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Abstract

One of the most active areas of research in the nineties has been the study of
the interplay between system identification and robust control design. It has led
to the development of “control-oriented identification design”, the paradigm being
that, since the model is only a tool for the design of a controller, its accuracy (or
its error distribution) must be tuned towards the control design objective. This
observation has led to the concept of “iterative identification and control design”
and, subsequently, to model-free iterative controller design, in which the controller
parameters are iteratively tuned on the basis of successive experiments performed
on the real plant, leading to better and better closed loop behaviour. These iterative
methods have found immediate applications in industry; they have also been applied
to the optimal tuning of PID controllers. This paper presents the progress that has
been accomplished in iterative process control design over the last decade. It is
illustrated with some applications in the chemical industry.
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1 Introduction

Iterative process control is a control design methodology that has emerged
in the nineties as a result of intense research efforts aimed at bridging the
gap between system identification and robust control analysis and design. In
order to give the reader an idea about how wide this gap was, we quote from
a keynote lecture delivered at the 1991 IFAC Symposium on Identification
(Gevers, 1991) 1

The last ten years have seen the emergence of robust control theory as a ma-
jor research activity. During the same period, research in system identification
has dwindled, and it might be tempting to believe that most of the theoretical
questions in identification theory have been resolved for some time. The sur-
prising fact is that much of robust control theory is based on prior descriptions
of model uncertainty or model errors which classical identification theory has
been incapable of delivering. Conversely, until recently identification theorists
have not spent much effort in trying to produce the accurate uncertainty bounds
around their estimated models that their robust control design colleagues were
taking for granted. It is as if, until a few years ago, the control design commu-
nity and the identification community had not been talking much to each other.
The gap between the surrealistic premises on which much of robust control de-
sign theory is built and the failure of identification theory to deliver accurate
uncertainty bounds in the face of unmodelled dynamics has brought to light
major deficiencies in both theories, and a sudden awareness from around 1988
of the need to understand better the interactions between both theories.

Surely, a natural place to search for an understanding of the interactions be-
tween identification and robust control design is in the adaptive control commu-
nity. Indeed, adaptive control combines the design of an on-line identifier with
that of a control law . . . . . .An essential feature of adaptive control, however,
is that the identification is performed in closed loop and that the controller
therefore impacts on the estimated model and on its quality (i.e. its error with
respect to the true system). It is therefore to be expected that the separate de-
signs of the identifier and of the controller without regard for the effect of the
control law on the identified model, or of the identified model on the robustness
of the control law, may not lead to a maximization of the global robustness of
the identifier/controller schema.

This last sentence was to become the program for much of the research ac-
tivity in the nineties: going from separate designs to a synergistic design. In
1990, any observer of the scene was aware of the many different technical in-
consistencies between the newly emerged robust control theory and the more

1 Our extensive quote should of course not be construed as approval of the ideas
expressed in that paper.
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classical prediction error identification theory. For example, prediction error
identification theory had very little to offer in terms of explicit quantification
of the model error, and whatever tools that were available were incompatible
with the frequency domain uncertainty descriptions required for robust control
analysis and design.

However, the most crucial manifestation of the “identification/control gap”
was not so much these technical incompatibilities, but rather the total ab-
sence of synergy between the two parts of the design: identification design
and model-based control design. The prevailing philosophy at the time was:
“First identify a model with a method that also allows the estimation of error
bounds on this model; then design a controller based on this model and its
error bounds.” The problem is that an identification method whose sole merit
is to deliver error bounds on a restricted complexity model may well produce
a nominal model and an uncertainty set that are ill-suited for robust control
design.

Due to a lack of understanding of the interplay between identification and
robust control, most of the earlier work focused on producing suitable esti-
mates of model quality (or uncertainty), and on bridging the gap between
identification and robust control. The most obvious manifestation of this gap,
and the one that triggered most of the research activity in the early nineties,
was the realization that robust control theory requires a priori hard bounds
on the model error, whereas classical identification theory delivers at best soft
bounds, i.e. confidence ellipsoids in a probabilistic sense. This led to the devel-
opment of new identification theories that were called “control-oriented” only
because they delivered model uncertainty descriptions that were compatible
with those required by robust control theory. The question of whether the
identified models and their uncertainty descriptions were likely to deliver high
performance controllers was not addressed, at least initially.

It later became clear that the great ‘hard-versus-soft’ debate was not the real
issue. To quote from another plenary lecture (Gevers, 1993): An identification
and control design method that leads to a closed loop system that is stable with
probability 99% is of course just as acceptable as an H∞-based design that leads
to a ‘guaranteed stable’ closed loop, but that is based on prior error bounds
that cannot be verified. However, even though the ‘hard-versus-soft’ question
proved to be a non-issue, numerous other technical stumbling blocks had to be
conquered before robust control analysis and design could be applied to models
identified from data, rather than just to models and model uncertainty sets
obtained from prior assumptions.

To summarize, the intense research effort of the nineties on identification for
control has pursued two major objectives:
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• Obtaining better estimation procedures for the quantification of the model
uncertainty for identified models; in particular, produce uncertainty descrip-
tions that are compatible with robust control theory.
• Understanding the interaction between identification and model-based con-
trol in order to produce control-oriented identification design guidelines.

In this paper, we shall mainly focus on the progress accomplished in identi-
fication for control design, i.e. the second issue. This line of research has led
to such important new concepts as iterative model-based controller redesign,
cautious model and controller updates, and eventually iterative model-free
controller redesign. But before we venture in this direction, let us first briefly
elaborate on the question of model uncertainty estimation, if only to clearly
distinguish it from the question of identification for control.

The quantification of the model error is of course a very important objective,
whatever the goal of the identification step that has produced this model. A
reputable engineer should never deliver a product to his client without some
statement about the quality of that product, whether it be a machine tool, a
measurement device, or a dynamical model. When the product is a model, and
when the client is a robust control designer, then this client expects a model
quality statement that is compatible with his/her robust control design tools.
There is no sense telling the robust control engineer that the bias error on
the delivered model can be implicitly described by some complicated integral
formula, and that the noise-induced error is characterized by ellipsoidal con-
fidence regions on a meaningless parameter vector, if all the control engineer
can handle for his robust control design is a frequency domain error bound.
When that happens - and this is exactly what did happen ten years ago - then
the robust control engineer leaves the room in disgust and starts developing a
new identification theory which he calls ‘control-oriented’, only because it can
deliver model error bounds that are compatible with existing robust control
theory.

All through the nineties, we have witnessed a tremendous activity, on the
part of both communities, in the area of model quality estimation and model
uncertainty description, with a view of bridging the technical incompatibilities
between the two theories. We cannot possibly hope to reference the hundreds
of relevant papers. One of the better surveys of this line of research, up to the
middle of the decade, can be found in (Ninness and Goodwin, 1995).

The results on model quality are necessary for the construction of a synergis-
tic design of identification and robust control, but they do not constitute this
synergy. They are the technical building blocks. Indeed, identification for con-
trol is a “design” problem, as its name indicates. We now explain how to give
meaning to this problem, and why the solution leads to iterative controller
design.
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2 From identification for control to iterative identification and con-
trol

2.1 The setup

All through this paper we consider the situation where there is a “true system”
which, for the sake of analysis, we assume to be linear time-invariant. For the
sake of simplicity, we also consider a single-input single-output system only in
this paper. Thus, the true system is represented by

S : yt = G0(z)ut + vt, (1)

where G0(z) is a linear time-invariant causal operator, y is the measured out-
put, u is the control input, and v is noise, assumed to be quasistationary.

We now consider the situation where we can perform experiments on this sys-
tem with the purpose of designing a feedback controller. We also consider that,
most often, the system is already under feedback control, and that the task
is to replace the present controller by one that achieves better performance.
This situation is representative of very many practical industrial situations.

It is also typical of many industrial applications that the system to be con-
trolled is very complex and possibly nonlinear, and that it would therefore
require a complex dynamical model to represent the system with high fidelity.
Any model-based control design procedure would therefore lead to a complex
or high order controller, since the complexity of a model-based controller is of
the same order as that of the system. The practical situation, considered in
this paper, is where we want the to-be-designed controller to be linear and of
low order.

2.2 In search of a low complexity controller

There are many ways of obtaining a low-complexity controller for a high order
system. These include identification, model reduction, or controller reduction,
in open or in closed loop, etc. A comparison between identification methods
and reduction methods, on an industrial example, can be found in (Bendotti
et al., 1998).

Here we consider the strategy which consists of identifying a low order model
from data collected on the real system, from which a model-based controller
is then computed. Given that the low order model cannot possibly represent
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the true system over the whole frequency range, it will have a systematic error
called the bias error, in addition to the inevitable noise-induced error called the
variance error. This bias error - and indeed the total error - must be taken into
account in the control design; hence the importance of producing methods for
the estimation of model errors. But what is even much more important than
estimating the model error a posteriori is to design the identification in such
a way that the bias error does not harm the performance of the controller
that will be designed on the basis of this approximate model. This is based
on the observation that one can design a high performance controller with a
model that has large error with respect to the real system (i.e. a very wrong
model), as long as this model represents with high accuracy the dynamical
features of the true system that are essential for control design. For example,
it is essential that the model be very accurate around the crossover frequency
of the to-be-designed closed loop system, but the error in its steady state gain
can be huge.

The idea of tuning the bias error for control design is at the core of “identifi-
cation for control”. The practical formulation of the problem is one of finding
an identification criterion that takes account ot the control objective. It is an
identification design problem, whose objective is to produce, within a speci-
fied class of restricted complexity models, a nominal model whose bias error
distribution is tuned towards the control design objective. As we shall see
later in this paper, this can only be achieved through a succession of model
and controller iterations; hence the iterative schemes that have emerged in
identification for control.

The tuning of the bias error has led to iterative schemes for the estimation of
a ‘control-oriented’ nominal model. However, to fully take advantage of robust
control theory, one must develop an ‘identification for control’ theory not just
for the nominal model, but also for the uncertainty regions around this nominal
model. Indeed, robust control is a model-based design methodology in which
the controller is designed on the basis of a nominal model together with an
uncertainty region around the nominal model: see e.g. (Zhou et al., 1995). It
is the task of model validation to construct an uncertainty region around a
nominal model. When the model and its uncertainty region are to be used
for robust control design, then this validation step must also take account
of the control objective in such a way that the shape of the uncertainty set
also be tuned towards that control objective. This is a much harder problem
for which few results are presently available. One exception is (de Callafon
and Van den Hof, 1997) where an iterative scheme of H∞ identification and
model-based control design is presented, in which an uncertainty structure
is chosen that enables one to monitor robust performance. In the prediction
error framework, recent results have been obtained in (Gevers et al., 1999),
(Bombois et al., 2000), (Bombois et al., 2001), and (Gevers et al., 2000). We
shall not elaborate on them in this paper, where we focus on iterative designs.
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2.3 Matching identification and control objectives

We have described the context in which we operate, and we have introduced
the motivation for identification for control. We now show that the matching
of identification and control objectives leads to iterative identification and
control design. To illustrate the need for iterative design, we take the simplest
possible control design objective: model reference control. Thus, consider the

true system (1) and suppose we have identified a model Ĝ(z)
�
= G(z, θ̂) of G0,

from some parametrized set of low order models {G(z, θ) | θ ∈ Dθ}, where Dθ
is a subset of the Euclidean space. Consider a control law

ut = C(z)[rt − yt], (2)

and assume that our control design objective is to design C(z) such that the
closed loop transfer function from vt to yt is some prespecified S(z). Then,
given a model Ĝ(z), the controller C(z) is computed from 2

1

1 + Ĝ(z)C(z)
= S(z). (3)

Compare the real closed loop system of Figure 1 with the designed closed loop
system of Figure 2, with both loops driven by the same reference signal rt.

j j

6

- - - - ? -G0C
rt ut

vt

yt+

-

Fig. 1. Actual closed loop system

j

6

- - - -ĜC
rt ût ŷt+

-

Fig. 2. Designed (or nominal) closed loop system

Now, staring at Figures 1 and 2, one observes that:

2 We assume for simplicity here that a causal solution exists for C(z), since this is
not the focal point of our discussion.

7



yt=
G0C

1 +G0C
rt +

1

1 +G0C
vt, ut =

C

1 +G0C
rt −

C

1 +G0C
vt,

ŷt=
ĜC

1 + ĜC
rt. (4)

The ‘control performance error’ 3 , defined as the error between the actual and
the designed outputs, is given by:

yt − ŷt =

[
G0C

1 +G0C
−
ĜC

1 + ĜC

]
rt +

1

1 +G0C
vt (5)

After some straightforward manipulations, this can be rewritten as

yt − ŷt = S(z)[yt −G(z, θ̂)ut]. (6)

Equation (6) can be seen as an equality between a control performance error
on the left hand side (LHS) and a filtered identification error on the right
hand side (RHS). Indeed, the RHS is a filtered (by S(z)) version of the output
error yt − G(z, θ̂)ut, where ut and yt are collected on the actual closed loop
system of Figure 1. Thus, it appears that if θ is obtained by minimizing the
Mean Square of the RHS of (6), i.e. by closed loop identification with a filter
S(z), then this will minimize the Mean Square control performance error. In
other words, apparently (6) shows that we get a perfect match between control
error and identification error. However, life is more subtle and complicated.
Indeed, the controller C(z) is also a function of the model parameter vector θ
via (3). Since the data collected on the real closed loop system of Figure 1 are
a function of C(z), they are also dependent on θ. Hence, a more suggestive
and correct way to write (6) is as follows:

yt − ŷt = S(z)[yt(θ)−G(z, θ)ut(θ)]. (7)

Even though the RHS of (7) looks like a closed loop prediction error, it can-
not be minimized by standard identification techniques, because θ appears
everywhere and not just in G(z, θ).

We have illustrated the fact that with the simplest possible control design
mechanism, namely Model Reference Control, one can apparently equate a
‘control performance error’ to an ‘identification error’, but that this identifica-
tion error cannot be minimized by standard identification techniques because
the parameter vector appears in more than just the model G(z, θ). In other

3 It was called that way in (Åström, 1993), (Åström and Nilsson, 1994) because,
if the closed loop transfer function of the actual system was equal to the reference
model S(z), this error would contain only the noise contribution.
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words, we know that, to make the control error small, we should minimize the
RHS of (7) with respect to θ, but we don’t know how to do this.

For optimization-based control design criteria, the control performance crite-
rion also defines an identification criterion that one would want to minimize
with respect to the model parameters: see (Zang et al., 1995), (Van den Hof
and Schrama, 1995). This identification error is typically a norm of the fol-
lowing error:

yt − ŷt = S(z, θ)[yt(θ)−G(z, θ)ut(θ)], (8)

where the data filter S(z, θ) is proportional to the sensitivity function of the
design loop (compare with (3)) and is now also θ-dependent. Again, we do not
know how to minimize the RHS of (8) with respect to θ.

As a consequence, the approach suggested in all known ‘identification for con-
trol’ schemes is to perform identification and control design steps in an iter-
ative way, whereby the i-th identification step is performed on filtered closed
loop data collected on the actual closed loop system with the (i− 1)-th con-
troller operating in the loop. This corresponds to an i-th closed loop identifi-
cation step in which the following filtered prediction error is minimized with
respect to θ, for fixed θ̂i−1:

yt − ŷt = S(z, θ̂i−1)[yt(θ̂i−1)−G(z, θ)ut(θ̂i−1)]. (9)

We refer the reader to (Gevers, 1993), (Bitmead, 1993) and (Van den Hof and
Schrama, 1995) for details and for a survey on such iterative schemes.

Assume that one has chosen a model-based certainty equivalence control de-
sign criterion, such that any model Ĝ is mapped into a corresponding controller
C(Ĝ), e.g. the Model Reference criterion above. Then an interesting question
is whether these iterative identification and control schemes converge to the

minimum of the achieved cost over the set C
�
= {C(G(z, θ)) ∀θ ∈ Dθ} of all

such certainty equivalence controllers. This corresponds to asking whether by
iteratively minimizing over θ the mean square of the prediction errors defined
by (9), one will converge to the minimum of

J(θ)
�
= E{S(z, θ)[yt(θ)−G(z, θ)ut(θ)]}

2. (10)

This question was analyzed in (Hjalmarsson et al., 1995b) for model reference
control; it was shown there that the iterative identification and control schemes
do not generically converge to the minimum of the achieved control cost.
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This does not mean that iterative identification and control schemes need to
be thrown out of the window. In fact, the idea of using available data, collected
on the actual closed loop system, to obtain a model that is better suited for
the design of a new controller, has found immediate and widespread appli-
cations because it is easy and intuitively reasonable. In typical applications
large numbers of closed loop data are flowing into the control computer, and
it makes a lot of sense to use these data to replace the existing controller
by one that achieves better performance. In addition, the theoretical work on
identification for control has shown that, in order to compute a new controller
with better performance, the optimal experiment is to perform closed loop
identification. Thus, no special experiments are required, and there is no need
to “open the loop” in order to design the new model and the corresponding
new controller.

Thus, this is one area where the transfer of technology from theoretical re-
search to applications has been extremely fast. The first applications of control-
oriented identification and iterative model-based controller tuning were re-
ported within months after the theoretical results had been produced. Repre-
sentative examples can be found in (Partanen and Bitmead, 1995), (Schrama
and Bosgra, 1993), (de Callafon et al., 1993), (de Callafon, 1998), (Holmberg
et al., 2000), (Cooley and Lee, 2001). The practical impact of iterative closed
loop identification and controller redesign has been assessed in (Landau, 1999),
where some interesting observations are made on the distinction between this
batch-like mode of operation and the more classical theory and methods of
adaptive control.

The guidelines that emerged during the nineties for the application of iterative
identification and control schemes were supported by intense research that
brought to light two essential features.

• The benefits of closed loop identification when the model is identified with
a view of designing a new controller that is based on both the input-
output and the noise model: see e.g. (Liu and Skelton, 1990), (Schrama,
1992a), (Hakvoort et al., 1994), (Lee et al., 1995), (Hjalmarsson et al.,
1996),(Forssell and Ljung, 2000), (Landau, 2001). This produced a revival of
interest in the design of closed loop identification methods: see e.g. (Hansen
et al., 1989), (Van den Hof and Schrama, 1993), (Van den Hof et al., 1995),
(Forssell and Ljung, 1999).
• The need for cautious adjustments between successive model and controller
updates, in order to guarantee closed loop stability or performance im-
provement with the new controller: see e.g. (Schrama, 1992b), (Bitmead et
al., 1997), (Anderson et al., 1998) and (Bitmead et al., 2000).

Despite its practical successes, the failure of all attempts to establish conver-
gence of iterative identification and control schemes was a major worry, more
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from a theoretical than from a practical point of view. Indeed, in practice
it was observed that major improvements in performance of the closed loop
systems were obtained within the first few iterations, after which the improve-
ments were very minor. Divergence typically occurred only if one continued
to iterate beyond these initial steps.

It is the analysis of (Hjalmarsson et al., 1995b) that revealed the reason for
the possible divergence. This analysis led the authors to reformulate the it-
erative identification and control design scheme as a parameter optimization
problem, in which the optimization is carried directly on the controller pa-
rameters, thereby abandoning the identification step altogether. This idea led
to a gradient-based algorithm for the iterative optimization of the parameters
of any restricted complexity controller (Hjalmarsson et al., 1994), which was
later called IFT, for Iterative Feedback Tuning. In the next section we describe
the IFT algorithm and some of its more recent developments.

3 IFT : a model-free iterative controller tuning method

3.1 Introduction to the IFT algorithm

The key feature of the IFT algorithm is that an unbiased estimate of the gradi-
ent of a control performance criterion is computed from signals obtained from
closed loop experiments with the present controller operating on the actual
system. For a controller of given (typically low-order) structure, the minimiza-
tion of the criterion is then performed iteratively by a Gauss-Newton based
scheme. For a two-degree-of-freedom controller, three batch experiments are
performed at each step of the iterative design. The first and third simply
consist of collecting data under normal operating conditions; the only real
experiment is the second batch which requires feeding back, at the reference
input, the output measured during normal operation. Hence the acronym Iter-
ative Feedback Tuning (IFT) given to this scheme. No identification procedure
is involved.

The optimal IFT scheme, whose key idea is due to Hjalmarsson, was initially
presented in (Hjalmarsson et al., 1994). Given its simplicity, it became clear
that this new scheme had wide-ranging potential, from the optimal tuning
of simple PID controllers to the systematic design of controllers of increas-
ing complexity that have to meet some prespecified specifications. In partic-
ular, the IFT method is appealing to process control engineers because the
controller parameters can be successively improved without ever opening the
loop. In addition, in many process control applications the objective of the
controller design is to achieve disturbance rejection. With the IFT scheme the
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tuning of the controller parameters for disturbance rejection is driven by the
disturbances themselves; there is no need for the injection of a persistently
exciting reference signal as is typically the case in closed loop identification.

Since 1994, much experience has been gained with the IFT scheme:

• It has been shown to compare favourably with identification-based schemes
in simulation examples: see (Hjalmarsson et al., 1994), and its accuracy has
been analyzed in (Hjalmarsson and Gevers, 1997).
• It has been successfully applied to the flexible transmission benchmark
problem posed by I.D. Landau for ECC95, where it achieved the perfor-
mance specifications with the simplest controller structure (Hjalmarsson et
al., 1995a).
• It has been applied to the control of a flexible arm of the Laboratoire
d’Automatique de Grenoble (Ceysens and Codrons, 1995), on a ball-on-
beam system (De Bruyne and Carrette, 1997), for the temperature control
of a water tube and for the control of a suspended plate (Molenaar, 1995), for
the controller tuning in cold rolling mills (Hjalmarsson and Cameron, 1999),
for the tuning of a thermal cycling module (El-Awady et al., 1999) and many
more.
• It has been adapted to linear time-invariant MIMO systems (Hjalmarsson,
1999) and to time varying, and in particular periodically time-varying, sys-
tems (Hjalmarsson, 1995).
• It has been applied by the chemical multinational Solvay S.A. to the tuning
of PID controllers for a number of critical control loops for which opening the
loop or creating limit cycles for PID tuning was not allowed (Lequin, 1997).

Here we present the fundamentals of the IFT algorithm, and we then review
the performance achieved by the scheme at S.A. Solvay.

3.2 The basic control design criterion

We present here a basic version of the IFT algorithm; we refer to (Hjalmarsson
et al., 1998) for a more complete derivation and discussion. We consider the
unknown true system (1), to be controlled by a two degrees of freedom con-
troller:

ut(ρ) = Cr(ρ)rt − Cy(ρ)yt(ρ) (11)

where Cr(ρ) andCy(ρ) are linear time-invariant transfer functions parametrized
by some parameter vector ρ ∈ Rnρ , and {rt} is an external reference signal,
independent of {vt}: see Figure 3. We use the notation yt(ρ), ut(ρ) for the
output and the control input of the system (1) in feedback with the controller
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(11), in order to make explicit the dependence of these signals on the controller
parameter vector ρ.

r

Cy

G
0

C
-

yr u

v

Fig. 3. Block diagram of the closed loop system

Let ydt be a desired output response to a reference signal rt for the closed loop
system. This response may be defined as the output of a reference model Td,
i.e. ydt = Tdrt, but for the IFT method knowledge of the signal y

d
t is sufficient.

The error between the achieved and the desired response is

ỹt(ρ)
�
= yt(ρ)− y

d
t (12)

=

(
Cr(ρ)G0

1 + Cy(ρ)G0
rt − y

d
t

)
+

1

1 + Cy(ρ)G0
vt.

If a reference model is used this error can also be written as

ỹt(ρ) =

(
Cr(ρ)G0

1 + Cy(ρ)G0
− Td

)
rt +

1

1 + Cy(ρ)G0
vt. (13)

This error consists of a contribution due to incorrect tracking of the reference
signal rt and an error due to the disturbance. With IFT the following quadratic
control performance criterion is used:

J(ρ) =
1

2N
E

[
N∑
t=1

(ỹt(ρ))
2 + λ

N∑
t=1

(ut(ρ))
2

]
(14)

but any other differentiable signal-based criterion can be used. In (14) E[·]
denotes expectation w.r.t. the weakly stationary disturbance vt. The optimal
controller parameter ρ is defined by

ρ∗ = argmin
ρ
J(ρ), (15)

The errors ỹt(ρ) and ut(ρ) appearing in the criterion can be filtered by fre-
quency weighting filters Ly and Lu to give added flexibility to the design: see
(Hjalmarsson et al., 1998).
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Let T0(ρ) and S0(ρ) denote the achieved closed loop response and sensitivity
function with the controller {Cr(ρ), Cy(ρ)}, i.e.

T0(ρ) =
Cr(ρ)G0

1 + Cy(ρ)G0
, S0(ρ) =

1

1 + Cy(ρ)G0
. (16)

Given the independence of rt and vt, J(ρ) can be written as

J(ρ) =
1

2N

N∑
t=1

{
(ydt − T0(ρ)rt)

}2
+
1

2
E
[
{S0(ρ)vt}

2
]
+ λ

1

2N
E

[
N∑
t=1

(ut(ρ))
2

]
.

The first term is the tracking error, the second term is the variance of the
disturbance contribution, and the last term is the penalty on the control effort.
Observe that the first term contains no randomness, while the second term is
the variance of a stationary process, which therefore needs no summation.

3.3 Criterion minimization

We now address the minimization of J(ρ) given by (14) with respect to the
controller parameter vector ρ for a controller of specified structure. It is evident
from (12) that J(ρ) depends in a fairly complicated way on ρ, on the unknown
system G0 and on the unknown spectrum of {vt}. To obtain the minimum of
J(ρ) we would like to find a solution for ρ to the equation

0 =
∂J

∂ρ
(ρ) =

1

N
E

[
N∑
t=1

ỹt(ρ)
∂ỹt
∂ρ
(ρ) + λ

N∑
t=1

ut(ρ)
∂ut
∂ρ
(ρ)

]
. (17)

If the gradient ∂J
∂ρ
could be computed, then the solution of (17) would be

obtained by the following iterative algorithm:

ρi+1 = ρi − γiR
−1
i

∂J

∂ρ
(ρi). (18)

Here Ri is some appropriate positive definite matrix, typically a Gauss-Newton
approximation of the Hessian of J , while the sequence γi must obey some con-
straints for the algorithm to converge to a local minimum of the cost function
J(ρ): see (Hjalmarsson et al., 1994).

Such problem can be solved by using a stochastic approximation algorithm
of the form (18) such as suggested in (Robbins and Monro, 1951), provided
the gradient ∂J

∂ρ
(ρi) evaluated at the current controller can be replaced by an
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unbiased estimate. In order to solve this problem, one thus needs to generate
the following quantities 4 :

(1) the signals ỹ(ρi) and u(ρi);
(2) the gradients ∂ỹ

∂ρ
(ρi) and

∂u
∂ρ
(ρi);

(3) unbiased estimates of the products ỹ(ρi)
∂ỹ
∂ρ
(ρi) and u(ρi)

∂u
∂ρ
(ρi).

The computation of the last two quantities has always been the key stum-
bling block in solving this direct optimal controller parameter tuning prob-
lem. The main contribution of (Hjalmarsson et al., 1994) was to show that
these quantities can indeed be obtained by performing experiments on the
closed loop system formed by the actual system in feedback with the con-
troller {Cr(ρi), Cy(ρi)}. This is done as follows.

3.4 The IFT algorithm

At iteration i of the controller tuning algorithm, the controller C(ρi)
�
= {Cr(ρi),

Cy(ρi)} operates on the actual plant. We then perform three experiments, each
of which consists of collecting a sequence of N data. Two of these experiments
(the first and third) just consist of collecting data under normal operating
conditions; the second is a real (i.e. special) experiment. We denote N -length
reference signals by {rji }, j = 1, 2, 3, and the corresponding output signals by
{yj(ρi)}, j = 1, 2, 3. Thus we have

r1i = r, yielding y1(ρi) = T0(ρi)r + S0(ρi)v
1
i ;

r2i = r − y
1(ρi), yielding y

2(ρi) = T0(ρi)(r − y
1(ρi)) + S0(ρi)v

2
i ;

r3i = r , yielding y3(ρi) = T0(ρi)r + S0(ρi)v
3
i .

Here vji denotes the disturbance acting on the system during experiment j at
iteration i. These experiments yield an exact realization of ỹ(ρi):

ỹ(ρi) = y
1(ρi)− y

d, (19)

while it is shown in (Hjalmarsson et al., 1998) that

∂̂y

∂ρ
(ρi)

�
=

1

Cr(ρi)

[(
∂Cr
∂ρ
(ρi)−

∂Cy
∂ρ
(ρi

)
y3(ρi) +

∂Cy
∂ρ
(ρi)y

2(ρi)

]
(20)

is an unbiased estimate of ∂y
∂ρ
(ρi).

4 To ease up the rather heavy notations, we have dropped the subscript t from all
time signals in the following expressions.
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The three experiments described above generate corresponding control signals:

u1(ρi)=S0(ρi)
[
Cr(ρi)r − Cy(ρi)v

1
i

]
,

u2(ρi)=S0(ρi)
[
Cr(ρi)(r − y

1(ρi))− Cy(ρi)v
2
i

]
,

u3(ρi)=S0(ρi)
[
Cr(ρi)r − Cy(ρi)v

3
i

]
.

These signals can similarly be used to generate the estimates of the input
related signals required for the estimation of the gradient (17). Indeed, u1(ρi)
is a perfect realization of u(ρi),

u(ρi) = u
1(ρi), (21)

while

∂̂u

∂ρ
(ρi)

�
=

1

Cr(ρi)

[(
∂Cr
∂ρ
(ρi)−

∂Cy
∂ρ
(ρi)

)
u3(ρi) +

∂Cy
∂ρ
(ρi)u

2(ρi)

]
(22)

is an unbiased estimate of ∂u
∂ρ
(ρi). An experimentally based estimate of the

gradient of J can be formed by taking

∂̂J

∂ρ
(ρi) =

1

N

N∑
t=1

(
ỹt(ρi)

∂̂yt
∂ρ
(ρi) + λut(ρi)

∂̂ut

∂ρ
(ρi)

)
. (23)

The next controller parameters are then computed by replacing, in the itera-
tion (18), the gradient of the cost criterion by this estimate:

ρi+1 = ρi − γiR
−1
i

∂̂J

∂ρ
(ρi) (24)

where {γi} is a sequence of positive real numbers that determines the step size,
and where {Ri} is a sequence of positive definite matrices. The key feature of

our construction of ∂̂J
∂ρ
(ρi), and also the motivation for the third experiment,

is that this estimate is unbiased:

E

[
∂̂J

∂ρ
(ρi)

]
=
∂J

∂ρ
(ρi), (25)

As a result, the controller parameters converge under reasonable conditions
to a stationary point of the performance criterion, provided the sequence of
controllers along the way are all stabilizing: see (Hjalmarsson et al., 1998).
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A number of implementation issues as well as design choices are addressed
in detail in (Hjalmarsson et al., 1998). They concern the choice of the step
size γi and of the matrix Ri in (24), the choice of frequency weighting filters,
the elimination of possibly unstable controllers in the filtering operations (20)
and (22), the enforcement of integral action, the attenuation of the effect
of disturbances, as well as the simplification that occurs in the case of a one-
degree-of-freedom controller, where the third experiment is not necessary. One
interesting design parameter is the step size, which determines how much the
controller changes from one iteration to the next one. Before implementing a
new controller one can compare its Bode plot with that of the previous one,
and possibly reduce the step size if one feels that the change is too large.

4 Applications of IFT in chemical process control

The IFT scheme has been applied by the chemical multinational Solvay S.A.
for the optimal tuning of industrial PID controllers operating on a range of
different control loops. In each of these loops, PID controllers were already
operating. Important performance improvements were achieved using the IFT
method, both in tracking and in regulation applications. The reductions in
variance achieved after a few (typically 2 to 6) iterations of the algorithm
ranged from 25 % in a flow regulation problem in an evaporator, to 87 %
in a temperature control problem for the tray of a distillation column. Here
we present the results obtained with a temperature regulation problem for a
tray of a distillation column. An application to a flow control problem in an
evaporator is presented in (Hjalmarsson et al., 1998).

The controller used was an industrial 2-degree-of-freedom PID controller where
the derivative action is applied to y only, and where a first order filter is
applied to y in order to limit the gain of the controller at high frequencies
when the derivative action is used. The time constant of this filter is chosen as
Td/8, Td being the derivative time constant. The PID regulator parameters
were iteratively tuned using the IFT scheme, with the following design choices:
Gauss-Newton direction, step-size γi = 1 ∀i, control weighting λ = 0, sampling
period of 15 seconds, rd = yd = 0 during 5 hours. The deadtime and the time
constants of the process were unknown.

Figure 4 presents temperature deviations with respect to setpoint in a tray
of a distillation column, over a 24-hour period, first with the original PID
parameters, then with the PID controller obtained after 6 iterations of the
new scheme. Figure 5 shows the corresponding histograms of these deviations
over 2-week periods. The control error has been reduced by 70 %.

Figure 6 shows the Bode plots of the two-degree of freedom controller (Cr, Cy)
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Fig. 4. Control error over a 24-hour period before tuning and after 6 iterations of
IFT
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Fig. 5. Histogram of control error over 2-week period before tuning and after 6
iterations of IFT

before optimal tuning (full line), after 3 iterations of the IFT algorithm (dashed
line) and after 6 iterations (dotted line). The gain was too low and the deriva-
tive action underused. Observe that both the feedback controller Cy and the
feedforward controller Cr are adjusted as a result of the IFT iterations.
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Fig. 6. Bode diagram of the two-degree-of-freedom controller before tuning (full),
after 3 iterations (dashed) and after 6 iterations of the algorithm (dotted).

Table 1 shows the measured cost J with the 6 successive controllers, as well
as the predicted value of the cost, calculated at each iteration with the new
controller parameters, as explained above. The prediction was good except for
the 2nd iteration which was perturbed by an abnormal disturbance.
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Iteration Cost Next cost

(measured) (predicted)

1 0.80 0.36

2 1.00 0.59

3 0.57 0.35

4 0.37 0.18

5 0.22 0.15

6 0.14 0.11

Table 1 : Calculated and predicted cost

5 Minimizing the settling time with IFT

The criterion (14) is well suited when the objective is to follow a specific
reference trajectory, but is not so appropriate if the objective is to change
the output from one setpoint to another one. Indeed, in such case the goal is
typically to reach the new setpoint with a minimum settling time, and one
does not care about the transient trajectory, provided it does not produce
too much overshoot. By constraining the output to follow some particular
reference trajectory yd during the transient, one puts too much emphasis on
the transient phase of the response at the expense of the settling time at the
new setpoint value.

To cope with this situation Lequin observed in (Lequin, 1997) that one can
add nonnegative weighting factors to each element of ỹt and ut in the criterion
(14). A simple way to obtain a satisfactory closed loop response to a desired
setpoint change is then to set the weighting factors on ỹt to zero during the
transient period and to one afterwards, while the weights on the control are
put to one everywhere:

Jm(ρ) =
1

2N
E

 N∑
t=t0

(ỹt(ρ))
2 + λ

N∑
t=1

(ut(ρ))
2

 .
We say in such case that a mask of length t0 is put on the transient response of
the tracking error. Often it is not known a priori how much time is required to
achieve a setpoint change without overshoot. In such case, one can perform the
IFT iterations by initially applying a long mask, and then gradually reducing
the length of this mask until oscillations start occuring.
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We illustrate this idea with an example presented in (Lequin et al., 1999).
Consider the plant

G(s) =
1

s2 + 0.1s+ 1

One wishes to tune a PID controller in order to achieve a settling time of
20 seconds for the closed loop system. The initial PID parameter values were
taken as K = 0.025, Ti = 2 and Td = 1, yielding the very sluggish response
shown in Figure 7.

Fig. 7. Closed loop step response with initial PID parameters

The classical IFT criterion was then applied with a desired response shown in
dotted line in Figure 8, with the achieved response shown in full line on that
same figure. This response is very unsatisfactory, due to an unfortunate choice
of initial parameters.

Fig. 8. Optimal closed loop step response (full) obtained with the classical IFT
criterion and using the desired response (dashed)

The IFT criterion was then applied with a mask of decreasing length, with an
initial length of 80 seconds, and with the same initial parameters. At every
iteration of the IFT scheme, the length of the mask was decreased by 20
seconds, until a mask of length 20 was reached. This led to the closed loop
response shown in Figure 9.

Observe the dramatic improvement of the closed loop response.
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Fig. 9. Optimal closed loop step response obtained with the IFT criterion using
masks of decreasing length

6 Conclusions

Iterative redesign of controllers using data collected on the operating closed
loop system has emerged as a new, powerful and successful control design
methodology, as a result of significant progress accomplished in the nineties on
the understanding of the interplay between identification and control design.
Most of the schemes are based on model and controller updates; they require
safeguards such as cautious changes between successive controllers. The study
of these ‘identification for control’ schemes has somewhat surprisingly also led
to iterative schemes that are entirely model-free.

In this paper we have focused on the design of the nominal model and/or
controller via these iterative schemes, since these have given rise to the more
practical design methods, well suited for process control applications. We have
barely touched upon the vast amount of progress accomplished on model un-
certainty estimation, and have completely left aside our recent theoretical work
on model and controller validation.
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