter which im- 
proves model accuracy at those frequencies 
where robust stability and/or robust perfor- 
mance dictate that a better model is needed. 
This allows for performance enhancement at 
the next controller design stage or the 
detection of potential stability problems. 

The LQG control design uses a frequency- 
weighted LQG criterion, where the frequency 
weightings in the control design stage account 
for the imperfection of the estimated model as 

t The specific norm here is somewhat immaterial. 

reflected in the mismatch between the actual 
closed-loop system and the designed (or 
nominal) closed-loop system. These weightings 
are derived from relatively coarse spectrum 
estimates of measured and simulated closed- 
loop signals. They have the effect of rendering 
the controller cautious in frequency bands 
where the data reflect a plant/model 
mismatch. 

The combination of frequency-weighted LS 
identification with frequency-weighted LQG 
control design was initially proposed in con- 
ference papers by Bitmead and Zang (1991) and 
Zang et al. (1991) for the tracking problem and 
Zang et al. (1992) for the disturbance rejection 
problem. Since then, this Hz-based iterative 
scheme has been used, studied and extended by 
a number of authors, with several new variants 
and insights appearing; see e.g. Partanen and 
Bitmead (1993b, 1995), Hakvoort et al. (1994), 
Astrom and Nilsson (1994) and van der Klauw 
et al. (1994). The purpose of this paper is to 
provide a comprehensive presentation of this 
iterative scheme, by building on the many 
insights gained since 1991, and with the addition 
of some novel features that take account of 
robust stability (as opposed to just robust 
performance) measures. 

1.4. Relationship to the work of others 
The concept of optimal identification design 

for control goes back to Gevers and Ljung 
(1986). The idea was pursued in Hakvoort 
(1990). The idea of closed-loop identification 
with a performance robustness enhancement 
data filter is not entirely new: it was advocated 
by Bitmead et al. (1990a, b) and subsequently 
developed by Schrama (1992b). The dual idea of 
incorporating model error information, obtained 
from data, into an LQG criterion is most 
certainly novel; it was first proposed by Bitmead 
and Zang (1991) and Zang et al. (1991). By 
combining these two ideas into our iterative 
scheme, we propose a combined ‘robust 
identification/robust control’ schema in which 
the robustness enhancement features of the two 
parts of the design are mutually supportive. 

Successive passes through the LS filtered 
closed-loop identification and the frequency- 
weighted LQG control design using batches of 
fresh data will generate our iterative design. Our 
underlying idea is certainly not to adapt 
indefinitely the controller parameters, but rather 
to arrive in a theoretically sound way at a fixed 
high-performance controller in a few iterations, 
using data from previous controllers to drive up 
the achieved performance. Such a design is 
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neither truly an adaptive controller nor truly an 
off-line robust controller, but it combines 
features of both design schemes: our control law 
resulting is indeed shaped for robustness by the 
measured data and not just by a priori 
assumptions. Indeed, the notion of occasional 
controller refinement on the basis of observed 
achieved performance after initial tuning is 
common in practice. Being completely signal 
driven, our iterative scheme does not rely 
heavily on prior information about the unknown 
system, unlike similar H, design schemes. 

Related iterative ‘control design/identification 
design’ strategies have recently been proposed 
by several authors already mentioned: Liu and 
Skelton (1990) Bayard et al. (1992), Schrama 
(1992a, b), Hakvoort et al. (1994), Lee et al. 
(1993) and Astrom and Nilsson (1994). A 
succession of surveys, all but one excellent, can 
be found in Gevers (1993), Bitmead (1993) and 
Van den Hof and Schrama (1994). We should 
also mention the recent result of Hjalmarsson et 
al (1994b), who have obtained a direct iterative 
scheme, which estimates the controller para- 
meters directly without the intermediate model 
identification step; convergence of this scheme to 
a local minimum of the achieved cost has been 
proven. 

The main features that distinguish the scheme 
proposed in this paper from the other schemes 
are as follows. 

Our scheme is entirely based on Hz methods, 
namely linear-quadratic Gaussian (LQG) 
control and least-squares identification, with a 
consistent criterion of performance operating 
in both phases; 

The order of the plant model and the 
consequent controller is fixed, implying that 
no controller reduction step is necessary; 

Most importantly, the controller design ex- 
plicitly uses closed-loop plant/model mismatch 
information derived directly from data. 

1.5. Pre’cis 
In Section 2 we pose an artificial H, iterative 

control design problem, which is presented to fix 
our ideas without too much algebraic machinery. 
This is an artificial problem, because it relies on 
the use of an H, system identification procedure, 
including estimation of H, model errors, that 
requires knowledge of the unknown true system 
transfer function. It does, however, admit a 
simple demonstration of a performance oriented 
coupled control and identification iterative 
strategy, because the criteria Jc and Jr may be 
taken identical, and it serves to motivate the 
more realistic Hz (least-squares) system iden- 

tification methods and the corresponding Hz 
(LQG) control laws of subsequent sections. 
Section 3 deals with the specification of the local 
LQG control design phase, which focuses on the 
global criterion, while Section 4 presents the 
local least-squares identification directed towards 
performance robustness or stability robustness. 
In contrast to the H, iterations of Section 2, the 
Hz iterations are now feasibly data-driven, with 
the successive controllers being applied to the 
process and the collected data being used in the 
computation of the next model/controller 
couple. Section 5 contains the iterative algorithm 
specification incorporating the local problems 
and the quality assessment measurements. In 
Section 6 we develop a computational example 
and give some comments and discussions about 
the results obtained. Throughout this paper, all 
our results are derived for the simple case of 
single-input single-output systems and in the 
context of a disturbance rejection objective. The 
extensions to the multivariable case and to a 
tracking objective are reasonably straightforward 
but messy. 

2. H, ITERATIVE IDENTIFICATION AND 
CONTROL DESIGN 

2.1. Problem formulation 
Our purpose in this section will be to develop 

a formulation of a combined identification and 
control design methodology in the H, framework 
that illustrates the principles underpinning our 
subsequent Hz approach before proceeding to a 
feasible signal-based approach in later sections. 

We consider the setup of Figs 1 and 2. The 
true plant is described by (3). The ideal but 
infeasible control design would be to minimise 

J A H(z) 
global = 

1+ P(z)C(z) z 

with respect to C. Now we introduce the model 
set (4), (5) and we define our additive modelling 
error as 

L(P, B) A P(z) - i)(z, e>, 

the control sensitivity function as 

A(z) A C(z)[l + C(z)P(z, e)]-‘, 

and our actual and designed sensitivity functions 
as 

S(z) 2 [1+ C(z)P(z)]~‘, 

S(z) fi [l + C(z)P(z, @)I_‘. 

We now define .?(P, L(P, P), C) A Jc 4 J’ for 
this problem as 
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This is the classical mixed sensitivity H, design 
problem; see Doyle et al. (1992), where it is 
shown that 

9 < 1 eJJgloba, < 1, IlLfill, < 1. 

2.2. Problem ‘solution’ 
With the above remarks in mind, we propose 

the following iterative procedure to endeavour 
to solve the above minimisation problem. 

Step 1: identification initialisation. Take 

6, = arg@min II P(z) - li(z, 0) Ilr 

. ,. 
Take P,(z) 4 P(z, 0,) and 

L,(z) b P(z) - PO(Z) 

as the outputs of the identification. 

Step 2: weighted H, optimal control design. 
Select 

k arg?in JC( C) 

where J:(C) k j(pi, L(P, pii>, C). 

Step 3: weighted H, identification. Select 

6,+1 = arg min 
e 

(P(z) - fYzt Q) 1 + X c~,$~(z I 9 fj) 

H(z) 
1 

1 + Ci(Z)B(Zj 0) 0~ I 

k argemin J:(B) 

where J:(p) 6 j(p, L(P, I’), Ci). Take Pi+*(Z) 2 
P(z, 8j+l) and L,+,(z) 4 P(z) -p;+,(z) as the 
outputs of the identification. 

Repeat. repeat Steps 2 and 3, replacing i by i + 1. 

Remarks. 

(i) As we have already said, this is an artificial 
solution procedure, because the identifica- 

(ii) 

(iii) 

tion step is not feasible, since it involves 
effective knowledge of the true plant 
P = p + L from the identification phase. 
However, it is appealing, because it links 
the successive control design and identifica- 
tion criterion in a logical fashion with a 
fixed objective. 

The above construction of the iterative 
identification and control design leads to a 
monotonic decrease of the local cost 
functions Jc and JI, and hence of 1. This can 
be seen from 

J,“+,(G) 

= Ji(Pi+l) 2 rnp.?(p, L(P, B), Ci) (10) 

~ Jo = j(~;, L(P, Bi), Ci) (11) 

= Jc(C,) 4 rnp.?(pj, L(P, pi,.>, C) (12) 

sP(Bi, L(P, Pii>, C;_1) = JC(C,_1). (13) 

The novelty of this approach, compared 
with the neoclassical H, methods, is that the 
plant modelling is adjusted to reflect the 
control requirements and also the controller 
design is modified to reflect the H, 
modelling error. This is the key to our 
approach versus, say, the standard methods 
of robust control-we use the robustness 
requirements to assist in the specification of 
desired model fits, and vice versa. When 
this is coupled to the capacity to perform 
experiments, and so derive new data, we 
have a design philosophy (albeit not a 
computational technique) for the intelligent 
amelioration of controller designs on the 
basis of closed-loop (operating) experimen- 
tal design. The failing of this H, approach 
here is its inability easily to be formulated 
with measured data. The exact same design 
procedure was proposed independently by 
Bayard et al. (1992), who arrived at an 
identical conclusion about the inability to 
perform the identification step of the 
design. Simulations presented in Bayard et 
al. (1992) add weight to the credibility of 
the scheme. 

3. LOCAL LQG CONTROL DESIGN 

In this section we replace the H, control 
problem of Section 2 with an LQG design 
problem that is more amenable to use with data 
and that is better linked to the identification 
phase. The novelty of our Hz approach is to 
account for evaluated modelling error in an LQ 
optimal control design. This is achieved by 
frequency-weighting the LQ control criterion 
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using a filter that contains plant/model mismatch 
information. This deviation from the more 
traditional certainty equivalence LQG control 
design schemes is an attempt to build in robust 
performance features by tying local design 
objectives to the global criterion. 

Our global objective is to design a controller C 
in order to minimise the following global LQ 
regulation performance criterion: 

The certainty equivalence formulation of an 
LQ regulation problem is to minimise the 
following performance criterion J: 

J = p_; g [(y;)” + P(u;)*], (15) 
I 1 

where U; is the designed control signal and y; is 
the output of an identified model P driven by U; 
and a noise source u,‘; see (5). Instead of 
following the traditional route of minimising (15) 
under the constraint (5), we begin with the 
following frequency-weighted local LQ criterion: 

Jc = tmrn$ $ {[F,(z)(y;)]* + A’[fi(z)~;]~}, (16) 
r 1 

where F, and F2 are weighted functions (linear 
filters) to be chosen. We assume that a 
previously computed controller, say Cl, obtained 
on the basis of some previous model, say Pi, has 
been operating on the actual plant and that data 
have been collected on this closed loop system. 
The minimisation of the local criterion Jc will 
deliver C,, , . Recall that control design is 
performed by relying on an identified (and hence 
approximate) model. 

By direct comparison between (16) and (14), 
we select F,(z) and F2(z) as 

fi = ($‘“, F2 = (:)“‘. (17) 

This makes the frequency-weighted regulation 
objective (16) become 

(18) 

Here a,,, aYc, a, and aUc are the spectra of the 
corresponding signals obtained on the actual and 
the simulated closed-loop systems with the 
previous controller, C;. All these signals are 
readily available from the closed loops of Figs 1 

and 2 with r, = 0 and C replaced by Ci. Since 
U, = -C;(z)y, and U; = -C,(z)yF, we observe that 

F~F,=F2=(~)“‘=(~,“‘. (19) 

We comment later on the actual computation of 
the filter F(z). 

The frequency-weighted criterion (18) should 
be compared with (14) and interpreted as a 
distortion of the certainty equivalence control 
objective function (15) for the identified model 
in order to reflect the global criterion, as was 
motivated by the H, frequency-weighted control 
design method derived in Section 2. We observe 
that the effect of the frequency weightings is to 
make the filtered output signal and control signal 
of the design loop respectively in (18) have the 
same spectra as the corresponding signals in the 
global (ideal) performance criterion Jglobal 
corresponding to the achieved loop, so that the 
controller designed by minimizing (18) 
effectively minimizes the global performance 
criterion (14). 

In our iterative design scheme described 
above, the spectra in (18) will be replaced by 
low-order spectral estimates obtained from data 
collected on the local model and on the real 
plant, both operating in closed loop with the 
presently active (local) controller. Thus our local 
control design criterion Jc becomes an ap- 
proximation to the global criterion Jglohal. 

Besides forcing the local control objective to 
mimic the global one, as explained above, the 
effects of the frequency weightings in (18) have 
entirely logical and intuitive interpretations. 

Special observation. If at some frequency, @, is 
larger than aYc, this means that at that frequency 
the model fit is poor, with the consequence that 
the achieved disturbance rejection performance 
(with the presently active controller) is worse 
than expected from the designed system. Hence 
more emphasis should be put on the weighting at 
that frequency at the next control design stage, 
which is reflected by the weighting being larger 
than 1. If at some frequency, @, is smaller than 
@,c, this also means that at that frequency the 
model fit is poor but in such a way that the 
presently active controller actually achieves a 
better disturbance rejection performance on the 
true plant than on the model. The penalty at 
that frequency should therefore be decreased at 
the next control design stage to provide scope 
for improvement at other frequencies. Similar 
astute and entirely intuitive observations can be 
made by the reader as regards the frequency 
weighting on the control. 
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Eualuation of F. Since the filter F must be a 
stable and stably invertible spectral factor of the 
signal spectra, it may be computed from an 
approximation obtained from the data. The 
method that we actually use is to estimate 
directly autoregressive models for the data 
signals. This permits 

a stable and stably invertible filter, since it is 
the ratio of AR models; 

fixed degree filters F, which prevents the 
controller order from increasing at each 
iteration; 

the avoidance of spectral factorisation. 

Remarks. 

(9 

(ii) 

This application of experimental spectra in 
the control design phase signifies the 
departure of our H2 theory from the H, 
results where modelling errors required for 
the control design were not assessable. That 
is, the computation of approximations of 
these spectra is feasible while the 
measurement of H, modelling errors is not. 

This frequency-weighted LQ regulation 
problem can be recast as an unweighted LQ 
problem with modified transfer functions 
P = p and Z? = Fl?. The optimal controller 
C resulting from this unweighted problem is 
identical to the optimal C of the frequency 
weighted problem: C = C. 

?I 
“._. Robustness considerations 

The proposed frequency-weighted LQG de- 
sign is focused directly on performance enhance- 
ment. That is, its aim is to cajole an LQG design 
on the designed loop to deliver good perfor- 
mance on the achieved loop. There is no implied 
quality of robust stability. Indeed, the designed 
performance is deliberately distorted to yield 
achieved loop outcomes. 

As the remarks above indicate, the filter F 
deviates from unit magnitude when the closed- 
loop plant and model responses differ substan- 
tially. Thus the applied frequency weighting 
takes maximum effect just where the model is 
inaccurate. For frequencies where the weighting 
has magnitude much different from one, and if 
no specific countermeasures were taken to 
ensure that this does not lead to a high-gain 
control action where the model is deficient, this 
might violate the robust stability criterion (1). 
Therefore we interpret the filtering by F as a 
robust performance feature of the iterative 
control design; for robust stability, we rely on 
the modelling part of the design. We shall 
subsequently present a stability robustness check 
based on a high-order approximation of @,/a,,~ 

Zang et al. 

that can indicate when the model P is inadequate 
for robust control design. 

4. LOCAL LEAST-SQUARES IDENTIFICATION 
DESIGN 

As should now be evident, our thesis of 
model-based controller design is that the 
controller design and system modelling phases 
may jointly be used to develop mutually 
supportive approaches to a global controller 
design. We shall now present the identification 
component of our iterative approach and 
consider that at some stage of the iterations the 
system has been operating in feedback with a 
frequency-weighted LQG controller designed on 
the basis of a previous model. To perform the 
identification, it is necessary to introduce an 
external excitation signal r,, which in turn will 
become part of the design, as our analysis will 
show. 

4.1. Local identification criterion-robust 
performance 

To derive the local identification criterion, we 
work under the assumption that a stabilizing 
controller C, is operating. Consistently with our 
theme, we should select a (local) identification 
criterion commensurate with the global perfor- 
mance criterion (14) to reflect our ‘modelling for 
closed-loop control’ objective. We do this by 
selecting a model p that, with the same fixed 
controller C, yields a frequency-unweighted 
closed-loop performance 7, (15) as close as 
possible to the global closed-loop performance 
J global, (14). 

To show how this can be obtained, we first 
reformulate the global criterion (14) by using the 
following 2-norm definition for a vector process 

we can then rewrite the global criterion, for 
finite time, as, 

J$oba, = " 
II II 

2 

Au, 2' 
(21) 

Our aim is to obtain a model (p, A) of (P, H) 
such that the closed loop with (P, H) replaced by 
(P, fi) and driven by the same signals r, and e, 
resembles the actual closed-loop as much as 
possible in a measure that is determined by 
J &,b& The signals yT and UT are those of the 
design loop of Fig. 1 with controller C = Ci, 
excitation e; = e, and reference r, = 0. This is not 
realisable, but will provide an achievable 
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identification criterion that is matched in this 
sense to Jglobal. Observe that, by using 

Yf = Y:‘ + (Y, - YC), the similar expression for Au, 
and the triangle inequality, we have 

We note the similarity to the performance 
robustness criterion (6) (7). The first term of the 

upper bound is the frequency-unweighted 
closed-loop performance of the model P, while 
the second term is a measure of the closed-loop 
model error. We shall select the second term as 
our local identification criterion: 

= i $ [(Y[ - YY + A*(u, - ~21. (23) 
I I 

The minimisation of Jk over the set of models 
will then aim at making the designed and the 
actual closed loops close where the closeness is 
measured in the same norm which we use to 
define the global LQG control criterion. Taking 
the limit as iV-+ a, the inequalities (22) can 
then be rewritten as 

I(.?)“’ - (J’)“‘I 5 (Jg,oba,)“2 5 (j)“* + (J’)l’*, (24) 

with an obvious definition of J’ = lim,,,, J&. 
From the achieved and design loops with r, = 0 

and e,’ = e,, we have 

A c.A 
&=-A ~F=m.e,, t 1 + PC; eP (25) 

H C;H 
Y, = 1 e,, 4 = - ~ e 

1 + PC, ‘. (26) 

From (25) and (26) we get the following 
frequency-domain expression of the local iden- 
tification criterion (23): 

X 
H-fi+C,(Hp-AP) 2dW 

(1 + PC;)( 1 + PC,) . 
(27) 

We note that, in order to minimize J’, we 
need to consider the two loops of Figs 1 and 2 
driven by the same signals r, = 0 and, e,’ = e, and 
with controller C = C;. By using closed-loop 

data from the achieved loop this is accomplished 
in the standard identification algorithm, as will 
be seen later. 

Remarks. 

(9 The inequalities show that Jr is a 
performance robustness measure, just as its 
H, counterpart in (8). A similar use of the 
triangle inequality in the H, case led 
Schrama (1992b) to use the minimisation of 
JP’ in (8), with an a-norm, as an 
identification criterion. 

(ii) We note that the estimated plant model p 
and the controller C both influence the two 
terms .? and Jr. Thus, ideally, one should 
minimise the two terms jointly over the class 
of admissible plant models and admissible 
controllers. This is currently an impossible 
task in the case of restricted complexity 
models. An obvious suboptimal strategy is 
to make Jc small by controller design for a 
given plant model, and to keep Jr small by 
identification design for a given controller. 
Since Jc depends on the estimated plant 
model, and J’ depends on the designed 
controller, this strategy can only be applied 
in an iterative manner, using a succession of 
local controller designs and local identifca- 
tion designs. 

4.2. Closed-loop identification for performance 
The criterion J’ is definitely a non-standard 

identification criterion. We examine its connec- 
tion with classical prediction error minimisation. 
We also assume that we have the capacity to 
apply an external excitation signal r, to this 
closed-loop system; we shall explain later the 
importance of this external excitation for robust 
identification. Thus we consider that a data set 
has been collected on the closed-loop system of 
Fig. 2 in which C = Ci. Associated with the 
model (5) is the following one-step-ahead 
predictor: 

y^l(e) = A-‘(z)P(z, f3)u, + [l - A-‘(z)]y, (28) 

(see Ljung, 1987), where B(z) is a noise-model 
transfer function, which we consider not to 
depend upon 8. The least-squares identification 
criterion is defined as 

(29) 

where D(z) is a stable, linear data filter 
operating on the prediction errors e,(e) = 

yf - fde). 
vN(e) converges to a limiting value v(e) = 
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lim,,, E{ V,( O)} under reasonable conditions 
(Ljung, 1987). Using (28), (3) and Parseval’s 
formula, this criterion can be written (in the 
frequency domain) as 

V(0) =& j-; AV(o, 13) I$$$* dw, (30) 
k 

where 

For simplicity, in the sequel we shall drop the 
arguments e’“, 8, and w in similar frequency- 
domain expressions. 

The above criterion gives a characterisation of 
the convergence point of the closed loop 
identification algorithm obtained by minimising 
(29) on the basis of closed-loop data. Note that 
in minimising (30) we have used the uncor- 
relatedness of r, and ‘u,. The exertion of influence 
over the least-squares identification criterion is 
through three media: 

l the choice of the data filter D; 

l the design of the excitation spectrum ar(u); 

l the selection of the model structure. 

If the model structure is fixed a priori then the 
principal means of adjustment are D and a’,. 

We now compare J’, defined by (27) with 
V(O), defined by (30). In the case where the 
correct disturbance model is known, i.e. A = H, 
a direct equivalence can be made. 

Lemma 4.1. Let the signals y;, u;, y,, u, and r, be 
defined by Figs 1 and 2 respectively with C = Ci 
and e: = e,, and let Jr be defined by (27) with 
fi = H. Then, with the reference signal 
spectrum chosen as 

@r(u) = y*@&) = y* IH(& VW E [-n, K), 

(32) 

for some nonzero y, and with the filter D(z) in 
(30) chosen as 

D(z, e) = A(z)G(z)[l + fyz, e)c,(z)l-1, 
(33) 

where G(z) is defined as a stable filter obtained 
from the factorisation problem 

G(z)G*(z-‘) = 1 + h*c;(z)C:(z-I), (34) 
we have 

arg@min Jr = argomin V(O), (35) 

where V(0) is defined as in (30) and (31). 

Proof. Substituting (32)-(34) into (30) we 
obtain 

(36) 

Since the second term of the integrand in the 
above expression is independent of the model to 
be identified, we have 

arg min v(e) = arg min 
0 

Comparing this with (27) with fi = H, we obtain 

(35). 0 

Lemma 4.1 provides an algebraic connection 
between two criteria: the identification criterion 
V(0) and the performance robustness criterion 
J’. It establishes the need for excitation to make 
the two criteria match exactly, under the 
assumption fi = H. It also demonstrates that J’ 
can be minimised by minimizing an identification 
criterion that only depends on measurable 
signals u, and y,. 

Remarks. 

(9 

(ii) 

This lemma further consolidates our claim 
that the choice of the local identification 
criterion J’ is mainly based on a robust 
performance consideration. 

We recall that the minimisation of J’ was 
justified earlier on the basis of robust 
performance considerations using the tri- 
angle inequality. The idea is to obtain a 
model such that the signals in the achieved 
loop and the design loop are ‘close’ in a 
sense that is defined by the global 
regulation performance criterion. It is easy 
to see that the integrand of J’ is precisely 
the square of the difference between the 
actual and the designed ‘disturbance to 
output’ transfer functions, weighted by 
1 + A* ICI*. From a performance point of 
view, this is indeed an ideal choice for the 
identification criterion. However, this 
means that the identification is entirely 
based on signals whose spectra are deter- 
mined by the disturbance process alone, 
thereby concentrating modelling effort for 
maximum disturbance rejection effect. The 
criterion does not incorporate any robust 
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(iii) In an iterative design scheme the 
identification of the new model pj+l is 
performed using closed-loop data with the 
previous controller Cj operating on the real 
plant. The equivalence between the criteria 
V(0) and J’ has been established when a 
data filter D defined by (32)-(34) is used. 
We observe that the filter D depends on the 
model fi(z, 0); therefore the equivalence 
holds strictly only if one lets the filter be 
parametrised by 8. This will typically 
complicate the identification algorithm. An 
alternative, that we shall advocate in our 
iterative scheme described in Section 5, is to 
let the filter be defined by (33) with B 
replaced by the model pj obtained at the 
previous iteration. 

4.3. Closed-loop identification for robust stability 

stability guarantees. We shall see in the next 
subsection how stability robustness can be 
injected into the design. 

The sufficient conditions for robust stability 
are given by (1) and (2), and are distinct from 
those for robust performance in several impor- 
tant ways: they do not depend upon the 
disturbance process H at all, and they should be 
satisfied uniformly across all frequencies (be- 
cause of the m-norm criterion). We now make 
the comparison between the criterion (2) and the 
identification objective (30). 

Lemma 4.2. Let the signals y:, u;, yr, u, and r, be 
defined as in Lemma 4.1 and consider the 
argument of the robust stability criterion (2): 

[P(&“) - P(e’“)]Ci(e’“) 

1 + P(e’“)Ci(e’“) ’ 

Then, with the filter D(z) in (30) chosen as 

D(z, 0) = A(z), (38) 

and the spectrum ar(o) of the reference r, 
chosen as 

@r(O) = 7%. l@“(W)1 tlo E [-n, Jr), (39) 

we have 

argemin v(e) 

= arg min II [P(&“) - B(e'w)]Ci(du) 

e 1 + P(&“)C,(&“) II 2. (40) 

Remarks. 

(i) The obvious remark is that the norm 
minimised in (40) is a 2-norm, while that of 
the criterion (2) if the m-norm. This is the 
price to be paid for using standard 

AUTO 31-11-E 

(ii) When describing stability robustness, we 
presented two candidate robustness criteria: 
(1) which is the more familiar from control 
design, and (2) which is usually not 
mentioned. In the framework of identifica- 
tion, it is this latter version of the criterion 
that is used, since it relates the variable 
component of the design, p, to the fixed 
elements, P and C;. Further, since it is 
known that Ci stabilises P during the 
identification experiment, it is sensible to 
search over those ps that are also stabilised. 

4.4. Assessment of model quality for control 

least-squares identification. There has been 
a raft of results recently dealing with 
w-norm identification methods, often utilis- 
ing polynomial interpolation followed by 
Nehari extension. They are not yet mature 
enough for application here, and, further, 
are profligate in their use of data. Accord- 
ingly, with realistically limited data sets, we 
are bound to restrict attention to 2-norms, 
which after all are commensurate with the 
control performance criterion. 

We have now proposed two different ex- 
perimental conditions in which closed-loop 
model identification might take place, depending 
upon the emphasis desired for the model. Our 
aim now is to study the assessment of the model 
quality for control by direct evaluation of the 
robust stability criterion. To do this we use a 
mechanism similar to that of Van den Hof and 
Schrama (1993) in identifying directly the 
closed-loop sensitivity function, but then extend 
this to generate an a priori robust stability test in 
which the robust stability of the plant with a new 
controller obtained from a model is evaluated, 
before this new controller is applied to the plant. 
The signals u, and r, generated during either one 
of the identification experiments described above 
are related by 

By fitting a high-order ARX model between r, 
and u,, one can therefore compute an accurate 
estimate of Mi 2 C,(l + PC,)-‘. Using this 
estimate and the new plant model pi+,, the 
following ratio of control sensitivity functions 
may be calculated: 

The information contained in I,!+ is easily 
related to our existing stability robustness 
condition. 



1588 Zhuquan Zang et al. 

Lemma 4.3. Let the signals y;, u;, y,, U, and r, be 
defined as in Lemma 4.1 and let a,(~) be 
selected with complete support over w E [-a, 
r). Further, consider the ratio $i(Z) between the 
identified and computed control sensitivities Mi 
and fii from (41). We have the following 
relationship between the argument of the robust 
stability criteria (1) and (2) and $i: 

(42) 
$, _ 1 = Cpi+l - p)ci 

I 

1+pc, ’ 

+_I _ 1 = tp - pi+l)ci 
I 

1 +pi+iCj ’ 
(43) 

This lemma provides a mechanism to check 
the robust stability of the achieved loop with 
(P, Ci) from that of (pi+,, C,), or vice versa. 
However, since the stabilty of both these loops is 
a precondition for performing the sensitivity 
identifications, this does not provide much useful 
information. What is desired is to be able to 
check the robust stability of the achieved loop 
for some new controller K, which stabilises pi+,, 
before it is applied to the real plant P. 

We have the following relationship: 

(P - pi+l)K = (+_I _ 1) K(l + fi+l ci) 

l+&+,K 1 Ci(1 + pi+lK) ’ 
(9 

The import of this relationship is that it provides 
a mechanism to assess directly the stability 
robustness of the (P, K) feedback pair using 
information from stable 100ps (P, C,), (Pi+l, Ci) 
and <&+I, K). In our iterative scheme Ci is the 
presently active controller and K the new 
controller derived using the new pi+, . If the 
stability robustness is found lacking, the 
identification experiment may be re-performed 
with an altered excitation to adjust pi+, to 
provide better stability robustness. It is worth 
reiterating, however, that (1) or (2) provide only 
a sufficient condition for robust stability. Further 
phase information would be needed to develop a 
necessary and sufficient test. 

4.5. Estimation of control weighting filters 
We have presented two alternative experiment 

designs for identification, to which we now add a 
third for the computation of the frequency- 
weighting filter used for control design. 

Identification for robust performance. Here 

Identification for robust stability. Here 

D = Z?, a’, = y2. 

Control weighting computation. Here 

@,=O. 

The aim of the control weighting filter F is to 
convert the designed performance measure on p 
to mimic the design on the actual plant P. In the 
disturbance rejection context here, where the 
excitation signal r, diminishes achieved control 
performance and is injected only to effect the 
identification, we have the global criterion, 

1 
J 
g’oba’ = 2n _-Iz 11 + PC12 I 

Jr 1+ A2 ICI2 ,H,2 dw_ 

(45) 

The designed criterion is 

and it is apparent that the desired F should 
satisfy 

1+&H 
,F,= /+-I. 

l+PCA 

This is precisely achieved by (19) operating 
under the condition of no excitation, since 

C 
u =-------He r 

1+pc ” 
UC= -Cfie:. 

’ 1+Bc 

That is, the frequency-weighted LQG design 
actually uses data derived only from unexcited 
operating conditions. A variant of this scheme 
has been used by Partanen and Bitmead (1993b) 
to generate a direct control design procedure in 
which the identification phase is avoided 
altogether. 

5. H2 ITERATIVE IDENTIFICATION AND 
CONTROL DESIGN ALGORITHM 

We are now in a position to present our 
iterative procedure. 

Initial identification and control-initial model 
identification. Select D = 1 or any other specific 
non-constant filter if a priori information about 
the true plant is available. An experiment with r, 
excitation is performed in open loop (or with a 
pre-existing controller in the case of an unstable 
plant) to yield an initial model ~&). Take a 
fixed noise model fi and set i = 0. 

Znitial control design. Select F,(z) = 1, i.e. 
uniform weighting. With plant model p,,(z), 
design the controller C,(z) via the minimisation 
of the local control criterion 

Jc = lili= $ $ [(y;)” + h2(Q2]. 
I 1 
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Iterations of closed-loop identification and 
control design 

Step 1: compute identification filter Di and select 
excitation signal r,. With Pi, Ci, fi and h, 
compute the identification filter Di(z) and select 
the excitation signal r, as follows: 

l for robust performance, 

A 

Di=l+Pici 
- (1 + h2 ICil*)‘“, ~‘, = y2~“; 

l for robust stability 

Di = A, @‘, = y2; 

or some compromise between these.? Generate 
closed loop data signals {yI} and {u,}. Initially 
performance should be sought. 

Step 2: model and sensitivity identification. Using 
a least-squares prediction error identification 
scheme with data {rl}, {y,} and {u,} and data filter 
Di(z), compute Pi+, as the order-n model 
between u, and y,, Mi = Ci(1 + X,)-l using a 
high-order model between r, and uf, and iiJi as 
Ci(l + pi+, C,)-I. Compute the robust stability 
function +i = Mifn;l;. 

Step 3: plant and model experiment without 
excitation. With the controller Ci acting in 
feedback with P and with no excitation signal, 
i.e. r, = 0, generate closed-loop data signals {y,} 
and {u,}. Compute the low-order AR model 
A;‘(z) for {u,}. With Ci acting in feedback with 

Bi+l and with r, = 0, simulate closed-loop data 
signals {y;} and {u:}. Compute the low-order AR 
model A,;‘(z) for {u;}. 

Step 4: computation of L&G controller. 
Compute the frequency-weighting filter 

A& 1 
4(z) = - 

Au(z). 
With Pi+r(t), Z?(z) and E(z), compute the new 

controller Ci+l(Z). 

Step 5: robust stability test. With pi+,, Ci+l, Ci 
and pi, check the robust stability of the (P, Ci+l) 
loop. Compute the magnitude of the quantity 

4i(z) = tp - R+l)ci+l 

l + pi+1 Ci+* 

and check whether it remains bounded by one 
for all frequencies. 

Step 6: loop. If the robust stability test is passed 
then loop to Step 1 with robust performance 
objective; otherwise set Ci+l = Ci and 100p to 

Step 1 with robust stability objective. 

Other variants of the scheme are clearly 
possible. We have chosen to focus on distur- 
bance rejection only, with a fixed noise model. 

6. DESIGN EXAMPLE 

6.1. Computer experiment setup 
In this section we shall present simulation 

results to illustrate the effectiveness of our 
iterative weighted LS identification and weighted 
LQG control designed algorithm. The iterative 
design strategy was performed on the following 
example. 

The true plant is chosen to be fifth-order of 
the form 

yt = P(z)4 + Wzk,, 

Z -’ - 1.2z-2 - 0.3z -3 

(48) 

+ 0.156~ -4 + 0.0845~ -’ 
P(z) = I- l.25z-1 + 0.4575~~~ + 0.0279~~~ ’ 

- 0.0491z -4 + o.0077z-5 

H(z) = 
2 

1 + 0.61212 -’ ’ 

This is a stable and non-minimum-phase plant 
with single delay. Figure 3 shows the magnitude 
plot of the true noise transfer function H(z); it is 
essentially high-frequency noise. The plant 
model to be identified is assumed to be 
third-order with a single delay, i.e. of the form 

y; = B(z)u; + v:. (49) 

In the whole experiment e, and the model 

5.5 1 

t A practical implementation of such a compromise on an 
industrial problem is discussed by Partanen and Bitmead 
(1995). 

Ci+l(l + fi+lci) 

= w’ - l) Ci(l + Pi+,ci+,) ’ (47) ,.lt 1 

II I 
4 -3 -2 -1 0 I 2 3 4 

Fig. 3. Magnitude plot of the true noise model. 
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disturbance t$ = e: are taken to be independent 
white noise of unit variance, i.e. fi = 1. The LQ 
control criterion has A2 = 0.1 and the Kalman 
filter is designed with process noise of unit 
variance entering through the input channel and 
measurement noise of variance p = 0.8 (roughly 
an LQG/LTR strategy). The robust performance 
variant of the identification filter D is used. The 
excitation signal r, used in the identification 
process is taken to be white noise with power 
spectrum a’, = 9. The closed-loop signal spectra 
a’, and ap,c are estimated from measured signals 
using third-order AR models; see Step 3 of the 
iterative algorithm. To compute the robust 
stability test function $(z), the transfer function 
from r, to U, is estimated using a 30th-order 
ARX model. The closed loop identification was 
performed on 2048 samples per iteration, and a 
total of six iterations was performed. 

6.2. Simulation results 
To facilitate exposition, let us use the 

following notations: Copt denotes the full-order 
LQG controller, designed on the basis of the 
true plant and noise model, which truly 
optimises Jglobal. 4 denotes the plant model 
identified in open loop. pi (i = 1, . . . ,6) denotes 
the plant model obtained in the ith iteration of 
closed-loop identification. Ci (i = 0, 1, . . . ,6) 
denote the controllers designed based on these 
plant models pi (i = 0, 1, . . . ,6) to minimise the 
frequency-weighted LQ criterion Jc. Corres- 
ponding to the above, we define the optimal, 
achieved, and designed sensitivity functions 
respectively as follows: 

So&) A 
1 

1+ P(z)C,,(z)’ 
S,(Z) ’ 

1 

I+ P(Z)Ci(Z) ’ 

g(z) A 
1 

1 + Bi(Z)Ci(Z) ’ 

The weighting functions used in the ith iteration 
of LQ control design are denoted by Z$. The 
filters used in the ith iteration of closed-loop 
identification are denoted as Di. The stability 
robustness test function estimated in the ith 
iteration is denoted by +i; see (47). We are now 
in a position to display our simulation results. 

6.2.1. The cost jbnctions. We first design a 
full-order optimal LQG controller CoPt for the 
true plant (48) and compute the optimal 
performance cost I,,,: 

J,,,t = 6.3789. 

Next we perform open-loop identification to 
obtain a plant model PO, and then design a 
controller C,, based on the model PO. Applying 

the controller to the true plant and to this model 
and, with 2048 samples of the corresponding 
closed-loop data, we calculate the achieved cost 
J global, the designed cost .?, the frequency- 
weighted cost Jc, and the identification cost J’: 

J global,0 = 11.7356, Jo = 1.2114, 

J: = 1.2114, J; = 12.5979. 

Next, six iterations of closed-loop identification 
and LQG control design are performed. 
Corresponding to these six iterations, we obtain 
the fOllOWing Jglobal, J, Jc and J’ (where the 
subscripts stand for the iteration numbers): 

J global.1 = 9.5360, Jg,,,ba,,Z = 8.5509, 

J global,3 = 7.7685, Jgloba,,d = 7.0462, 

J global.5 = 6.9403, Jgloba,,6 = 6.8608; 

J, = 1.3916, & = 1.4313, 

j3 = 1.3047, & = 1.2969, 

& = 1.1481, J6 = 1.1967; 

Jf = 1.8847, J2” = 1.7787, 

J3” = 1.5551, 54” = 1.3229, 

Js” = 1.8896, 56” = 1.7640; 

J: = 10.5433, J: = 9.6113, 

J: = 8.7908, 5’4 = 8.1607 

J: = 7.8810, J:, = 7.8601. 

6.2.2. The open- and closed-loop models 
uersus the true plant. Figure 4 shows a plot of the 
transfer function magnitude of the true plant P 
(solid line) and of the plant model PO (dashed 
line) identified in open-loop, as well as that of 
the plant models p5 (dotted line), and pe 
(dash-dotted line) obtained in the fifth and sixth 

5- 

4- 

3- 

2- 

l- 

04 I I 
-3 -2 -1 0 1 2 3 4 

Fig. 4. Magnitude plot of the true_ plant transfer fucction and 
the plant models P (sol@ line), PO (dashed line), PS (dotted 

line) and P6 (dash-dotted line). 
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iterations of closed-loop identification. Further 
iterations of closed-loop identification produce 
plant model transfer functions with roughly the 
same magnitudes. 

6.2.3. The achieved and designed sensitivity 
functions. Figure 5 shows plots of the magnitude 
frequency responses of the optimal sensitivity 
function S,,, and of the achieved sensitivity 
functions S,,, S, and S,. Figure 6 shows a plot of 
the magnitude frequency responses of the 
optimal sensitivity function S,,, and of the 
designed sensitivity functions $,,, 3, and ,$. 

6.2.4. The identification and control weight- 
ings. Figure 7 shows a plot of the transfer 
function magnitudes of the identification filters 
D; obtained in the first, second, fifth and sixth 
iterations of plant identification and control 
design. Figure 8 shows a plot of the frequency 
response magnitudes of the control design 
weightings fi (solid line), F2 (dashed line), FS 
(dotted line) and 4 (dash-dotted line). 

6.2.5. The stability robustness test function. 
Figure 9 shows a plot of the frequency response 
magnitude of the robust stability test function $1 
(solid line), & (dashed line), & (dotted line) 
and & (dash-dotted line). 

6.2.6. The closed-loop impulse responses, 
Figure 10 shows plots of the true closed-loop 
impulse response when the full-order optimal 
controller Copt is used (solid line), the controller 
C, based on the open-loop model (dashed line) 
and the controller C6 obtained at the sixth 
iteration (dotted line). 

6.2.7. The closed-loop output signal y,. Figure 
11 shows plots of the closed-loop output signal yI 
(t = 1,2, . . . , 100) when the full-order optimal 
controller C,, is used (solid line), the controller 
C,, based on the open-loop model (crosses) and 
the controller C6 obtained at the sixth iteration 
(dotted line). For the reader’s convenience, the 

0.5 ‘I I 

I I 

0.4 (8 
! 

4 '-3 -2 -1 0 1 2 3 

Fig. 6. M!gnitude plot of S.&solid line), .?, (dashed line), 
SS (dotted line) and S, (dash-dotted line). 

relevant controllers and plant models are given 
as follows: 

(0.0028 + 0.10022 -I - 0.1229~ -* 
+ 0.0154~ -3 + 0.01362 -4 - 0.0018~ -"I 

'odZ) = (1 _ 0.2944~-’ - 0.5368~~’ - 0.0340~-~’ 

+ 0.0799~ -’ + 0.0228~ -“) 

C,(z) = 
0.2872 - 0.2265z-’ + 0.01712 -* 

1- 0.4067~ -I - 0.1929~ -* - 000092 -” 

(0.0380 + O.l895z-’ - 0.03352.-* 

- 0.1078~-~ - 0.0171~-~ - 0.009Oz-5) 

‘,(‘) = (1 + O.7l49z-’ - 0.4911z-* - 0.4222~-~’ 

- 0.0952~-~ - 0.03132 -’ + O.OOO~Z-~) 

&) = 
0.9807~ -’ - 0.9834~ -* - 0.3846~ -3 

1 - 1.07662-l + 0.4149z-* - 0.0508~-~’ 

p6,<d = 

1.6066~ -’ - 0.9120~ -* - 1.44042 -’ 

1- O.3139z-’ - 0.6349z-* + 0.4839~-~’ 

1.5, 
I 
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Fig. 5. Magnitude plot of SO,, (solid line), SO (dashed line), S, 
(dotted line) and S, (dash-dotted line). 
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Fig. 7. Magnitude plot of the identification filter D, (solid 
line), D2 (dashed line), Ds (dotted line) and De (dash-dotted 

line). 
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I 
-3 -2 -1 0 1 2 3 4 

Fig. 8. Magnitude plot of the control design weighting F, 
(solid line), F2 (dashed line), F’s (dotted line) and Fh 

(dash-dotted line). 

6.3. Comments and general design guidelines 
This computer design example demonstrates 

several salient features of our iterative approach 
to plant identification and robust control design. 

J global versus .?, Jc and J’. The most crucial 
observation is that the closed-loop perfor- 
mance achieved with the true plant, as 
measured by the global criterion Jglobal, 
improves from step to step. In this example 
most of the other local control and identifica- 
tion criteria are also decreasing step by step as 
the iterations go on, but this need not always 
be the case. 

The estimated plant models. Observe that the 
open-loop identified plant model a’ is 
apparently much closer to the true P than the 
subsequent closed-loop identified models. This 
needs to be understood in conjunction with 
the mismatch of the noise model and the 
disturbance rejection objective of the iterative 
scheme. Note also that, while the plant does 

10' 

i 

Fig. 9. Magnitude plot of the stability robustness test 
function 4, (solid line), & (dashed line), & (dotted line) 

and & (dash-dotted line). 
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Fig. 10. Plot of the true closed-loop impulse responses using 
the full-order controller C,,, (solid line), the controller Co 
based on the open-loop model (dashed line), and the 

controller C, obtained at the sixth iteration (dotted line). 

. 

not fit within the model set, the derived 
controllers do possess sufficient order to yield 
c Opt. This is due to the increased order 
provided by the weighting filters. We see that 
achieved performance is very close to the best 
possible within the class of controllers, which 
is reassuring. With more complex plants P, the 
same effect is evident, but the comparison to 
the optimal restricted complexity control is 
more difficult to demonstrate. 

The achieued sensitivity. Figure 5 clearly 
indicates that the effect of our iterative design 
is to make the achieved sensitivity small in the 
high-frequency range, where the high value of 
the noise demands this. We note that the 
sensitivity obtained at high frequency obtained 
with the controller based on the open-loop 
identified model gives poor disturbance 
rejection. Conversely, we note that this low 
sensitivity at high frequencies is obtained with 

x 

6 
x x 

D 

Fig. 11. Plot of 100 output data y, collected from the closed 
loop with the full-order controller C,,,, (solid line), the 
controller C, obtained from open-loop identification 
(crosses) and the controller C, obtained from closed-loop 

identification (dotted line). 
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a model ph that appears to be much worse 
than the model obtained in open loop; see 
Fig. 4. These are typical features of these 
iterative controller-oriented design schemes. 
As is well known from H, sensitivity 
minimisation design theory, if the given plant 
possesses a right-half-plane zero as in our 
example, trying to make the sensitivity 
function magnitude small over some frequency 
range will inevitably force it to be large 
elsewhere. Our simulation shows that a very 
good trade-off (for the achieved sensitivity 
minimization) can be obtained after two or 
three iterations. The plots of the output (Fig. 
11) confirm these observations: the noise 
rejection achieved on the real plant with the 
controller C, is significantly better than that 
achieved with open-loop identification. In 
fact, it is almost as good as that of the optimal 
full-order controller. 

The role of the Jilters. We note that, as the 
iterations proceed, the identification filter 
magnitude becomes smaller at high frequency; 
see Fig. 7. This is mainly the effect of the 
designed sensitivity becoming small at those 
frequencies; see Fig. 6. The closed-loop plant 
model mismatch therefore becomes large at 
high frequency, and this is compensated for by 
the control design frequency weighting func- 
tion F; see Fig. 8. 

The excitation signal power. In this example 
the ratio of the variance of the excitation 
signal r, to noise u, is slightly higher than 1. 
Experience has shown that choosing a’, too 
small often leads to a robust stability problem, 
while choosing it too large and poorly aligned 
with the noise spectrum deteriorates the 
achieved performance. The stability problem 
can be detected by monitoring the stability test 
function 4. Experience with this and other 
examples has also shown that a small violation 
of the 1 bound for the function 4 at a few 
points usually does not produce instability of 
the achieved loop. 

Number of iterations. Our experience on a 
large number of examples and on real life 
applicationst is that, for a time-invariant plant, 
a significant improvement in performance is 
obtained during the first two or three 
iterations, but that not much improvement is 
obtained by doing further iterations. This 
iterative scheme should certainly not be seen as 
one in which iterations should be continued 

t The Zangscheme has been successfully applied by the 
authors or their colleagues to the control of an industrial 
sugar mill (see Partanen and Bitmead, 1995) and to the 
control of a flexible robot arm (see Hoffmann, 1993). 

forever, but rather as a way of getting the 
benefits (in terms of performance) of a 
controller designed on the basis of closed-loop 
identification. These benefits can (and should) 
be obtained in a very small number of iterative 
design steps. Users should be fully aware that 
this iterative identification/control design 
scheme can sometimes diverge.* This diver- 
gence has been observed on some simulation 
examples, and some reasons for such diver- 
gence have been analysed recently. The fixed 
points of a somewhat simpler iterative 
identification-and-pole-placement-control de- 
sign scheme have been studied by Astrom and 
Nilsson (1994), showing both stable and 
unstable fixed points. The connection with a 
convergent iterative controller design scheme 
has been established by Hjalmarsson et al. 
(1994b), giving some indication of what might 
go wrong in the identification-based schemes 
if iterations are continued forever, Let us 
repeat that our message is not to do so. 

7. CONCLUSIONS 

We have developed an iterative identify-then- 
control paradigm. The focus of the approach is 
to consider a single global control objective and 
then to perform an interlaced sequence of 

l frequency-weighted least-squares system 
identifications, 

l frequency-weighted LQG control designs, 

each with their respective local objective 
functions. These criteria (embodied in the 
frequency weighting) for each case reflect the 
current local objective but are tuned to address 
minimization of the global objective. 

Methods have been presented for the (some- 
what fictitious) H, case, with a guaranteed 
descent property but no algorithm for the 
implementation, and the more realistic H2 (LQG 
and least-squares), case with no guarantee of 
descent for the achieved cost. To implement the 
methods requires that the identification stage 
provide not only a best fitting model but also a 
measure of model error. In the H, case the 
provision of the complete frequency response 
error is an unrealistic expectation, but in the & 
case estimates of signal spectra are used as 
measures of the plant/model misfit. The model 
error is introduced to modify the local control 
law specification. In a complementary fashion, 
the global control objective and the local 
controller are used to adjust the frequency 
weightings of the data that are fed into the 
identifier, operating in closed loop. 

$ Not on this example. 
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Our iterative scheme is essentially a perfor- 
mance enhancement scheme for LQG distur- 
bance rejection with reduced-order models, 
although some robust stability safeguards can be 
incorporated as we have shown. A considerable 
amount of further work is needed to establish 
more detailed properties of such methods and to 
extend their validity fully to adaptive control. 
This work is ongoing but it is clearly of interest 
to establish the connection between the ap- 
plicability of these schemes and the provision of 
a priori plant information. In terms of practical 
applications, however, the methodology ad- 
vanced here goes a long way towards addressing 
the questions of how to adjust and improve 
existing controllers using current on-line 
experimental data. 
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