

LABORATOIRE DE MICROÉLECTRONIQUE

Louvain-la-Neuve

Machine learning of

high-dimensional data:

Local artificial neural networks and

the curse of dimensionality

Jury

M. Cottrell
E. de Bodt
J. Hérault
Y. Kamp
P. Sobieski
V. Wertz
C. Trullemans (Président)

Michel Verleysen

Thèse présentée en vue de
l'obtention du grade d'agrégé de
l'enseignement supérieur.

décembre 2000

Contents

Preface 7

Chapter 1 13

Introduction 13

Chapter 2 17

High-dimensional data 17

2.1 Introduction 17
2.2 One, two, three, high! 19
2.3 Empty space phenomenon 21
2.4 Redundancy 28
2.5 Intrinsic dimension 30

2.5.1 Local PCA 31
2.5.2 Box counting 32
2.5.3 A posteriori dimension estimation 33
2.5.4 Limitations to the concept of intrinsic dimension 35

2.6 Conclusion 36

Chapter 3 37

Local learning 37

3.1 Introduction 37
3.2 Classification by vector quantization 40

3.2.1 Principle of vector quantization 40
3.2.1.1 Definition of the problem 40
3.2.1.2 Batch method 41
3.2.1.3 On-line (stochastic) method 41

3.2.2 Vector quantization as supervised classification tool 42
3.2.3 Improvements on vector quantization and related issues 44
3.2.3.1 Vector quantization for high-dimensional data 44
3.2.3.2 Density of centroids 45

3.2.4 Further topics on vector quantization 47
3.3 Bayesian classification by probability density estimation 47

3.3.1 Principle of Bayesian classifiers 47
3.3.2 Improved practicability by vector quantization: IRVQ algorithm 50
3.3.2.1 Vector quantization 50
3.3.2.2 Width factors 52

4

3.3.2.3 Results 55
3.3.3 Further research topics 56

3.4 Radial Basis Function Networks for approximation 57
3.4.1 Principle of Radial Basis Function Networks 57
3.4.2 Linear Radial Basis Function Networks 58
3.4.2.1 Model 58
3.4.2.2 Radial functions 59
3.4.2.3 Optimal weights 60

3.4.3 Optimization of centres and widths 63
3.4.3.1 Location of centroids 63
3.4.3.2 Width factors 64
3.4.3.3 Global optimisation 69

3.4.4 Further research topics 69
3.5 Further developments on local learning 70

Chapter 4 73

Dimension reduction 73

4.1 Introduction 73
4.1.1 Dimension reduction and bias-variance trade-off 73
4.1.2 Dimension reduction and intrinsic dimension 75
4.1.3 Dimension reduction in classification 77
4.1.4 Why and how to perform dimension reduction? 77

4.2 Linear dimension reduction 78
4.2.1 Principal component analysis 78
4.2.1.1 PCA reference vectors 78
4.2.1.2 Geometrical properties 80
4.2.1.3 Advantages and drawbacks 81

4.3 Nonlinear dimension reduction 82
4.3.1 Kohonen maps 83
4.3.2 Nonlinear multi-dimensional scaling and Sammon's mapping 85
4.3.3 Curvilinear component analysis (CCA) 86
4.3.3.1 Description of the method 86
4.3.3.2 Choosing the parameters for CCA 87
4.3.3.3 Curvilinear Distance Analysis 88
4.3.3.4 Automatic choice of the parameters 90
4.3.3.5 Examples 92
4.3.3.6 Discussion and further work 94

4.4 Application of dimension reduction to time-series forecasting 95
4.4.1 The time-series forecasting problem 95
4.4.2 Input variable selection 97
4.4.3 Taken's theorem 99
4.4.4 Example 1 102
4.4.5 Example 2 104

4.5 Conclusion and further work 107

Chapter 5 109

Discussion 109

 5

References 113

Preface

Writing this thesis was both a difficult and an interesting experience.

It was difficult because it is an attempt to collect, in a single text, several
contributions realized in the last few years, in various contexts. Some of the ideas
presented here come from personal, independent work, some come from work
realized with Ph.D. and/or M.Sc. students, some were developed in the frame of
financially supported projects having their own constraints, some are the result of
common work with research teams abroad. Trying to write a coherent text with
these contributions was a way to assess the strengths and weaknesses of my own
work, including how individual results contribute to a common goal. Obviously, the
conclusion of this effort is that... there is still much to do, both to consolidate the
ideas already developed and to extend them to more general frameworks.

But writing this text was also a very interesting and stimulating experience. At
many places in the text, the reader will find comments like "This is a topic for
further work". Rather than pointing out deadlocks (as it often happens in the
literature...), these comments indicate in which directions the work has to be
continued: many ideas on how to work in these directions are mentioned.
Undoubtedly, this work will give new ideas for Ph.D. and M.Sc. thesis topics, and
probably for research projects too.

It has to be clear that this thesis must not be seen as the completion of a research
work. On the contrary, it is a report on the current status of a work that has to be
continued in the coming years. Collaboration opportunities and research projects
will most probably decide the precise goals of my work in the next few years, but
keeping long-term objectives in mind is a must. One of my objectives is to carry
on with the development of learning methods adapted to real engineering
problems, and tentatively to implement them with dedicated hardware when this is
justified.

The purpose of this text is to serve as a guide for further investigation. Some
concepts necessary to understand the work are detailed, even if they do not result
from personal work. However, this text is not written to serve as a comprehensive
survey nor as a textbook. The reader should have a medium knowledge of the

8 Preface

field and of the relevant literature before reading this text.

Another voluntary limitation of this text is that it contains few examples. I
deliberately chose to restrict the number of illustrative examples for the following
reasons.

• Everybody knows that it is always possible to find examples where the
performances of a specific algorithm are higher than any other method... It
can be scientific dishonesty of course, but it can also be the fact that a
researcher is faced to shortcomings of other methods and tries to overcome
them with a new algorithm. Even without any ill intention, the developer will be
prone to publish examples proving the usefulness of his/her development.

• When a specific example is chosen as a benchmark, and even if this
benchmark is widely accepted by the scientific community, making a new
algorithm work "better" on this benchmark is usually a question of effort
devoted to the adjustment of learning parameters, etc. In the NN literature,
one can find plenty of papers proving the superiority of MLP over RBFN and
plenty of examples proving the opposite. It would not even be surprising to
find the same examples used for both purposes... It is easy to show the
superiority of RBFN over MLP if you spend two weeks to adjust the parameters
of your RBFN and use a standard commercial software as MLP, and it is just
as easy to do the opposite!

Anyway, despite these limitations, the reader may still refer to the original papers
for examples about the methods presented in this text! Most illustrative examples
however are restricted to 2- and 3-dimensional problems, for obvious
representation reasons.

A preface is not complete without acknowledgements. In the case of this thesis,
the following lines are much more than acknowledgements. Most of the work
described in this text has been realized either in the frame of research projects (in
collaboration with people outside my own university), and/or in the frame of Ph.D.
theses realized at UCL. A great part of my research work these last years was
devoted to the supervision of these works and Ph.D. theses. Clearly defining what
is my own work and what comes from other people is difficult, and would make no
sense. Good research is the result of collaboration between people. There is a
Chinese proverb saying "There is more in two heads than in one". Actually, this is
probably not a Chinese proverb, but anyway...

The following parts of this thesis have been developed with, in collaboration with,
or by the researchers listed below. This list is probably not exhaustive; those not
listed here must know that their omission is fully unintentional... This list was
written in the order of presentation of this thesis; in no case it reflects a ranking in
the quality or quantity of work, or whatever!

 Preface 9

• I had the opportunity to meet Pierre Demartines both at the EPFL during my
six-months visit and at INPG, where he realized his Ph.D. thesis under the
supervision of Jeanny Hérault. I worked with him a little bit at EPFL, but not
really on the topics of this text. Nevertheless, his Ph.D. thesis was a source of
inspiration for this work, in particular for the chapter about "High-dimensional
data" and the section about "Curvilinear Component Analysis". Hopefully (for
me), his tendency to drive let's say quite fast and to enjoy aerobatics is not a

source of inspiration for me...

• The chapter on "Local learning" mostly resulted from a European Esprit project
Elena, coordinated by Christian Jutten. The work on vector quantization, on
the IRVQ algorithm, and on RBFN networks, has been done with Philippe
Thissen and Jean-Luc Voz, the two researchers working at UCL on this project,
but also with Christian Jutten (himself) and Pierre Comon. Working with them,
and with all other participants to the project, has been an enjoyable and very
profitable experience for me. I would like to forget the long weeks writing
reports day and night, but I will never forget the technical passionate
discussions leading, late in the night, to philosophical considerations... after a
few beers (in Louvain-la-Neuve) or "Chartreuses" (in Grenoble)!

• Katerina Hlavackova (from the Czech Academy of Sciences) also contributed
to the developments about RBFN networks. I won't say I miss the meals in her
institute's canteen, but working with her was fun, especially when an engineer
(who wants to make things working) and a mathematician (who wants to prove
that it can work) try to work together...

• The chapter on "Dimension reduction" is the theme of Amaury Lendasse's
Ph.D. thesis; more exactly, its purpose is to take benefit from dimension
reduction on input values to a prediction method in order to increase its
performances. Amaury is obstinate, always late when he has to meet
deadlines, in particular when writing a paper, and often forgets to indicate the
units on graph axes, but he makes a good job and scientific discussions with
him are always constructive. He also provided most simulations of this
chapter.

• While this is not exactly his Ph.D. topic, John Lee works on the dimension
reduction techniques, namely on CCA. John is sometimes strange. He finds
flower structure in Santa Fe competition benchmarks, he doesn't drink beer,
and he likes programming and LaTeX. But he is very efficient and I like to
work with him. He kindly provided me several graphs and simulations used in
this text.

• Nicolas Donckers is working towards the Ph.D. degree, on signal processing
for sensors. At least he makes me believe that he works... between two scout
activities. This text does not include directly his work, but he is always ready
to help anybody who needs it, including me! He dreams that I will give him the

10 Preface

password of my PC and let him reinstall all the software, but that will remain a
dream...

Comments, ideas and suggestions from other researchers were also hepful for this
work. I think particularly to Jeanny Hérault and Anne Guérin-Dugué, who
commented constructively a recent publication on CCA whose ideas are inserted
in this text, and to the numerous M.Sc. students whom I had the opportunity to
supervise since about 10 years.

Many other people contributed more indirectly to this work. But they contributed to
make me enjoy research, to introduce me to the neural network field, and to make
efficient work and fun compatible. Among them, my Ph.D. supervisor, Paul
Jespers, was the first one to trust me and to make me work in a field that was
more or less unknown at that time in my university. I would like to thank him for
his confidence and his enthusiasm.

Since the beginning of my research experience, I had the opportunity to participate
to international research projects. The first one was coordinated by Jeanny
Hérault, and was a wonderful experience. I owe to Jeanny most of my knowledge
of the field, and of my understanding of what is scientific research. Christian
Jutten coordinated the second project, and excelled in combining efficient work
and real fun. These two projects have been a wonderful experience for me, and I
would probably not be working as researcher without them. I would like to thank
Jeanny and Christian, but also all the people having worked on these projects. It
would be too long to mention them all here, but my thanks go in particular to Anne
Guérin-Dugué, François Blayo, Eric Vittoz, Joan Cabestany, Victor Tryba, ... and
to many others!

François Blayo occupies a special place in this list. We worked together of course,
but we also initiated a lot of other scientific activities. A few beers in a Brussels'
café made that the ESANN conference was born; another few (?) beers made that
the Neural Processing Letters journal was created, now taken in charge by Kluwer.
He also made my six-month visit as invited professor at EPFL possible. All these
activities with him were a lot of fun, and I hope he has as much fun in his new
professional status.

Marie Cottrell and Eric de Bodt are also wonderful people. Despite their heavy
schedule, they are always available for intense and fruitful discussions. Working
with them is not only efficient, it is also a pleasure.

Working at UCL would not have been possible without all colleagues in my
laboratory, some directly involved in my work, some not, but all of them (should I
say most of them?) contributing to a (necessary) pleasant work atmosphere.

Last, but not least, I appreciated the comments made by the members of the jury
of this thesis. Rather than criticisms, they made constructive comments that

 Preface 11

greatly helped me to write the final version of this text. I really hope that I will
have the opportunity to continue to work with all of them in the future.

Chapter 1

Introduction

The field of artificial neural networks is astonishing. On the one hand, ANN are

powerful new tools that may be used in a wide variety of applications, when

nonlinear modelling of data is needed. As most physical phenomena are

inherently nonlinear, ANN are appropriate extensions to linear data analysis tools.

They have proven to be both theoretically sound, and of practical interest in real

applications.

On the other hand, the same field is often disparaged, sometimes with good

reason, sometimes not. One (probably the main) reason for this is the abundance

of literature about this field, including many books and articles of low (or null)

scientific relevance. Reading this part of the literature can put the reader in a bad

mood...

Despite these criticisms, I am convinced that ANN are really interesting and

deserve to be studied more deeply. And, fortunately for me, many scientists share

this opinion... Of course, all depends on what is meant by ANN. A large part of

the non-specialized literature associates ANN with MLP (Multi-Layer Perceptron),

which is nothing else than one specific ANN model, among many others. MLP are

theoretically powerful methods, but very difficult to use in practical situations;

many criticisms over what has been published in the ANN field also comes from

the misuse of MLP.

It is not my intention to try to formulate yet another definition of what is an artificial

neural network. Many known statistical concepts have been "reinvented" under

the neural network label, so that it is a sensitive task to decide what is an ANN and

what is not. I prefer to keep a vague and open to criticism definition: ANN are

adaptive computation methods that learn a task from examples, without trying to

build a physically sound model of the task. Many data analysis methods fall into

this definition, some of them being far from the traditional ANN concepts. Rather

than taking a stand in this controversy, I prefer to fuel it, insisting on the fact that

ANN and "traditional" statistical methods are not much different...

While ANN are potentially powerful methods, it must be stressed that most (if not

all) of them are difficult to use and usually need some expertise. This difficulty

14 Chapter 1. Introduction

comes from the fact that they are inherently nonlinear, and that maximizing or

minimizing an objective function (a common goal in ANN) in a nonlinear context

implies the use of complex optimisation algorithms. Problems related to the

efficiency of these algorithms are thus often mixed with the limitations of the ANN

methods themselves, making it difficult to appreciate the real power of ANN.

In that context, some questions about ANN are widely covered in the literature, but

some other ones are often "forgotten" from an in-depth discussion. Among these

last ones, I chose to discuss a few topics of particular importance, but usually not

adequately covered by current works and literature:

• what happens to learning algorithms when they have to deal with high-

dimensional data?

• are local learning methods equally or better suited to high-dimensional

problems?

The details of these questions, and some elements of answer, are the main

contribution of this work. Of course, this should not hide other important questions

about artificial neural networks, as the following ones.

• Model selection. Once an algorithm has been chosen to achieve a specific

task, the number of parameters in the model has to be determined (order of

polynomials, number of layers and sigmoids in MLP, etc.).

• Number of degrees of freedom. Avoiding overfitting in neural methods is

usually a question of the relative number of parameters in the methods (with

respect to the learning samples). The evaluation of the effective number of

degrees of freedom in a model is however a difficult question.

• Test. In most problems, it is easy to find models fitting a given dataset.

Measuring a possible overfitting is however more complicated, and implies the

use of advanced test methods, like cross-validation. Despite the fact that

overfitting is certainly the most crucial problem with ANN, practitioners do not

commonly use appropriate test methods.

• etc.

Two main arguments in favour of the use of local models will be developed. First,

even if real-world data are represented in high dimensions, it does not mean that

their true number of degrees of freedom (their intrinsic dimensionality) is as high:

dimension reduction techniques can be successfully applied, as preprocessing to

both local and global models. Secondly, while learning in high-dimensional spaces

remains difficult and subject to numerical problems, instabilities, local minima,

etc., the intuitive view that global models require less data than local ones to "fill"

the space is not justified. Moreover, it is often easier to work with local models,

 Chapter 1. Introduction 15

because of a reduced sensitivity to design parameters or a reduced risk to be

trapped in local minima.

The following of this text is organized as follows.

Chapter 2, "High-dimensional data", lists and details common problems

encountered when working with data, in space whose dimension is greater than 3.

These problems illustrate why intuitive views of algorithms, obviously developed

when thinking about examples in dimension 2 and 3, may sometimes not

generalize to higher dimension. It is the justification of this work. This chapter

does not contain any original contribution, but gathers concepts that are usually

disseminated in various references.

Chapter 3, "Local learning", deals with the concept of learning in specific

algorithms, where each parameter is adapted according to the information

contents of a few learning examples in a limited area of the learning space, rather

than according to all learning examples. Three types of algorithms are detailed:

vector quantization, Bayesian classification based on vector quantization, and

Radial-Basis Function Networks. The first is described because it sets the basics

of local learning, and the two last ones are described because they contain original

contributions. As a contribution to this thesis, the algorithms are examined in the

light of high-dimensional data.

Chapter 4, "Dimension reduction", considers the problem from a different angle.

When methods find their limitations or fail because of the dimension of the space,

a solution is to reduce this dimension to bypass the problem. This chapter

presents the concept of dimension reduction, linear and nonlinear techniques for

that purpose, and an original application of dimension reduction to the analysis

and prediction of time-series.

Finally, chapter 5 discusses the work and opens the way to further work.

Chapter 2

High-dimensional data

2.1 Introduction

Artificial neural networks, and more generally learning mechanisms whose goal is

to capture information from data, have gained considerable interest in the last two

decades. The increasing power and speed of modern computers is probably one

of the reasons for this interest. On one hand, it is now possible to work with large

databases, and consequently to study classes of problems that were hardly

tractable before. On the other hand, computers now provide tools for data

analysis that are able to work in real-time, or at least with computing times

compatible with real-world constraints.

The goal of artificial neural networks and of other learning methods is to perform

multivariate classification or regression. Lack of information on a problem forces

the use of generic methods making no assumption on the shape of the function to

be approximated, or the distribution of data. In our context, such generic methods

are still parametric models: learning is precisely the process of fitting the

parameters of the model according to the data available. However, in this case,

the parameters are not related to specific and tangible information in the model

(like a standard deviation in a mixture of Gaussians for instance): one speaks

about information distributed in the model (each parameter contributes for a small

part to the global behaviour of the model). Note that some literature erroneously

uses the words non-parametric for such generic models, because they make no

assumption on the shape of the function to be approximated, unlike linear or

polynomial regression.

Multivariate is the keyword of this work. It means that we are dealing with data

represented by several features, or components, i.e. with multi-dimensional

vectors. One could argue that it is usual to deal with multivariate data. In most

real-world situations indeed, information is complex, and many features are

necessary to describe data. Data analysis and statistical tools make it possible to

extract information from multivariate, or high-dimensional, data, in order to make

this information usable in an intuitive way. Most traditional data analysis tools

18 Chapter 2. High-dimensional data

were however developed having in mind small-dimensional problems, because

small-dimensional problems are easy to imagine, to draw and to interpret.

Problems in dimension 20 are seldom used as illustrative examples in textbooks!

Artificial neural networks are data analysis tools developed to deal with multi-

dimensional data. Contrary to most "standard" data analysis techniques, artificial

neural networks are nonlinear techniques. Let us take the example of the

traditional Principal Component Analysis (PCA). PCA is a linear technique; one of

its goals is to project data on smaller-dimensional spaces, for easier representation

and interpretation. Obviously, our brains prefer to see 2- or 3- dimensional graphs

than 4-dimensional ones... The PCA projection is linear. This means that any

linear dependency between features can be easily detected, and adequately

overcome. However, linear tools are not adapted to detect nonlinear

dependencies between features, as it will be illustrated below. Moreover,

obviously again, real-world data are governed by physical (or chemical, etc.)

processes that are inherently nonlinear (at least in exact sciences), except maybe

in some simple, low-dimensional cases! The paradox is then that a tool like PCA

is used to help in the analysis of real-world data, but is really adapted to problems

which are far from the reality!

Artificial neural networks (ANN) were developed to overcome this paradox. They

are built to handle high-dimensional data, and no assumption is made on linear

dependencies between features. One should be honest however: ANN suffer from

limitations similar to those of conventional tools, concerning their ability to work

with high-dimensional data. In the literature, one can find that ANN can "beat the

curse of dimensionality". In fact, it is true that ANN perform better than many

other conventional tools, when the dimension of the data increases. However,

nobody is able to demonstrate today that no problem arises in high-dimensional

spaces, even with ANN!

The controversy is further increased by the choice between local and global ANN.

Global ANN are models where each parameter influences the function realized by

the network (interpolation, classification, etc.) over a wide part of the input space.

On the contrary, the influence of a parameter is restricted to a specific area of the

input space in local models. Typically, multi-layer perceptrons (several layers of

weighted sums of sigmoid-like functions) are known as global models (because

sigmoids span the whole input space), while mixture of Gaussians are known as

local models (because Gaussians vanishes rapidly with the distance to their

centre). In the literature, one often finds that global models are better than local

ones to beat the curse of dimensionality. In this work, we will probably not prove

that this claim is wrong, but we will hopefully give enough elements to convince

the reader that local models may be used in high-dimensional spaces, often with

more success than global models. The first argument we will develop is the fact

that the intrinsic dimensionality of data is usually (much) lower than the dimension

of the data vectors; using dimension reduction techniques may thus help to bypass

the problems of high dimensions. Secondly, we will show that it is usually easier

to work with local models, and that the intuitive view that local models require

 Chapter 2. High-dimensional data 19

more learning data is not justified.

2.2 One, two, three, high!

Textbooks and scientific articles illustrate learning methods and other data

analysis tools on one-, two- or three-dimensional examples, and measure their

performances on higher-dimensional problems for which no representation is

possible. It is also widely accepted that most real-world problems are high-

dimensional ones. But where is the limit between small and high dimension?

We argue that the difficulties related to high-dimensional data are already found in

the fourth dimension. Of course, this is related to the fact that our mental model is

used to handle two- and three-dimensional images.

Let us take two examples showing the difficulties to construct mentally an object in

dimension four. Our argument is not to show that it is easier to represent an object

in dimension two or three than in dimension four; this is evidence. However, we

would like to demonstrate that, while it is reasonably simple to extend our view of

a simple problem or object to the dimension four or more, the same extension for

a real-world problem is quite impossible.

The first example shown in Figure 1 represents the three standard views of a 3-D

cone. Everyone is able to mentally reconstruct the cone and imagine what it looks

like in 3-D. Note that the additional information about the density of points in the

three views makes it possible to see that the cone was built with points on its

lateral surface only (and not in its volume nor on its base).

Figure 2 shows the same example of cone, but now in dimension four. This 4-D

cone was built using random points in the volume of a 3-D sphere for the three

first coordinates, and the fourth coordinate as a monotonically decreasing function

of the radial coordinate of these points. With some imagination, one could guess

that these figures are projections of a 4-D cone, but obviously the exercise is not

so easy as in Figure 1. The difficulty arises from the fact that one sees easily that

the views resemble those of Figure 1, and thus that the underlying 4-D object

could be a 4-D cone. However, it would be extremely difficult to guess the shape

of the 4-D object from Figure 2 without relying on the 3-D example of Figure 1.

Mental representations of high-dimensional objects are thus constructed by

generalization of 2-D or 3-D examples. But what about more complex set of

points or objects, even in low dimensions (higher than three)? To illustrate the

difficulty of high-dimensional data representation, let us take a slightly more

complex (but still far from real-world data) example.

20 Chapter 2. High-dimensional data

Figure 1: Three views (linear projections) of a 3-D cone. Left: [x1-x2] view. Centre: [x1-x3]

view. Right [x2-x3] view.

Figure 2: Six views (linear projections) of a 4-D cone. Upper left: [x1-x2] view. Upper

centre: [x1-x3] view. Upper right [x1-x4] view. Lower left: [x2-x3] view. Lower centre: [x2-x4]

view. Lower right [x3-x4] view.

We consider the problem of time-series prediction through a simple auto-

regressive model. A sine wave of period 2π/10 is built and sampled at unit time

intervals:

 () ()tsintf 10= (1)

 Chapter 2. High-dimensional data 21

The problem of time-series prediction (with an auto-regressive model) is to predict

the value of the function f at time t, given the value of f at time t-1, t-2, ..., t-p (p is

the auto-regressive order of the problem). Obviously, p = 2 is sufficient in our sine

wave example (the knowledge of the two last samples is sufficient to know the

phase at time t on the sine wave, and thus the value of f(t), if the amplitude and

period are known). However, since the function f itself is not known in a prediction

problem, one cannot guess the necessary auto-regressive order p; a sufficiently

large order is then chosen, usually larger than necessary. Consider for example

that the user chooses p = 4. At each time t, the regressor, formed here by the last

p values of the series, is thus a 4-dimensional vector. The knowledge of the series

until time t-1 means that function g defined as

 () () () () ()()4321 −−−−= tf,tf,tf,tfgtf (2)

will be learned on t-4 vectors (regressors). These t-4 occurrences of the input

vector to g can be plotted in a 4-dimensional space, leading to six representations

plotted in the same way as Figure 2. Figure 3 shows these six representations, in

a more realistic example where noise has been added to the true values of the

past instances of function f. Again, as for the cone case in Figure 2, these graphs

are not surprising once the true function f is known. Let us imagine now that we

have no idea about the function f, and that the only information at hand is the set

of graphs in Figure 3. One can see from the six projections that four degrees of

freedom are probably not necessary to describe the data (in other words to identify

uniquely a point in the regressor space); two are probably sufficient, since one can

guess from Figure 3 that the intrinsic dimension of the data will probably be 2.

In this text, we will see how to estimate the size of an auto-regressive vector in

time-series prediction: the estimation of a lower but still sufficient order will lead to

easier interpretation, but also to easier prediction (model fitting). We will also

show that linear projections as used for the representations in Figure 3 are not well

suited to nonlinear problems (predicting a sine-type function is a nonlinear problem

of course), and how nonlinear projections may help in this situation.

2.3 Empty space phenomenon

Problems related to high dimensions, illustrated in the previous section from the

angle of data representation, may also be considered on the learning level.

Artificial neural networks are learning machines: this means that whatever their

goal is (function approximation, classification, etc.), ANN act as interpolators. The

function to learn is known through a set of examples (the learning set). Obviously,

the function will be easier to learn in a region of the input space including many

points from the learning set than in a region where there are less points. Note that

since the function to learn is only known through the learning set, any learning

algorithm implicitly assumes that the learning set is representative of this function.

22 Chapter 2. High-dimensional data

The meaning of "representative" here is another debate!

Figure 3: Six views (linear projections) of a 4-D autoregressive vector built on a sine wave

(see text). Upper left: [x1-x2] view. Upper centre: [x1-x3] view. Upper right [x1-x4] view.

Lower left: [x2-x3] view. Lower centre: [x2-x4] view. Lower right [x3-x4] view.

The more points you have in a region of the space, the more effective will be the

approximation performed by the neural network. Note that this comment must be

taken with caution: the question is not to consider a density of points per unit of

volume in the input space: the same 3-D problem defined in a cube where the

length of an edge is 100 or 1 after normalization of input features must lead to

identical approximation quality! The question however is to see if the information

contained in learning examples, in a specific region of the input space, is sufficient

with respect to the smoothness of the function to approximate. Since this

smoothness is itself unknown, this makes it impossible to appreciate in a

quantitative way if the learning set contains enough points in this region.

The following 1-D example will illustrate this concept. Suppose that we want to

generalize a 1-D function known through 10 samples (measured with noise). In

the example on the left of Figure 4, it is intuitively obvious that a linear

interpolation is appropriate. The figure in the centre shows the same example with

different x-scale: the interpolation-generalization problem is of course identical.

The figure on the right shows a 1-D problem with the same x-scale as the left

figure, the same number of points, and the same level of noise. It is easy to see

that the interpolating function will be more complex in this case, and thus will

 Chapter 2. High-dimensional data 23

require more parameters.

0

0.5

1

1.5

0 5 10
0

0.5

1

1.5

0 50 100
0

0.5

1

1.5

0 5 10

Figure 4: 1-D interpolation example. Left: 10 samples over [0-10] x-range, linear

interpolator. Centre: same example over [0-100] x-range. Right: 10 samples over [0-10] x-

range, nonlinear interpolator.

Let us imagine now the left and right examples of Figure 4, but with various

numbers of points. Increasing the number of points in the first example will not

influence the interpolating function. However, increasing the number of points in

the second example could influence the interpolating function, depending on the

position of the new points (and thus on the underlying unknown distribution).

Figure 5 lower centre and right figures show two examples of different underlying

distributions leading to two different interpolating functions; these two examples

could however lead to the same interpolating function if the number of points is too

low (undersampling – see Figure 5 lower left). On the contrary, the number of

samples has no influence on a simpler interpolating function resulting from the two

upper examples in Figure 5.

Intuitively, this leads to the conclusion that the more complex the underlying

function is, the more points are necessary to build the interpolator. It is however

important to consider the following comments. First, it is reminded that the

underlying distribution is unknown, and thus that it is impossible to estimate how

many samples are necessary for a "correct" interpolation. Secondly, we did not

consider here the influence of the dimension of the input space: the number of

samples necessary to reach a defined level of interpolation will increase with the

dimension. Third, even the above discussion could be refuted on other simple or

pathological examples as illustrated here. What we tried to point out here is that

the problem of the number of necessary points for a correct interpolation is more

prominent when the underlying function is more complex.

Extended to high-dimensional spaces, the conclusion is that the number of points

available for interpolation is always too small in applications; how small is another

question that is difficult to answer.

24 Chapter 2. High-dimensional data

0

0.5

1

1.5

0 5 10
0

0.5

1

1.5

0 5 10

0

0.5

1

1.5

0 5 10
0

0.5

1

1.5

0 5 10
0

0.5

1

1.5

0 5 10

Figure 5: 1-D interpolation example with varying number of samples. Upper left and right:

10 and 100 samples respectively, linear interpolator. Lower left: 10 samples, linear

nonlinear interpolator. Lower centre and right: two different distributions with 100 samples,

leading to the left figure if undersampled to 10 points. Noise has been ommitted from

lower figures for clarity.

Let us examine the comments about high dimensions into more details. Scott and

Thompson [1] first noticed the problems related to data in high dimensions, and

called them "empty space phenomenon".

Consider the volume of a sphere in dimension d. This volume is given by

 () ()
d

/d

r
/d

dV
12

2

+Γ
π= (3)

where r is the radius, or equivalently by the recurrence equation

 () 2

2
2 r

d
)d(VdV

−
π−= (4)

with V(1) = 2 and V(2) = π. Looking at the graph of V(d) when r = 1 (Figure 6)

 Chapter 2. High-dimensional data 25

leads to the surprising observation that the volume rapidly decreases towards 0

when d increases!

0

1

2

3

4

5

6

0 10 20 30

Figure 6: volume of the sphere (radius = 1) versus the dimension of the space.

Figure 6 is the standard graph found in the literature to illustrate the volume of the

sphere. Nevertheless, it must be reminded that our intention here is to show that

our intuitive view of the volume of a sphere is misleading in high dimension. We

should thus compare this volume to a value that seems "natural" to us. One way

to do this is to plot the ratio between the volume of a sphere and the volume of a

cube (with edge length equal to the diameter of the sphere). Figure 7 shows this

ratio.

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30

Figure 7: ratio between the volume of a sphere and the volume of a cube (length of an

edge equal to the diameter of the sphere) versus the dimension of the space.

Having in mind a segment, a circle and a sphere respectively in dimension one,

two and three, we understand that the ratio illustrated in Figure 7 will decrease with

26 Chapter 2. High-dimensional data

the dimension of the sphere. What is more surprising is that this ratio is below

10% when the dimension is as low as 6!

Another way to consider this problem is to plot (Figure 8) the ratio between the

volume of a sphere with radius 0.9 and a sphere with radius 1, versus the

dimension. Obviously, this ratio is equal to 0.9 raised to the power d. The values

plotted in Figure 8 mean that 90% of the volume of a sphere in dimension greater

than 20 is contained in the spherical shell whose thickness is 10% of the initial

radius!

0

0.2

0.4

0.6

0.8

1

0 10 20 30

Figure 8: ratio between the volume of a sphere with radius 0.9 and the volume of a sphere

with radius 1, versus the dimension of the space.

Another nice result about surprising behaviours in high dimension may be found in

[Demartines 94]. It may be proved that, under soft conditions on the distribution of

samples (uniform distribution is thus not required), the standard deviation of the

norm of a set of samples remains almost constant when the dimension d of the

space increases (for large dimensions). Naturally, the average Euclidean norm of

samples increases with the square root of the dimension of the space. Through

Chebychev's inequality, the consequence of this is that, in large dimensions, the

samples seem to be normalized (see [Demartines 94] for details. This last

comment will be of importance when we will deal with the problem of dimension

reduction as a preprocessing to classification tasks (see chapter 4).

A last remark concerns Gaussian functions in high dimensions. We will see in the

following of this text that Gaussian functions may be efficiently used as kernels in

function approximators (the approximator is a weighted sum of Gaussian functions

with adequate parameters). But what is a Gaussian function in high dimension?

Intuitively Gaussian functions are used for their local properties: most of the

"volume" (integral) of the function is contained in a limited volume around its

centre. It is well known that 90% of the samples of a normalized scalar Gaussian

distribution fall statistically in the interval [-1.65, 1.65]. What is less obvious is that

 Chapter 2. High-dimensional data 27

this percentage rapidly decreases to 0 with the dimension of the space! Figure 9

shows the percentage of samples of a Gaussian distribution falling in the sphere of

radius 1.65, versus the dimension of the space. In dimension 10 already this

percentage is below 1%!

0

0.2

0.4

0.6

0.8

1

0 10 20 30

Figure 9: percentage of samples from a Gaussian distribution falling in the sphere of radius

1.65, versus the dimension of the space.

In other words, when the dimension increases, most of the volume of a Gaussian

function is contained in the tails instead of near the centre! This suggests that a

Gaussian function could not be appropriate in high dimensions, at least regarding

the local character mentioned above. A solution could be to use super-Gaussian

functions, as for example the kernels considered in [Comon 94].

Our discussion about the problems related to high dimensions is also intended to

point out to the necessity for many samples (and even more...) when the

dimension increases. It is extremely difficult to tackle the problem of finding the

number of samples required to reach a predefined level of precision in

approximation tasks. Intuitively, we understand that this number could increase

exponentially with the dimension of the space. Looking back to Figure 5, and

imagining a function of the same complexity in increasing dimensions, it seems

natural that N
2
 and N

3
 samples are needed respectively in dimension 2 and 3, if N

samples are necessary in dimension 1, for a defined quality of approximation.

Silverman [1986] has addressed the problem of finding the required number of

samples for a specific problem in the context of the approximation of a Gaussian

distribution with fixed Gaussian kernels. Silverman's results are summarized in

Figure 10.

28 Chapter 2. High-dimensional data

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

0 1 2 3 4 5 6 7 8 9 10

Figure 10: Number of samples required to approximate a Gaussian distribution with fixed

Gaussian kernels, with an approximate error of about 10% (according to [Silverman 86],

versus the dimension of the space.

Silverman's results can be approximated by [Comon 94]

 ()).d(.dN 25060log10 −≅ . (5)

In practice, any data set that does not grow exponentially with the dimension of the

space will be referred to as small, or conversely, the dimension will be said to be

large.

This section will be concluded by an important comment. The above discussion

could make the reader think that one never has enough samples in high

dimension. Consider indeed a problem where 10 samples would be required in

dimension 1 and 100 in dimension 2 (imagine a segment and a square "filled" by

respectively 10 and 100 samples). This would mean that 10
10
 and 10

20
 samples

would be required in dimensions 10 and 20 respectively! This is obviously

impossible in real-world problems (while dimensions much greater than 20 are

common). However, it appears that real-world problem do not suffer so severely

from the "curse of dimensionality" problem (while its importance should not be

neglected tough). This simply means that the data are located near a manifold of

dimension smaller than d. Reducing the dimension of the data to a smaller value

than d, in order to decrease the problems related to high dimensions, is a key topic

in this work.

2.4 Redundancy

A key issue in nonlinear data processing will be to reduce the dimension of the

input space, under the assumption that data are located near a submanifold of the

space. But why wouldn't we work on the problem of data representation itself

 Chapter 2. High-dimensional data 29

instead of reducing the dimension of the data after collecting them? In other

words, would it be possible to build the problem or the application in such a way

that the dimension of the working space is adjusted to the data?

Two major reasons prevent us to do this. First, obviously, the ideal representation

of data is problem-dependent, and it is even not obvious that this ideal

representation could be found in all situations, even with a large effort. But

another reason must also be mentioned. In many problems, data are issued in

one way or another from sensors, possibly after some transformation. Sensors are

physical or chemical devices that are not "perfect": they are sensitive to several

quantities, they are inherently nonlinear, they are noisy, they can break down, etc.

The redundancy introduced by several sensors is thus necessary if we want to get

rid of (some of) these imperfections! Using several sensors measuring different

quantities is a common idea in many implementations of "smart sensors".

Figure 11 shows how redundancy in measurements can reduce the uncertainty on

the measured values due to noise. The quantities to measure by the system are

x1 and x2. Three sensors A, B and C each measure combinations of quantities x1

and x2. Measured values are indicated on the axes, and it is assumed that noise

could affect the measurements in such a way that the true values are contained in

an interval centred on the measured ones, as indicated by the dashed lines. The

use of only two sensors A and B would lead to an uncertainty on the true values of

x1 and x2 indicated by the area hatched in blue. The use of a third sensor C

strongly reduces this area as indicated in red. Note that we assumed here that A,

B and C are linear combinations of the quantities x1 and x2 (rotation of the axes),

and furthermore that these combinations are known (we know how to place the A,

B and C axes in the x1 and x2 space). The same conclusion could be drawn with

nonlinear combinations of quantities (while it is more difficult to illustrate the

phenomenon...). Dealing with unknown combinations is the subject of PCA

(Principal Component Analysis) and ICA (Independent Component Analysis).

Of course, redundancy in measurements can also help when some sensors give

no or meaningless information, when they break down, or simply when the

combinations are unknown (in other words when the submanifold close to the data

is unknown).

As already mentioned, our goal will be to reduce the dimension of data as much as

possible before further processing. But a "blind" reduction must only be

considered after all information about the problem has been taken into account! It

must be clear that in the context of nonlinear data processing, no single step in the

processing will be easy or straightforward. Each step will involve difficult

parameter adjustments, questionable choices of a quality criterion, and numerical

pitfalls. Any "easy" way of transforming the information into a more tractable form

is thus welcome!

30 Chapter 2. High-dimensional data

x quantity
1

x quantity
2

A

C

B

Figure 11: Three sensors A, B and C measuring two unknown quantities x1 and x2. The

coloured area in blue shows the uncertainty on the measured quantities with two sensors,

and the coloured area in red with three sensors (see text).

The next step after having considered all known structural information on the data

is a "blind" reduction of the dimension of the space. Blind means that we make

the hypothesis that data are situated near a submanifold, but that we have no idea

about the dimension of this manifold nor a fortiori about its location and shape.

For most dimension reduction techniques, we will need to estimate first the

dimension of the manifold that will be used to project the data. This dimension is

usually referred to as the intrinsic dimension of the data.

2.5 Intrinsic dimension

Without any idea about the shape of a submanifold, the only way to estimate its

dimension is to use the data themselves rather than any hardly measurable

property of the dataset (for example the number of significant eigenvalues of the

data covariance matrix as used in PCA). When looking at the 3-D distribution in

Figure 12, we are convinced that the intrinsic dimensionality of the data is two. An

intuitive view of the dimensionality could be the number of degrees of freedom

necessary to describe the data if curvilinear axes could be found.

 Chapter 2. High-dimensional data 31

Figure 12: Horseshoe 3-D distribution with intrinsic dimension equal to 2.

The following paragraphs present four ways to estimate the intrinsic dimension of

a dataset. It is important to notice that the intrinsic dimensionality is and must

remain a local concept: in most distributions, it happens that different clusters of

points have strongly different intrinsic dimensions (imagine for example two 3-D

spheres connected by a rope in a 3-D space).

2.5.1 Local PCA

Principal Component Analysis is a linear projection method (see section 4.2). Its

purpose is to project a dataset on successive axes chosen in such a way that the

variance of the projected points is maximized (or equivalently in such a way that

the projection error is minimized). A useful feature of PCA is that the percentage

of the initial variance of points kept by the projection is easily measured by the

normalized sum of the eigenvalues of the covariance matrix associated to the

projection axes (these axes are the eigenvectors of the same matrix).

For example, when a set of 3-D points situated near or on a plane is projected on

the two first axes found by the PCA method, nearly 100% of the variance will be

kept. This will be proven by the fact that the third eigenvalue of the covariance

matrix is negligible compared to the two first eigenvalues; the conclusion will be

that two coordinates are sufficient to describe the data, therefore that the intrinsic

dimension of the dataset is two.

The drawback of PCA is however that it is a linear method. In other words, the

above conclusion can easily be drawn if the dataset is situated near a linear

submanifold of the data space, but not if the submanifold is nonlinear as illustrated

in Figure 12. However, since the intrinsic dimension must be considered locally

(see previous section), it is possible to perform local PCA [Karhunen 99] in small

regions of the space, and to deduce the local dimension according to the ratio of

32 Chapter 2. High-dimensional data

eigenvalues as described above. The main limitation of this method is its

computational load: each local PCA requires the inversion (or the diagonalisation)

of a local covariance matrix!

2.5.2 Box counting

Another way to estimate the local dimension of a dataset is to recall that the

volume of a d-dimensional cube is proportional to r
d
, where r is edge of the cube.

If we can make the hypothesis that the local density of points is constant over

regions of "sufficient" size, the number of points contained in such a cube will be

proportional to r
p
 where p is the intrinsic dimensionality. Imagine for example a 2-

D surface in a 3-D space: any 3-D cube of increasing edge will contain a number

of points growing with the square of the edge length, provided that the intersection

of the cube with the distribution is approximately plane. A graph of the logarithm

of the number of points contained in such a cube versus the logarithm of its edge

length will thus have a slope equal to the local intrinsic dimensionality.

The estimation of the local dimensionality at each sample of the input space

obviously requires the computation of the mutual distance between any pair of

points, which is computationally cumbersome when the dataset is large.

Conversely, when the dataset is small, the condition of constant density over

"sufficiently large" regions of the space is seldom achieved.

An easier method to implement is the so-called box-counting method [Demartines

94], based on the following principle. The d-dimensional input space is divided

into d-boxes of decreasing size. When the size of the box will be small compared

to distance between neighbouring points in the dataset, the number of non-empty

boxes will be proportional to r
 -p
 where r is the length of an edge. For example, the

number of boxes intersecting a 1-D string in a 3-D space is roughly equal to the

length of the string divided by r, while the number of boxes intersecting a 2-D

surface in a 3-D space is roughly equal to the area of the surface divided by r
2
. A

graph of the logarithm of the number of non-empty boxes versus the logarithm of

the inverse of r will thus have a slope equal to the intrinsic dimensionality.

The Grassberger-Procaccia method [Grassberger 83] is similar to the box-counting

procedure while different in its implementation. In the Grassberger-Procaccia

method, all distances between any pair of points are computed. The method then

leads to a global intrinsic dimensionality (instead of a local one). However, the

advantage is that N points give N(N-1)/2 mutual distances, so that the number of

points necessary to have an acceptable estimation of the intrinsic dimension is

lower than in the box-counting method.

While the box-counting method is probably more convenient to implement than

the Grassberger-Procaccia one, it suffers from two drawbacks in practice. First,

when the intrinsic dimension is smaller than the dimension of the space (which is

 Chapter 2. High-dimensional data 33

usually the case when the goal is to estimate the intrinsic dimension!), the number

of empty boxes dramatically increases, leading to an inefficient computational

load. Secondly, the local character of the intrinsic dimension is only preserved

when the largest of the boxes considered in the method is small enough to keep

the constant density hypothesis valid (this makes the first drawback even worse).

Figure 13 shows the box-counting method applied to the intrinsic dimension

estimation of a 1-D string in a 2-D space (from [Demartines 94]).

r = 1/2 N = 3 r = 1/4 N = 8 r = 1/8 N = 18 r = 1/16 N = 32

0
1 2 3 4

5

1

2

3

4

0

log(N)

log(1/r)

slope = 1

Figure 13: intrinsic dimension estimation of a 1-D string in a 2-D space by the box-counting

method (from [Demartines 94]).

2.5.3 A posteriori dimension estimation

We consider a different way to estimate the intrinsic dimension of a dataset. In

most situations, the information about the intrinsic dimension is required for a

further projection of the data space onto a smaller dimensional one. Contrary to

PCA, nonlinear projection methods require determining the dimension of the

projection space before computing the projection itself.

A simple idea is then to try the projection for several dimensions of the projection

space, and to evaluate the results. Projections onto spaces of higher dimension

than the intrinsic one will be "good", in the sense that the projection will be nearly

bijective. Projections onto space of smaller dimension than the intrinsic one will

be "bad", in the sense that points far from each other in the input space will be

eventually projected to the same or similar locations in the projection space.

34 Chapter 2. High-dimensional data

This method presents two major difficulties. First, it is clear that it will be

computationally intensive, since the projection method itself must be considered

for several dimensions of the projection space, rather than once. Secondly, an

appropriate criterion must be defined to evaluate the quality of the projection;

furthermore, even with an adequate criterion, the limit between "good" and "bad"

projections may be difficult to set in practical situations.

Nevertheless, it has a strong advantage. As written above, the knowledge of the

intrinsic dimension is often a prerequisite for a further projection of the data.

Linking the measure of the intrinsic dimension to the projection makes sure that

the right dimension measure is evaluated (we remind that the concept of intrinsic

dimension is related to its definition and the way to evaluate it).

This method to evaluate the intrinsic dimension of a dataset can be based on any

projection method. The following examples are further detailed in Chapter 4,

dealing with dimension reduction through non-linear projections. Indeed the same

methods are used; in Chapter 4, the result of the projection is looked for, while the

interest here is to determine which is the lower dimension of the projection space

leading to a "good" projection.

A first example is Kohonens' self-organizing maps [Kohonen 95]. A Kohonen map

is a vector quantization algorithm with a supplementary feature: each centroid

(codeword) of the quantization is labeled on a 2-D (usually) grid. The purpose of

this feature is a topological property: after convergence of the so-called Kohonen

algorithm, two close points from the initial distribution will be projected on either

the same centroid (as in classical vector quantization), either on two different

centroids which are close on the 2-D grid. Besides advantages concerning the

speed of convergence compared to classical adaptive VQ [de Bodt 99], the

Kohonen algorithm can be used efficiently in various applications as for instance in

image compression [Amerijckx 98].

Kohonen maps may be seen as a projection method, if the projection space is

taken as the space of indexes on the grid. The difficulty in using Kohonen maps

for nonlinear projection comes from the fact that there is no good criterion that

measures both the quality of quantization and the topological property described

above. Any such criterion will always result in a compromise between both

objectives that must be considered together in the case of nonlinear projection.

Furthermore, Kohonen maps are widely used with 2-D grids and sometimes with 1-

D or 3-D meshes, but rarely with grids of dimension greater than three. This

severely restricts the use of Kohonen maps in the context of nonlinear projection.

Another class of algorithms for nonlinear projection is based on Sammon's

mapping [Sammon 69] and MDS (Multi-Dimensional Scaling). Unlike Kohonen

maps where the inherent vector quantization also reduces the number of vectors

in the dataset after projection, Sammon's mapping projects the N d-dimensional

samples of a database on N p-dimensional points (with p < d), using a pairwise

distance criterion: the distance between two points after projection must be made

 Chapter 2. High-dimensional data 35

equal (as much as possible) to the distance between the two corresponding

samples in the original database. The CCA (Curvilinear Component Analysis)

[Demartines 97] that will be detailed in a following chapter is a powerful extension

of Sammon's mapping. In our context of intrinsic dimension estimation, CCA has

the advantage that the quality of projection is directly measured by the criterion

minimized by the algorithm, i.e. a (possibly weighted) sum of errors defined as the

difference between a distance in the original space and the corresponding distance

after projection.

Whether we use Kohonen maps, Sammon's mapping, CCA or any other algorithm

for nonlinear projection, determining the intrinsic dimension of a set of points by

trial and error is of course computationally heavy. Nevertheless, it must be

reminded that the intrinsic dimension estimation is usually required for a further

processing; there is nothing more natural than to use this further processing as a

measure of the quality of estimation, rather than any other less adequate measure!

This method has been applied to the detection of the number of independent

signals in mixtures before blind source separation [Donckers 99]; Figure 14 shows

the projection error (in logarithmic scale) versus the dimension of the projection

space, for a mixture of two signals as detailed in [Donckers 99]. The lower

dimension leading to a minimum of the projection error is taken as the intrinsic

dimension; this dimension is equal to the number (two) of independent signals.

-20

-15

-10

-5

0

5

0 1 2 3 4

Figure 14: logarithm of the projection error versus the intrinsic dimension of data, in a

source separation application [Donckers 99].

2.5.4 Limitations to the concept of intrinsic dimension

While the concept of intrinsic dimension is of great interest and practical use in

adaptive and learning methods, all methods to estimate this dimension suffer from

the same drawback which can be summarized as follows: one never has enough

samples to be confident in the intrinsic dimension estimation...

36 Chapter 2. High-dimensional data

The definition itself of intrinsic dimension has been purposely kept vague: while all

methods presented above are of course linked [Hentschel 83], there is no

guarantee that two methods will give the same result on the same datasets.

Taking the "right" slope in Figure 13 can already be difficult and subject to

subjectivity.

But even if the definition of the intrinsic dimension and the way to estimate it are

clear enough, the limited size of the dataset can be a problem. It is clear from the

dataset in Figure 12 that its intrinsic dimension is equal to two. This intuitive view

comes from the fact that we are looking at the distribution under a correct "scale"

(looking to the same distribution from too far would make us see a point, while

looking from too close would make us see a 3-D set of points, the third dimension

being the thickness of the surface). The estimation of the intrinsic dimension of

this dataset, through the box-counting method for example, requires the use of

boxes whose size is adapted to the dataset, i.e. simultaneously much smaller than

the size of the cube embedding the dataset, and much larger than the thickness of

the surface. While these two inequalities can easily be verified in the example of

Figure 12, this could become less obvious in real-world examples. The problem is

made worse in higher dimensions (the number of boxes necessary for a good

estimation grows exponentially with the dimension of the space). We insist on the

fact that these problems are related to the data themselves, much more than to

the estimation method. They make thus the a posteriori estimation of the intrinsic

dimension a probably better candidate than other methods, since it is more

adapted to what will be subsequently done with the data.

2.6 Conclusion

This chapter presents a set of known issues related to data in high-dimensional

spaces. It shows through examples why the intuition we may have on examples in

dimension 2 and 3 cannot be transposed to higher dimensional spaces. This

chapter also defines the "empty space phenomenon", i.e. the fact that the number

of data available in real applications is never sufficient for learning, at least in

theory.

For these reasons, many data analysis tools based on learning mechanisms may

fail with high-dimensional data. However, data represented in high-dimensional

spaces do not necessarily fill the whole space. If they are located near a

submanifold, a convenient way to bypass some of the problems is to identify the

dimension of the submanifold (the intrinsic dimension of the dataset, introduced in

this chapter), and to project the data in a lower dimensional space. If such

projection is not possible, one has to develop learning methods dealing with high-

dimensional data. These two possibilities are discussed in chapters 4 and 3,

respectively.

Chapter 3

Local learning

3.1 Introduction

Learning is the way to adapt parameters in a model, in function of known

examples. Learning is the term used in the neural network community, while

researchers in identification speak about estimation.

The literature often uses the term "local learning" for methods using combinations

of local functions, as opposed to combinations of functions which span the whole

input space. For example, RBFN (Radial-Basis Functions) networks use Gaussian

functions which are considered as local since they rapidly vanish when the

distance from their centres increases; RBFN networks are referred to as local. On

the contrary, MLP (Multi-Layer Perceptrons) networks use sigmoid functions or

hyperbolic tangents, which never vanish; MLP are referred to as global.

There is a tradition in the literature to consider that local models are less adapted

to large-dimensional spaces than global ones. The reason for this is the empty

space phenomenon. It has been shown intuitively in the previous chapter that the

number of samples required for learning grows exponentially with the dimension of

the space. This corresponds to our intuitive view of "filling" a space with local

functions like Gaussian ones: if it is assumed that a Gaussian function

corresponds to a fixed volume in the space, "filling" a distribution means to

juxtapose a number of Gaussian functions proportional to the volume spanned by

the distribution.

On the contrary, there is also a tradition in the literature to consider that global

models do not have this limitation. Sigmoids (for example) span the whole input

space, so it is assumed that a lower number of sigmoids is needed to fill the

volume spanned by a distribution. We are convinced that this view of the problem

is not correct; the following paragraphs explain three arguments in this direction.

First, it must be reminded that neural networks are interpolation tools, aimed to

generalize information gathered on known data to other locations in the space.

38 Chapter 3. Local learning

Interpolation means that we must have sufficient information in the surroundings

of a point in order to interpolate at that point. Look for example at Figure 15. Both

the plain and dashed lines are good approximators (interpolators) of the learning

data (8 markers on the figure), while they are based on different assumptions

(models) on the data. However, despite the fact that learning data range from

x = 0.5 to x = 1.7, the plain and dashed lines give very different approximations

around the value x = 1; in this case, we speak about extrapolation instead of

interpolation. Of course, the example in Figure 15 is obvious, and should not even

be commented. Nevertheless, we remind that our point is to show the difficulties

of learning in high-dimensional spaces. To imagine how a distribution looks in

high dimension, and in particular if the space is "filled" with data or not, is not

obvious at all. Filling the space is related both to the density of points in the

distribution, and to its convexity. In most situations, it is quite impossible to

appreciate if we have to speak about interpolation or extrapolation.

0

1

2

0 1 2

Figure 15: interpolation when the distribution of data is not convex. Plain and dashed lines

are good interpolators of learning points, but extrapolate differently around x = 1.

Having this in mind, it is now clear that interpolation can be achieved only in

regions of the space where there are "enough" data to interpolate; the words

"richness of data" are sometimes used to define this concept. Even if the

approximation function itself spans the whole space (for example in the case of

sigmoids), interpolation has no sense in empty regions. The argument that

sigmoids span a larger region than Gaussian functions is thus meaningless.

Furthermore, the "lack of response" (more precisely outputs near to zero) of

combinations of local functions in empty regions of the space could be used to

appreciate the fact that there is not enough data to interpolate correctly.

The second argument is better explained by simple graphs. It must be reminded

that neural network approximators, like MLP and RBFN, work by fitting a

combination of sigmoid-like or Gaussian functions to the data to be approximated.

Let us consider for simplicity that these combinations are linear. Figure 16 shows

that the simple sum of two sigmoids looks like a Gaussian (weights, i.e. multiplying

coefficients of the sigmoid in the sum, and thresholds have been chosen

 Chapter 3. Local learning 39

appropriately). In most situations when using a MLP, a phenomenon similar to this

one will happen. Multiplying coefficients will adjust so that each region of the

space is approximated by a weighted sum of a few basis functions (sigmoids).

Naturally, since a sigmoid spans the whole space, the sigmoids used in the

approximation in a region of the space will influence the approximation function in

other regions. Nevertheless, another sigmoid easily cancels this influence, and so

on.

Figure 16: a weighted sum of sigmoids looks like a Gaussian function.

This phenomenon is common in MLPs, and is easily observed in small dimension

with a limited number of sigmoids. The verification of this argument in large

dimension and in a wide range of applications is a topic for further work.

The third argument is in the same range as the second one. It seems "natural" to

think that approximation by a sum of local functions will lead to local functions

having approximately the same width (standard deviation in case of Gaussian

functions), and positive weights (multiplying factors); let us just imagine how a set

of Gaussian functions could be combined to fill a uniform distribution in a compact

region of the space. However, except in some specific situations, it can be shown

that this is not the case in practical applications. In particular, we can see that

weights are often set to negative values, but also that widths are sometimes set to

very large values (compared with the pairwise distance between adjacent kernels),

making the contribution of this kernel to the approximation function very flat.

Again, this argument reinforces the idea that local and global basis functions are

not much different when they are combined to contribute to an approximation

function.

In the following, we will use the terms "local learning" for learning methods, or

algorithms, using local functions, contrary to global ones like sigmoids. The spirit

of these methods is to learn locally, i.e. to restrain the local function to a small part

of the space. However, it must be kept in mind that even local methods may

contribute to global approximations, as shown above: our intuitive view of the

approximation of a global function by a smooth sum of positively weighted kernels

with similar widths may not be verified in most situations of standard complexity.

There exist many types of local learning methods. It is impossible (and out of the

40 Chapter 3. Local learning

scope of this text) to give an overview of local learning methods: the diversity of

goals (classification, approximation, dimension reduction, etc.) opens the way to a

vast number of methods, algorithms... and publications on the topic! In the

following, we will restrict ourselves to our own contributions to the vector

quantization (for classification), RBFN networks (for approximation) and probability

density estimations topics. Making the methods sound and effective in high-

dimensional spaces is the key common theme of this chapter.

The following of this chapter is organized as follows. Section 3.2 presents

conventional methods of vector quantization (VQ), used for classification tasks,

and some comments about their use in high-dimensional spaces; VQ methods

form the background of the two next sections. Section 3.3 presents original

developments concerning the use of local probability density estimation, in order

to build Bayesian classifiers. The probability density estimators are based on

vector quantization algorithms, making their use realistic in practical applications.

Section 3.4 presents original developments about Radial-Basis Function Networks

(RBFN), which are local learning methods for function approximation.

3.2 Classification by vector quantization

3.2.1 Principle of vector quantization

3.2.1.1 Definition of the problem

Vector quantization is a technique aimed at representing a multi-dimensional

distribution by a finite number of vectors. Shannon's theory shows that vector

quantization always outperforms a scalar quantization on each feature [Gersho

92].

Let us define the vector quantization problems as follows. The continuous

distribution X of points in a d-dimensional space is known through a finite set of

random samples {xi, i = 1...N}. We would like to quantize the distribution by

selecting another set of vectors {yj, j = 1...P} which are representative of the

original distribution X. Representative means here that when a sample xi from the

distribution is quantized (projected) to one of the yj vectors, a predefined error

function (for example the mean distance between xi and yi) is minimized. A vector

quantizer will thus be defined by:

• a set of d-dimensional so-called centroids {yj, j = 1...P}

• a quantization function q(xi) applying each sample xi of the distribution to one

of the centroids yi.

 Chapter 3. Local learning 41

Building a vector quantizer means to choose the set of centroids (the codebook)

and the quantization function q(xi). The latter is often chosen as the minimum

distance function defined as:

 () () () { }j\Pk,y,xy,xyxq kijiji ≤≤<= 1distdistif , (6)

where dist() is some predefined distance measure (Euclidean, Mahalanobis, etc.).

3.2.1.2 Batch method

The conventional method of choosing a codebook is to iterate the following

computations until convergence (after an initial codebook has been chosen):

• once a codebook is known, cut the data space into the Voronoi regions

associated to each of the centroids yj (the Voronoi regions are the regions of

the space that are closer, according to the selected distance measure, to yi

than to any other centroid);

• choose the new location of the centroid yj as the centre of gravity of the subset

of points xi belonging to the associated Voronoi region as computed in the first

step (choosing the centre of gravity minimizes the mean quadratic error due to

the quantization).

Iteration of these two steps converges to a solution. Nevertheless, the quality of

the quantizer, defined as the mean value of the projection error computed on all

samples xi, will strongly depend on the codebook chosen initially. Many methods

to initialize the codebook in the best possible way have been published in the

literature. Several names are given to this batch method, the most known ones

being the LBG (Linde, Buzo and Gray) algorithm and the Forgy algorithm.

3.2.1.3 On-line (stochastic) method

An alternative method to perform vector quantization is to use an adaptive (on-

line, or stochastic) method, known as (simple) competitive learning (SCL) (see for

example [Hertz 91]). SCL consists in adjusting the position of one of the centroids

after each presentation of a sample xi from the distribution. The cendroid yj

closest to the sample is moved according to

 ()jijj yxyy −α+← (7)

where α is the adaptation constant (between 0 and 1) which must satisfy the

Robbins-Monro [Robbins 51] conditions in order to guarantee convergence. Note

42 Chapter 3. Local learning

that mean convergence only is guaranteed, and that the number of points xi must

be finite (which is the case in data analysis).

There is no guarantee that SCL will converge to the same solution as the LBG

algorithm: it will depend on initial conditions because of local minima in the error

function. For the same reason, none of the two methods can be proven to perform

better than the other one in all situations. Most experiments however show that

the on-line version is less sensitive to initial conditions and escapes more easily

from local minima.

SCL is an advantageous substitute to LBG when an adaptive algorithm is

preferable, i.e. when the distribution of data is moving, or when the number of

samples in the distribution is too high to consider a global method as LBG (where

all samples must be considered at each iteration).

It must be mentioned that an intermediate version of the algorithm is also possible,

where one centroid is moved at each presentation of a new sample: the centroid

location is computed as the new centre of gravity of the Voronoi region including

the new sample.

3.2.2 Vector quantization as supervised classification

tool

Our concern here is to use vector quantization for classification problems.

Classification means to attribute a label to each sample, after having learned

which labels are attributed to known samples. Two methods, LVQ1 and LVQ2

(see for example [Kohonen 95]), are commonly used to solve classification tasks

with vector quantization algorithms (LVQ holds for Learning Vector Quantization).

The principle of these algorithms is, as in any classification method, to associate a

scalar class label to each sample xi and to each cendroid yj; this class label will be

noted ck (1 ≤ k ≤ K), so that each sample now consists in a so-called input-output

pair {xi, ck}.

Classification through vector quantization means to build a codebook in each class

k from the samples in the corresponding class. The number of centroids in each

of these codebooks is usually chosen according to the proportion of the number of

samples in the corresponding class. All centroids are then grouped in a single set,

and the space is divided into Voronoi regions according to this set. Finally, a class

is attributed to each Voronoi region according to the class of the associated

centroid.

Classification by means of vector quantization is attractive because of its

simplicity. The principle of LVQ1 [Kohonen 95] is to select the nearest centroid at

each presentation of a sample from the distribution. If the sample and the centroid

 Chapter 3. Local learning 43

have the same class, the centroid is moved in the direction of the sample

according to equation (7). If they are from different classes, the centroid is moved

in the opposite direction of the sample, using equation (7) where the plus sign is

replaced by a minus one.

Intuitively, LVQ1 will try to quantize each region of the space where samples of

one specific class are found by centroids of the same class. During the course of

the algorithm iterations, if a centroid is located in a region where most samples

belong to other classes, it will be moved away from this region. LVQ1 is thus a

vector quantization algorithm (with separate codebooks for each class), one of its

by-products being a classification of the space.

However, let us have a look to the simple classification problem in Figure 17. In

this example, the distribution from class 1 is uniform above the horizontal axis and

null beyond, while the distribution from class 2 is uniform (same density as class 1)

below the horizontal axis and null above. After a sufficient number of iterations of

the LVQ1 algorithm, centroids of the two classes (triangles for class 1 and bullets

for class 2) are placed more or less uniformly above and below the horizontal axis

respectively. Quantization of the two classes is thus successful. Nevertheless,

the broken solid line shown in the figure represents the set of boundaries between

Voronoi regions associated to centroids from different classes. This line is thus

the boundary between the two classes, i.e. the solution of the classification

problem. It is easily seen that only a few centroids participate to the definition of

this boundary.

Figure 17: LVQ1 learning performed on two non-overlapping uniform distributions

(respectively above and below the horizontal axis). Only a few centroids participate to the

classification boundary.

Other algorithms were designed in order to make this boundary better approximate

the Bayes boundary between classes (the Bayes boundary is the optimal

separation when the number of misclassifications is taken as the error to be

minimized). LVQ2 [Kohonen 95] is one of these algorithms. With respect to the

44 Chapter 3. Local learning

more classical LVQ1, LVQ2 has the drawback that the convergence is extremely

slow. Furthermore, it has the same drawbacks as LVQ1 what concerns the

following.

3.2.3 Improvements on vector quantization and related

issues

3.2.3.1 Vector quantization for high-dimensional data

While the fact that the proportion of centroids participating to the boundary
between classes is low, is easy to understand, its importance is usually
underestimated, especially in high-dimensional spaces. Figure 17 illustrates that
the proportion of centroids participating to the boundary in a generic classification
problem is low. Moreover, recalling our previous results about the exponentially
increasing number of points necessary for learning in high-dimensional spaces, we
may intuitively expect that the number of centroids necessary for the definition of
a boundary will also increase exponentially with the space dimension. These two
contradictory arguments prove sufficiently that vector quantization is not a
powerful way to solve classification problems in high-dimensional spaces. Another
view of the same problem is that one easily understands that the dimension of the
border is d-1 for a d-dimensional task; building a border thus means to "fill" a

space of dimension d-1, confirming the exponential increase in the number of

necessary centroids.

Despite this fact, vector quantization is often used, even in high dimensional
spaces, to perform classification (see for example [Gonzales 97]). For this reason,
we tried to improve the performances of vector quantization algorithms used in
classification first by concentrating the centroids near the boundaries [Verleysen
93-2], and secondly by improving the definition of the boundary between regions
associated to centroids from different classes [Verleysen 93]; the latter consists in
choosing a better separation than the Voronoi boundary between centroids,
making some hypotheses on the unknown distribution of samples. Because of the
above-described limitations of the whole approach, these improvements are not
detailed here; the reader is invited to consult references [Verleysen 93] and
[Verleysen 93-2] for more details.

A better estimation of the unknown probability densities is the key idea behind this
work, the reason being that Bayes boudaries can be estimated once the probability
densities of each class are known. The same idea will be used in RBFN networks
in a further section.

The vector quantization principles have also been applied to the RCE ("Restricted
Coulomb Energy") algorithm. RCE [Reilly 82] is a simplistic learning algorithm for
classification problems, which uses the following scheme. RCE uses vectors

 Chapter 3. Local learning 45

assigned to each of the classes. Each of these vectors (we will call them centroids
by analogy to vector quantization) is the centre of an hypersphere, assumed to
contain samples from the corresponding class only. When a new sample is
presented to the method, it is verified if it belongs to one or several of the already
existing hyperspheres. If it belongs only to hypersphere(s) of the correct class, the
sample is correctly classified. If it belongs to hypersphere(s) of a wrong class,
their radius is decreased sufficiently so that they do not contain the sample
anymore. If it does not belong to at least one hypersphere of the correct class, a
new hypershpere is created centred on the sample, with a predefined radius.
Iteration of the RCE algorithm on several presentations of the whole set of
samples leads to convergence, i.e. to 100% correct classification of the dataset.
Unfortunately, the RCE algorithm has several drawbacks, which prevent it from a
successful use in high-dimensional spaces. First, the number of centroids that
must be created will again increase exponentially with the dimension of the space.
Secondly, the final classifier is highly dependent on the order of presentation of
the samples. Last, but not least, the RCE algorithm will lead to very small
hyperspheres in the regions where the distributions from several classes overlap,
leading to poor generalization on samples not contained in the training set. The
problem is that these regions are precisely those where it is difficult (and thus
interesting) to know the optimal boundary! Despite its strong shortcomings, the
RCE algorithm is used in commercial packages implementing "neural networks".
Some scepticism about the whole ANN field probably comes from the blind use of
such packages, without information about their limitations!

The RCE algorithm has been improved [Blayo 92, Verleysen 92] by moving the
centroids at each iteration according to the SCL and LVQ principles. Again, a
better approximation of the probability densities is the underlying objective. This
improvement diminishes the shortcomings of the RCE method. But as in the
previous situation, it must be reminded that average-performance algorithms lead
to poor solutions when used in high-dimensional spaces, where the problems
related to the dimension itself are added to the limitations of the methods.

A more interesting use of the density estimation principle for classification will be
illustrated in the following section (IRVQ method). The principle of this method is
to go straight to the estimation of the densities in each class, and then to apply the
Bayes rule in order to find the most probable class at each location in the space.
IRVQ combines the theoretical soundness of kernel estimators with the
advantages of vector quantization in terms of number of computations and
smoothness of the classification boundary.

3.2.3.2 Density of centroids

A last comment concerning vector quantization concerns the underlying probability
density of centroids. When using a vector quantization method, samples xi are

assumed to be randomly drawn from an unknown distribution f. The real objective

of vector quantization is to quantize the distribution f rather than the samples.

46 Chapter 3. Local learning

Nevertheless, since the distribution is unknown, the available information, i.e. the
finite set of samples, is used.

This question is of particular importance when using vector quantization as a way
to locate local functions in the space, as for example in the probability density
estimation described in the next section. Indeed the real objective is to locate
local kernels (as Gaussian ones) in the space, according to the probability desnity
of the samples (more local kernels in regions where there are more samples, in
order to reach better approximation levels). As vector quantization is used, one
may expect that the VQ process will lead to a distribution of centroids in
accordance (i.e. equal) to the distribution of samples. The following paragraphs
are intended to comment this question.

Centroids yj (1 ≤ j ≤ P} after quantization are also vectors. While they are not

random (they are the result of a deterministic process), one could be interested in
knowing from which distribution we could have randomly selected P samples and

obtained a similar set of vectors. We will call this distribution the underlying
distribution of centroids g.

When using vector quantization in applications, as in image compression for
example, it is implicitly assumed that distributions f and g are equal. This also

corresponds to our intuitive view of the fact that the set of centroids is the best set
(of size P) representing the set of samples.

However many authors ([Gersho 79], [Ritter 86], [Kohonen 98], [Fort 00], [Graf
00]) give arguments that show that the vector quantization which leads to a
minimization of the quantization error corresponds to a discrete distribution which
converges asymptotically (when the number of centroids goes to infinity) to a
distribution with density :

 () ()α= xkfxg (8)

where k is a constant and α = d/(d+2). α is called the magnification factor and is

equal to 1/3 in the one-dimensional case.

Many of these arguments find their origin in a publication by Zador [82] which has
been badly understood by many authors, but recent work seems to prove that
equation (8) is valid anyway. In [de Bodt 99] – annex A, we developed
experimental arguments in dimension 1 in favour of this thesis.

It must be mentioned however that when the goal is to find a set of centroids
verifying f(x) = g(x), weighting the centroids by the probabilities of finding a sample

in their associated Voronoi regions solves the problem [Pagès 97, de Bodt 99].
Moreover, in our context of data analysis in high-dimensional spaces, the
magnification factor may be rapidly assimilated to 1 when the dimension of the

 Chapter 3. Local learning 47

space is sufficiently large, proving that, unlike many other difficulties, this one
disappears with high-dimensional problems.

3.2.4 Further topics on vector quantization

Vector quantization is a research field in itself. It concerns so many methods and
so many applications that it would be impossible to summarize here what has to
be done as further work. Nevertheless, we concentrate here on vector
quantization to be used in further algorithms (see next sections), as a convenient
way to locate the local kernels used for approximation. In that spirit, relying on
very accurate positions of centroids, or on strict equality between distributions of
samples and of centroids, is not so important. This is why we only sketched the
concepts here, without going into further details that would be irrelevant in our
context.

Nevertheless, relying on stable VQ methods that may be used in high-dimensional
context is important. Our feeling is that much has still to be studied in that
context. Even if ultimate performances are not looked for, current vector
quantization methods are extremely sensitive to initial conditions. While this
problem can be compensated by numerous iterations in small-dimensional
problems, this becomes impossible in higher dimensions. As a result, the
reliability of vector quantization in high-dimensional spaces is questionable.
Solving this shortcoming is not an easy thing; rather, we believe that solutions
should be looked for in the direction of algorithms using VQ as part of them, but
for which the performances are not determining. The algorithms developed in the
following of this chapter are attempts in this direction. Nevertheless, we believe
that it would be worth to study more quantitatively the performances of VQ
methods in high-dimensional spaces; surprisingly, a serious study about this topic
does not seem to exist in the literature, at least to our knowledge.

3.3 Bayesian classification by probability

density estimation

3.3.1 Principle of Bayesian classifiers

In multi-dimensional classification tasks, the challenge is to attribute a class label
to a vector presented to the system, which previously "learned'' the spatial
distribution of each class, on a set of training vectors. The Bayesian classification
theory provides an ideal method for classification of data, once the a priori
probabilities of the classes and their probability density functions are known. The
principle of Parzen windows [Cacoullos 66] or kernel estimators is to estimate the
probability density functions with the learning vectors, and then to use these

48 Chapter 3. Local learning

estimates in the Bayes law.

Parzen windows however require a computational load that is unrealistic in
practical situations (it requires among others the evaluation of a number of
Gaussian functions equal to the number of vectors in the learning set); we present
here a method to drastically reduce the number of operations involved in Bayesian
classification, by using a vector quantization technique to replace the initial
learning set by another one with a strongly reduced number of samples, while
minimizing the approximation error on the probability density functions. This
method allows considering favourably the use of kernel estimators in realistic
classification tasks.

Assume the problem consists in classifying an observed vector x of R
d
 among K

classes. Assume that x is random and that its d components admit a joint

probability density function px(x|ck) in class ck. If all wrong decisions are given the

same penalty, the Bayes law may be expressed as:

 () () ()
() ()� =

=
K

l llx

kkx

k

cPcxp

cPcxp
xcP

1

 (9)

where P(ck) is the a priori probability of class ck and P(ck|x) the probability that
vector x belongs to class ck. The Bayesian decision to select the most probable

class is then:

 () (){ }llx
Kli

k cPcxpkcx
≤≤

=⇔∈ maxArgdecide . (10)

Using equation (9) necessitates the knowledge of the a priori probabilities P(ck) of

the classes and of the class-dependent probability densities px(x|ck). These values

and functions are never known; the only information we have at our disposal is the

set of samples {xi, i = 1...N} and their associated classes {ci, i = 1...N}.

An unbiased estimation of the a priori probabilities P(ck) of the classes is the ratio

between the number of samples belonging to class i and the total number N of

samples.

A kernel density estimator is a consistent estimate of a multivariate probability

density function [Cacoullos 66, Comon 95]. Using such estimator, the probability

density in each class ck can be estimated by

 ()
()
�

=
��
�

�
��
�

� −
=

ki cxc i

i

k

k
h

xx
K

N
cxp̂

1
 (11)

 Chapter 3. Local learning 49

where the sum over i is taken for each sample belonging to class ck, and Nk is the

number of terms in this sum i.e. the number of samples in class k.. The parameter

hi is the width factor of the kernel K. Note that, according to the usage in the

literature, the notation K is used here to define the kernel functions, even if the

same letter K is used to define the number of classes in a classification problem.

The estimator is said to be variable if h depends of i and fixed otherwise. Variable

estimators provide better estimates, but it is very difficult to compute the optimal

value of hi.

Because of their nice properties (smoothness, continuity, etc.) Gaussian kernels

are often used:

() �
�
�

�

�

�
�
�

�

�

�
�

�

�

�
�

�

� −

π
=��

�

�
��
�

� −
2

2

1
-exp

2

1

i

i

d

i
i

i

h

xx

h
h

xx
K . (12)

Using equation (10) with the estimate provided by (11) leads to a classifier which

requires an extremely light computational cost during learning (a simple storage of

the training patterns) and very good performances. Unfortunately, if large training

sets are available, the required memory size and the computational cost of the

classification become incompatible with real time classification tasks. Another

drawback seldom mentioned in the literature is the fact that the density estimator

(11) cannot be considered as smooth in case of a restricted number of samples in

the training set: the estimate will be accurate near the samples, but less and less

accurate at locations of the space further from the samples. Since equation (10)

precisely requires the accurate estimation of the probability densities at other

locations than those of the learning samples, performances can drastically

decrease when the size of the learning set is not "sufficient".

We do not intend to go here into details on the choice of the width factors h(i). We

must mention that theoretical results on those factors are only available in

asymptotic (unrealistic) cases, while experimentation and ad-hoc a priori choices

(using knowledge on the data) is the rule in practical situations. However, it can

be shown experimentally that accurate values are not mandatory when the number

of samples xi is high enough; nevertheless, the necessity for adequate values

grows as this number descreases.

The purpose of the suboptimal Bayesian classifier presented below is to drastically

reduce the number Nk of kernels in each class, in order to use equation (11) in

realistic situations, avoiding to reduce the quality of the density estimation

approximation.

50 Chapter 3. Local learning

3.3.2 Improved practicability by vector quantization:
IRVQ algorithm

Kernel density estimators using equation (11) are difficult to use for two reasons.

First, they imply the use of as many kernels as there are samples, which can be

computationally too intensive. Secondly, non-asymptotic laws to adjust the size of

the local kernels are difficult to find. In the following, we develop an original

method to improve the practicability of kernel density estimation, through the use

of vector quantization on the samples.

The principle of the proposed method is to split the portion of the space where

vectors can be found in clusters. A vector quantization technique will be used to

find the clusters and their centres of gravity, and it will be assumed that the error

generated by the vector quantization will be sufficiently small so that the true

probability density inside each cluster can be approximated by a constant. In the

portions of the space where the vector quantization will lead to small clusters, this

last assumption will be verified. On the other side, in the portions of the space

where the clusters are large, this means that the number of learning vectors which

lead to these clusters is small, and hence that an error in the approximation of the

density function is of less importance.

Other algorithms exist to reduce the size of the learning set before using equation

(11). The first one [Fukunaga 89] extracts a reduced set from the original one in

an optimal way to reduce the differences between the probability density estimate

before and after this reduction; this method is however heavy from a

computational point-of-view, and leads to unsatisfactory results for high reduction

rates [Xie93]. Another algorithm [Comon92] uses a vector quantization technique

to reduce the size of the learning set, as does our algorithm, but is based on a

Gaussian hypothesis of distribution inside each cluster, instead of a constant one

for ours; the Gaussian hypothesis is more appropriate when the vector

quantization leads to clusters which represent the modes of the distribution, which

is the case when the number of clusters is much smaller than in our hypotheses.

3.3.2.1 Vector quantization

Reducing the size of the learning set means substituting the training set by a

reduced set, keeping as much information as possible. This is precisely the aim of

vector quantization techniques, as for example the SCL method described above.

In this context however, we have to keep in mind that a class attribute is

associated to each sample in the learning set. Instead of performing vector

quantization on the whole learning set, we will perform it separately on each

subset of the initial learning set corresponding to samples belonging to a specific

class. In other terms, suppose that the initial learning set A = {xi, i = 1...N} can be

divided into subsets Ak = {xi | c(xi) = ck, i ∈ {1...N}}. We will perform vector

quantization separately on each subset Ak

to obtain sets of centroids denoted by

 Chapter 3. Local learning 51

Bk. In order to keep the information on the a priori probabilities of the classes, the

number of centroids in Bk is chosen to be proportional to the number of samples in

Ak, the total number of centroids being a parameter of the model. SCL (equation

7) is used here as vector quantizer, but any other vector quantization method

could be used.

The purpose of this vector quantization in our problem of estimation of probability

densities for Bayesian classification is to use the reduced sets Bk instead of the

original sets Ak for the estimations of the probability densities (11). Sets Bk are

representative of the original sets Ak when the dimension of the space is high, as

detailed in the section about the density of centroids. As mentioned above, the

purpose of this is not only to decrease the computational load of the method, but

also to increase the smoothness of the approximator. The smoothness is

controlled by a parameter: the total number of centroids. There is however no

direct way to choose this number of centroids according to a desired smoothness;

the only way is to measure this smoothness a posteriori.

Once the sets of centroids have been designed, the question on how to choose the

width factors remains. It was mentioned above that accurate values for the width

factors were not mandatory if the number of samples xi was large enough. In the

current situation however, the number of samples is replaced by the number of

centroids, of course significantly lower. An adequate method to estimate the width

of the Gaussian functions centred on the centroids is thus required. Figure 18

[Specht 90] shows the approximation of a probability density through Gaussian

kernels, with various widths. It is clear that choosing a too small width leads to

overfitting (left figure), while choosing a too large width leads to oversmoothing.

Figure 18: approximation of probability densities through kernels with different widths.

From [Specht 90].

52 Chapter 3. Local learning

3.3.2.2 Width factors

During the adaptation process (7), it is possible to keep track of the mean distance

between a pattern xi and its closest centroid yj, by affixing an inertia coefficient ij to

each centroid. This inertia coefficient is randomly initialized to a small value and

then adapted at the same time as the centroid locations (7) according to

 �
�

�
�
�

� −−α+← jjijj iyxii
2

. (13)

This equation means that the inertia coefficient ij is adapted at each presentation

of a pattern xi to a convex combination between the actual value of ij and the norm

of the distance between xi and the closest centroid yj. After learning, parameters ij

will converge to the inertia of points in the clusters associated to yj. Note that

convergence can be easily proven if α remains constant. We will use this inertia

coefficient ij for the computation of the optimal width factor associated to the

kernel centreed on yj in the reduced classifier.

Let us make now the main hypothesis of this estimation of width factors: we

consider that the size of the clusters is small enough to approximate the true

density px(x|ck) in any class k by a constant over two consecutive clusters.

Clusters are here defined as the sets of points nearest to their associated centroid

yj than from any other centroid yl (1 ≤ l ≤ K). Consecutive clusters are clusters
sharing a common border. This assumption is of course only an approximation,

but is not too restrictive when the true densities are smooth.

The purpose will then be to fix the width factors in order to have a constant

estimate of the probability densities over two consecutive clusters too. Let us first

examine the problem in dimension 1, with an estimate computed by the sum of

two kernels A and B (see Figure 19). In the following, we will omit indices over

classes and class-dependent notations (on probability densities). Indeed vector

quantization to obtain the sets of centroids Bk instead of the original sets Ak is

performed separately for each class. The probability density is thus also estimated

separately for each class.

 X Y Z

R

A B

Figure 19: sum of two Gaussian functions in dimension 1, and related notations.

 Chapter 3. Local learning 53

Using equation (12) for both kernels, the estimate of the probability density at

location X is given by

 ()
π

=
2

1

jh
Xp̂ (14)

if the contribution of kernel B is neglected at X (this is a second hypothesis aimed

to reduce the complexity of the computations). In the same way, the estimate of

the probability density at location Y is given by

 ()
��
�

�

�

��
�

�

� −
π

=
2

2

2

exp
2

2

jj h

R

h
Yp̂ (15)

where R is the distance between X and Y (2R is the distance between two

consecutive centroids). Width factors hj are assumed to be equal for this

computation. Making the estimates (14) and (15) of probability density at points X,

Y and Z to be equal leads then to

 jhR 2ln2= . (16)

A similar development may be done in dimension 2. In this case, we can consider

the approximation of probability density due to four Gaussian functions A, B, C

and D centreed on the four vertices of a square:

• at the location X of a vertex of the square,

• at the centre Y of the square, and

• at the midpoint Z of an edge of the square.

Keeping the distance between two centroids on an edge of the square being equal

to 2R, and neglecting the influence of kernels at a distance greater or equal to 2R,

we have respectively

 () ()22

1

π
=

jh

Xp̂ , (17)

54 Chapter 3. Local learning

 () () �
�

�

�

�
�

�

� −

π
=

2

2

2
exp

2

4

jj
h

R

h

Yp̂ , and (18)

 () () �
�

�

�

�
�

�

� −

π
=

2

2

2
2

exp

2

2

jj
h

R

h

Zp̂ . (19)

One can make the estimations (17), (18) and (19) to be equal, by setting the width

factor hj according to equation (16), which gives thus the same result as in

dimension 1. An identical development can be made in dimension 3, by

considering the influence of 8 Gaussian kernels located on the vertices of a cube,

respectively at the locations of these vertices, of the midpoint of any edge, of the

centre of a face, and of the centre of the cube. Again, the estimations of

probability densities will be equal if equation (16) is satisfied; it will also be the

case in dimension d greater than 3.

The last step is now to set the relation between the estimated inertia in each

cluster ij and the width of the cluster hj. For this purpose, we make the

supplementary hypothesis that, within a short volume in the d-dimensional space,

all centroids are equally spaced on a regular isotropic grid; this hypothesis is

similar to the one of a constant true density over consecutive clusters, since a

vector quantization applied to a constant distribution will lead to centroids on such

a regular isotropic grid. We can thus consider that a cluster associated to a

particular centroid will be a d-dimensional hypercube with edges of length 2R,

denoted by V. The inertia in such a cluster is

() 32

1
2

2 dR
dVyx

R
i

V jidj =−= � . (20)

Note that the hypercube assumption is not exactly true. Vector quantization in a 2-

dimensional space with a constant density will lead to hexagonal clusters and not

to square ones. The exact solution of this problem in dimension greater than 2 is

not known, but it has been verified experimentally that the error introduced by this

assumption is moderate in high dimension.

Combining equations (16) and (20) leads to a width factor hj given, in dimension d,

by

2ln2

3

d

i
h

j
j = . (21)

 Chapter 3. Local learning 55

Finally, the estimation of probability density in each class will be calculated

through equation (11), applied on a set of centroids fixed by (7), and the width of

the kernels being fixed by (21). Bayesian classification is then carried out based

on relation (10), where the probability densities are replaced by the above

estimates, and the a priori probabilities by percentage of occurrence of prototypes

xi in each class. This constitutes the IRVQ (Inertia-Rated Vector Quantization)

method.

3.3.2.3 Results

For illustration purposes, the IRVQ algorithm has been applied on two artificial

databases. Figure 20 shows the results of the IRVQ algorithm on these two

different two-class problems, the first one with normal distributions, and the second

one for uniform concentric circular distributions; centroids are represented with a

circle of radius hj.

Learnset Centroids

Learnset Centroids

Figure 20: centroids and their associated optimal width factors obtained by the IRVQ

algorithm for two different two-class 2-dimensional databases.

56 Chapter 3. Local learning

Results on a real database of preprocessed handwritten digits provided by ATT

Bell Laboratories are presented in [Voz 94] where it can be seen that the IRVQ

algorithm gives higher recognition rates than the best classifiers actually reported

on this database, while the computation cost is much lower.

3.3.3 Further research topics

The IRVQ method presented here seems to give excellent results, and to be a

good compromise between efficiency (percentage of correct classification) and

computational cost. Nevertheless, two aspects of this algorithm have still to be

examined.

First, several assumptions were made in the development of the algorithm. While

these assumptions seem natural and have been verified independently, it should

be checked if their joint influence has still a negligible impact on (21). Theoretical

proofs would be preferred, but seem difficult to develop in dimensions greater than

2, for example because even the exact solution of the quantization of a uniform

density is not known. Secondly, one could try to make the same development

without the hypothesis that the density over two consecutive clusters is constant.

Replacing it by a linear hypothesis seems feasible. These two aspects, together

with in-depth experimentation of the method in high dimension, are a topic for

further work.

Another question is related to our earlier discussion about non-intuitive

extrapolation of what is obvious in dimensions 1 and 2. For example, let us recall

Figure 9, showing the percentage of samples from a Gaussian distribution falling

closer to the centre than a specific distance. A Gaussian function in high-

dimension is thus not a function for which most of its integral is concentrated near

its centre. This may be seen as contradictory to our arguments in the

development of the IRVQ algorithm.

Part of the solution to this problem may be found in our work [Comon 94] about

the "Rough-Refined Estimator" (RRE). Without going into details, the principle of

this method is to consider shapes different from a Gaussian function, in high

dimensions. The general shape considered in the RRE method is given by

 () () �
�
��

�
� −=��

�

�
��
�

� − g
i

i
xxAB

ih

xx
K -exp . (22)

where g is a real number greater than 0.5 setting the rate at which the kernel

function drops off, and A and B are determined so as to have a unit sum of the

density. Using super-Gaussian kernels defined by equation (22) instead of

conventional Gaussian kernels is advantageous in high-dimensional settings.

Indeed, Figure 9 shows that Gaussian kernels are no more local functions in high-

 Chapter 3. Local learning 57

dimensional spaces (most of the points are not concentrated anymore around the

centre). Using kernels defined by equation (22) may remedy to this problem: a

proper choice of coefficient g may compensate for the distortion due to the

dimension, and thus make problems similar in small and high dimensional spaces.

The RRE method as it stands is difficult to use in high dimension, mainly for

convergence reasons. It assumes a first estimation of the density, from which the

width factors are derived analytically, under the assumption that the first estimate

is close from the final one. When this condition is not verified, the algorithm may

be hardly usable. Nevertheless, a way to explore is to combine the idea of a

different kernel as given in (22) with the IRVQ algorithm. Rather than estimating a

posteriori the parameters in equation (22) (using an estimate of the probability

density, which is the goal of the method), it could be possible to use an a priori

method, based on considerations on the shape of a (Gaussian or not) kernel in

high dimension. This is also a topic for further work.

3.4 Radial Basis Function Networks for

approximation

3.4.1 Principle of Radial Basis Function Networks

RBFN (Radial-Basis Function Networks) are known as local models, as opposed to

global models as MLP (Multi-Layer Perceptrons). RBFN use combinations of

radial (usually monotonically decreasing) functions, vanishing when the distance

from their centre increases; this justifies their name.

RBFN approximate functions. They differ from classification problems where the

class label is a discrete value. They also differ from the probability density

approximation problem. In function approximation, the problem is to approximate

in the best possible way targets, or outputs values, that are known for each input

data. Learning in function approximation is known as supervised, since a

supervisor measures in some way the quality of the approximation (usually by

means of the difference between the targets and the corresponding outputs of the

approximator). Let us also mention that classification problems were best solved

by focusing the attention (the performances) of the model to the borders between

classes, while approximation concerns the whole space, a priori without focusing

on a specific location.

However RBFN resemble density approximators in their structure: the standard

RBFN approximator uses linear combinations of Gaussian functions, as in the

kernel density approximators. Gaussian functions are however weighted in RBFN,

which is natural in case of supervised learning, while they are not weighted in

density approximator, since there is no target that can be used to optimise

58 Chapter 3. Local learning

weights. Let us mention however that learning classification tasks is also a

supervised process. For example in Bayesian classification, supervision takes

place when the data are segregated according to classes before being used for the

estimation of the probability density of each class; each of the density estimation is

unsupervised though.

3.4.2 Linear Radial Basis Function Networks

RBFN are often mentioned in the literature as linear models. Let us share this

view, at least for a few paragraphs... We will see in the following that RBFN can

become powerful models, if they are considered as nonlinear. In fact, RBFN are

linear with respect to some of their parameters, and nonlinear with respect to

others. Viewing RBFN as linear or nonlinear models depends on which

parameters are optimised during learning.

For the following discussion about "linear" RBFN, we will mainly follow Orr's

presentation [Orr 96].

3.4.2.1 Model

A linear model for a function y(x) takes the form

 () ()�
=

=
P

j
jj xKwxf

1

. (23)

The model f is expressed as a linear combination of a set of P fixed functions

(often called basis functions by analogy with the concept of a vector being

expressed as a linear combination of basis vectors). The choice of the character w

(weights) for the coefficients of the linear combinations reflects the commonly

admitted terminology in the neural network community.

The flexibility of f, its ability to fit many different functions, derives only from the

freedom to choose different values for the weights. The basis functions and any

parameters that they might contain are fixed. If this is not the case, if the basis

functions can change during the learning process, then the model is nonlinear.

Any set of functions can be used as the basis set although it helps, of course, if

they are well behaved (differentiable). However, models containing only basis

functions drawn from one particular class have a special interest. Classical

statistics abounds with linear models whose basis functions are polynomials

(Kj(x) = x
j
[Hlavackova 97], Taylor's expansions or variations on the theme).

Combinations of sinusoidal waves (Fourier series),

 Chapter 3. Local learning 59

 () ()
�
�
�

�
�
�
�

� θ−π
=

m

xj
sinxK

j
j

2
 (24)

are often used in signal processing applications. Logistic functions, of the form

 () ()01

1

jj
j

wxwexp
xK

−+
= (25)

are popular in artificial neural networks, particularly in multi-layer perceptrons

(MLPs).

Linear models are simpler to analyse mathematically. In particular, if supervised

learning problems are solved by least squares then it is possible to derive and

solve a set of linear equations for the optimal weight values implied by the training

set. The same does not apply for nonlinear models, such as MLPs, which require

iterative numerical procedures for their optimisation (the parameters wj are inside

the nonlinear function, hence prohibiting a direct computation).

3.4.2.2 Radial functions

Radial functions are a special class of function. Their characteristic feature is that

their response is a function of the distance from a central point (usually, a

monotonically decreasing function). The centre, the distance scale, and the

precise shape of the radial function are parameters of the model, all fixed if it is

linear.

A typical radial function is the Gaussian function

 ()
�
�
�

�

�

�
�
�

�

� −
−=

2

2

j

j
j

h

cx
expxK . (26)

Its parameters are its centre cj and its radius hj. Gaussians are not the only

possibility to radial functions. For example, any function monotonically decreasing

with the distance from a centre, as in equation (26), but with a different exponent

in the exponential, could be considered. Such functions will be discussed later.

Radial functions are simply a class of functions. In principle, they could be

employed in any kind of model (linear or nonlinear) and any kind of network

(single-layer or multi-layer). However, since Broomhead and Lowe's seminal

paper [Broomhead 88], radial basis function networks (RBFN) have traditionally

been associated with radial functions in a single-layer linear network as in equation

60 Chapter 3. Local learning

(23), and almost exclusively with Gaussian functions.

The reason for this is that linear single-layer networks such as those described by

(23) have the nice universal approximation property [Moody 89]. Shortly, this

means that, under soft mathematical conditions on the function to approximate,

RBFN networks so defined can approximate any function of any number of

variables on a compact, to any desired accuracy, provided that a sufficient number

of basis functions are incorporated in the model. Why thus considering networks

more complicated than (23), if this model is sufficient to have this property? The

answer is that the universal approximation property is of no interest in practical

situations: the number of basis functions has to be limited in order to ensure good

generalization, which is in contradiction to the hypothesis of the property. Once

again, we see that approximation and interpolation lead to the necessity of

compromises, so that practical models are not necessarily those studied at limit

conditions...

A last comment about the universal approximation property is that it holds even if

the width hj of the Gaussian kernels is fixed. Nevertheless, again, it is sometimes

preferable to give more degrees of freedom to the network (by making more

parameters adjustable) rather than increasing its size, as we will detail below.

3.4.2.3 Optimal weights

The general problem of function approximation is defined by a learning set

containing so-called input-output pairs that have to be approximated. Let us

define the learning set as

 (){ }Ni,y,xL ii �1== . (27)

In the following, we will consider xi as p-dimensional vectors, and yi as scalars.

Generalization to vector output is straightforward, but will be omitted here for

simplicity. We will also restrict ourselves to linear single-layer RBFN networks as

given by (23), with Gaussian kernels (26).

When interpolation is looked for, direct computation of the weights in equation (23)

can be achieved in the following way. A RBFN model with P Gaussian functions is

built. Centres and widths of Gaussian kernels are fixed a priori. Then, a matrix H

is defined as

[]

()ijij

ij

xKh

hH

=

=
 (28)

where Kj(xi) is defined by (26). Interpolating the input-output pairs of the training

 Chapter 3. Local learning 61

set is then equivalent to solving the linear system

 yHw = (29)

where w is the column vector whose components are the weights wi, and y is the

column vector whose components are the targets yi. However, since the number

P of Gaussian kernels is lower than the number N of samples, equation (29)

cannot be solved exactly. One thus has to define a criterion in order to chose the

"optimal" set of weights. Optimal means that some error will be minimized. The

LMS criterion is usually chosen in this context:

 ()()�
=

−=
N

i

ii yxf
N

E
1

21
. (30)

An exact solution to equation (29) cannot be found, but the solution minimizing

(30) will minimize the difference between the left and right sides of formula (29).

Note that the dimension of matrix H is N × K, and the respective dimensions of

vectors w and y are P × 1 and N × 1.

The solution of this problem is known as the pseudo-inverse matrix of H given by

 () TT
HHHH

1−+ = . (31)

The optimal set of weights according to criterion (30) will then be

 () yHHHyHw TT
1−+ == . (32)

Note that the universal approximation property of RBFN is valid when K < N, but

of course still in limit conditions, i.e. when both K and N grow to infinity! Again,

this property is thus not of practical interest in applications.

Literature abounds with papers dealing with linear RBFN. While the problem of

finding the optimal weights once the centres and widths of Gaussian functions

have been fixed seems simple (see equation 32), matrix H can be huge, making

H
T
H tedious to invert, and the product H

T
H is often ill-conditioned, making its

inversion even more difficult; Singular Value Decomposition (SVD) is then used to

compute the pseudo-inverse of matrix H. Many papers also deal with implicit

regularization, i.e. by adding constraints to the error criterion or to the derivation of

weights in order to ensure some smoothness in the approximation function f.

While this problem is interesting, we chose not to discuss it here. We will focus

our attention to another question not often dealt with in the literature: the choice of

62 Chapter 3. Local learning

kernel locations and widths. Indeed it is easy to understand that a wrong choice of

these parameters will lead to weak results. Figure 21 shows a simple 1-

dimensional example making this comment obvious. The function to learn is

known through 200 samples. The first 100 ones form a sine wave, while the last

100 ones form a horizontal line. The density of points along the x-axis is constant

over the first 100 samples and constant over the last 100 ones, but the first density

is twice the last.

Without a procedure to choose adequate locations for the basis functions, one

could distribute them equally along the x-axis. As an example, the distribution of

seven Gaussian basis functions leads to the centre locations marked by bullets on

the x-axis in Figure 21. Obviously, the approximation of the sine function will be

hard with only three to four basis functions in the corresponding regions. The

remaining basis functions could contribute if their width is chosen sufficiently large,

but the advantages of local approximation are then lost. A better choice of

locations for the basis function centres would have been to distribute more

centroids in the left region (sine wave), and less in the right region, easier to learn.

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20

Figure 21: approximation of a 1-dimensional function by a RBFN network with seven

Gaussian functions equally spaced on the x-axis. Dots on the x-axis show possible

centroids.

Two ideas have been purposely mixed in this example. Locations of basis

functions could follow the density of samples (along the x-axis), and could also be

influenced by the complexity of the function to approximate. Vector quantization

is the solution to the first idea, while the last remains a topics for further study.

In the following, we will address the (standard) problem of choosing the basis

function centres, but also the problem of choosing correct width factors for the

basis functions. This last question is certainly as important as the first one,

although it is much less studied in the literature.

 Chapter 3. Local learning 63

3.4.3 Optimization of centres and widths

Nonlinear RBFN are models where the dependency of the error term on some of

the parameters that are adjusted during learning is nonlinear. In the context of the

model (23) with kernels (26), this means that the derivative of the error term (30)

with respect to these parameters still depend on the parameters themselves; these

parameters are the centres of the Gaussian functions, and their widths.

Several algorithms and heuristics have been proposed to evaluate these

parameters. Most concern the centre locations: the choice of widths is seldom

addressed. In the widely used algorithm by Moody and Darken [Moody 89],

locations of centroids, widths and weights are determined sequentially, without

feedback between the computation of these three groups of parameters.

Locations of centroids are first fixed by an estimation of the probability density of

the input samples (vector quantization); the widths are then calculated to ensure a

predefined overlap between Radial Basis Function Networks centred on these

centroids, and finally weights are computed according to criterion (30), leading to

(32). Unfortunately, once the locations of the centroids are fixed, they are not

allowed to be ajusted anymore, in order to globally minimize the error function

(30). The same comment applies to widths. Only weights are thus optimal in the

sense of criterion (30).

The following describes an original method to compute efficiently the centres and

widths parameters in a RBFN network similar to Moody's and Darken's one. In this

method however, width factors are determined with respect to the standard

deviation inside the "region of influence" (Voronoi region) of a centroid, rather than

fixing an a priori overlap between functions. Furthermore, values found for the

centroid locations, width factors and weights are adjusted in a subsequent phase:

all parameters are optimized according to gradient descent on criterion (30).

Values of parameters found in the first phase of the method may thus be seen as

(good) initial conditions for a standard global gradient descent-based optimisation.

This second phase looses the advantages of splitted learning, but usually requires

only a few iterations of global optimization, which reinforces the computational

advantages of RBFN over MLP-like networks. Note that a direct gradient descent

on all parameters after random initialization is usually not used, because it suffers

from the same drawbacks as MLP: greater risk of local minima, flat regions in the

error function leading to unefficient gradient descent, need for complex

optimization algorithms, etc.; RBFN would loose all their advantages with direct

gradient descent.

3.4.3.1 Location of centroids

Locations of centroids are usually chosen according to the density of the input set

xi; such a choice leads to more centroids, and so naturally to a better

approximation of targets yi, in regions of the input space covered by more input

64 Chapter 3. Local learning

vectors, which seems a good heuristic in many applications.

Moody and Darken [Moody 89] proposed to use a k-means clustering algorithm to

find the locations of the centroids cj. As detailed in [Verleysen 96] and [Verleysen

94], we suggest to use a Simple Competitive Learning (SCL) method which leads

to similar results, with the advantages first of being adaptive (continuous learning,

even with an evolving input database), and secondly of helping the choice of the

width factors as explained in the next section. The principle is thus to initialize the

P centroids cj to the first (or to random) P input patterns xi, 1 ≤ i ≤ P. Then, input
vectors xi, 1 ≤ i ≤ N, are sequentially or randomly presented. The centroid cj

closest to xi is selected, and moved according to the SCL principle

 ()jijj cxcc −α+← . (33)

After convergence of this SCL procedure, the density of the centroids will

approximate the density of the input data (at least if the magnification factor as

described in the section about vector quantization is taken into account). We

remind that mean convergence is guaranteed in the case of a finite databse, and if

α satisfies the Robbins-Monro conditions.

It is important to note that the SCL procedure (or any other vector quantization on

the input data) will lead to position of centroids selected according to the

probability density of input data xi, but that targets yi are not taken into account

here. Therefore, some of the limitations mentioned in the context of the example

(Figure 21) still apply.

3.4.3.2 Width factors

In order to evaluate the width factors hj of the Gaussian functions, Moody and

Darken [89] proposed to minimize a cost function measuring the overlap between

adjacent units:

 ()

2

1 1

22

1 � �
= = �

�
�

�

�

�
�
�

�

�

−
��
�

�

	

�

� −

�
�
�

�

	

�

�

��
�

�

	

�

� −
−=

K

j

K

k j

kj

j

kj
Kov Q

h

cc

h

cc
exph,hE � . (34)

This function however includes a parameter Q difficult to choose, what effectively

transfers the problem of choosing the hj to the choice of this parameter. The

problem is simplified, since there is only one remaining parameter, but not solved.

In [Verleysen 94] we proposed to use a measure of the dispersion of points in the

clusters associated to the centroids in order to fix the width factors hj. A slightly

 Chapter 3. Local learning 65

more general method is described in [Verleysen 96]. The principle is to estimate

iteratively the width factors through a convex combination between the previous

estimation and a new value according to

 () jijj cxqhh −β+β−← 1 . (35)

Using this formula repetitively on all samples xi leads to hj converging to the mean

value of distance between any sample xi in a Voronoi region and its centre cj,

multiplied by a constant q (provided that β remains constant).

One could argue that equation (35) still contains a parameter β that has to be
adjusted. Nevertheless, a non-optimal choice of β would only influence the speed
of the convergence, while a bad choice for Q in Moody and Darken's method

directly influences the hj values.

If q is set to 1, hj will converge to the standard deviation of the cluster j. The role

of q ≠ 1 is explained below, under hypotheses of increasing complexity.

First hypothesis: constant density, constant function

We first consider that the true probability density of input vectors xi can be

assimilated to a constant over two consecutive clusters, and also that the function

f to be approximated can itself be assimilated to a constant in first approximation

on the same range; this hypothesis leads to the constraint that we will choose the

width factor of the Gaussian function associated to each cluster in order to keep

the estimate (23) of the function as constant as possible over two consecutive

clusters. Let us use the same notations as in Figure 19, repeated here for

convenience. The discussion below is similar to the discussion about the widths of

kernels in the IRVQ procedure for probability density estimation, although the

knowledge of targets yi gives additional information that will be taken into account.

 X Y Z

R

A B

Figure 22: sum of two Gaussian functions in dimension 1, and related notations.

X and Z represent the centres of two consecutive clusters A and B, 2 R the

66 Chapter 3. Local learning

distance and Y the midpoint between them. The purpose of the method is to set

the relation between R and the width factor h of the Gaussian functions A and B, in

order to have a constant approximate of the probability density over the segment

[X, Z]. We will simplify the computation of hj by setting its value in order to have

the same estimate of probability density at points X, Y and Z; we assume that the

fluctuations inside the segments [X, Y] and [Y, Z] may be neglected. We will also

neglect the influence of a kernel at a distance 2 R of its centre (which, when

verified a posteriori, will cause a maximum error of about 6 % in the local value of

the estimate).

With these hypotheses, we can evaluate the contribution of the Gaussian functions

A and B respectively at locations X (or Z) and Y:

 () wXf = , (36)

 ()
��
�

�

�

��
�

�

�
−=

2

2

exp2

jh

R
wYf . (37)

The above two equations first suppose that we attributed the same width factor hj

to the two clusters centreed on X and Z, and secondly that we suppose that the

weight factors w which are respectively associated to these clusters are equal too

(which is natural since we consider the function as constant over that range).

Making the estimates (36) and (37) to provide the same approximation for the

function at points X, Y and Z then leads to

 jhR 2ln= . (38)

As explained in the section about the IRVQ estimate of probability densities, a

similar development which leads to the same result (independent of the dimension

of the input space) can be made in dimensions greater than 1.

Now that we have the relation between hj and R, we need a method to evaluate R.

First, we will evaluate the inertia (variance) of each cluster, by using an adaptive

method exactly as the competitive learning does for the locations of the centres.

The inertia coefficient ij for each cluster is computed according to

 �
�

�
�
�

� −−α+← jjijj icxii
2

. (39)

where j is the index of the closest centroid to a learning vector xi. Equation (39) is

 Chapter 3. Local learning 67

a convex combination at each iteration between the previously estimated value of
ij and a new contribution ||xi – cj||

2
 due to the input vector xi. After learning,

parameters ij, 1 ≤ j ≤ K, will converge to the average inertia of points in the clusters
associated to cj.

The last point to solve is the relation between the estimated inertia ij and the

distance R. If we consider that, under the locally uniform density approximation as

above, the local arrangement of the centres of consecutive clusters will be as the
vertices of an hypercube with edges of length 2 R, the relation between the inertia

of each cluster and R is

() 32

1
2

2 dR
dVcx

R

i
V jidj =−= � (40)

where d is the dimension of the space. Combining equations (40) and (38) then

leads to a width factor hj given for each cluster j by

2ln

3

d

i
h

j
j = . (41)

Reminding that hj is adapted according to equation (35), leading to

 jj iqh = (42)

after convergence, the optimal value of q is given by

2ln

3

d
q = . (43)

Second hypothesis: constant density, linear function

We know consider a less restrictive case, where the density of input vectors xi can

still be considered as constant over two consecutive clusters, but where the

function y to be approximated is no longer constant, but can be linearly

approximated over the range of two consecutive clusters.

In this case, it is not natural anymore to consider that the weight factors w

associated to two consecutive clusters are equal; however, compared to the first

case examined above, we can consider that the linear approximation on function y

only influences the computation of the weight factors w proportionally to the slope

68 Chapter 3. Local learning

of function y, without any other influence on the computation of the centres and

widths of the Gaussian kernels.

It can easily be verified that adding the linear hypothesis on y instead of the

constant hypothesis in equations (36) and (37) does not influence the result of

equation (38). The main result of equation (43) is thus still valid too.

Let us mention however that the above development is no longer correct if the

function y to be approximated greatly differs from its linear approximation on two

consecutive clusters; rather than being a limitation on the functions that can be

approximated by this method, this fixes an upper bound (or at least an order of

magnitude) on the distance between two consecutive clusters or, in other words, a

lower bound on the number of clusters.

Third hypothesis: linear density, linear function

Let us finally consider an even less restrictive case. We make now the hypothesis

that both the function y and the density of input vectors xi can be linearly

approximated on two consecutive clusters. This hypothesis is not far from what

can be found in real cases: again, such a hypothesis determines a lower bound on

the number of clusters (or Gaussian kernels) that must be used in the

approximation, rather than being a limitation on the function y itself.

The only relation where the density of points appears is equation (40) that must be

changed into

()

()� −=
V jidj dVxpcx

R
i

2

2

1
 (44)

where p(x) is the density of points xi in the cluster. However if this density is linear

and if cj is the centre of the cluster, the previous result

3

2
dR

i j = (45)

holds (if the density is linear, summing the contributions of p(x) at equal distances

on both sides of the centre gives a constant; multiplying by ||xi - cj.||
2
 does not

change anything to this comment because of the power 2). Moreover, as in the
second hypothesis, the multiplication of the Gaussian kernel outputs by different wj

weight factors does not influence the computation of the centres and widths of the

kernels. As a consequence, result (43) is still valid in the third least restrictive

case.

 Chapter 3. Local learning 69

3.4.3.3 Global optimisation

It has already been mentioned that the method of splitting the search for

parameters cj, hj and wj into three independent sets only leads to a minimization of

error E (30) with respect to parameters wj, but not with respect to the two other

sets. To avoid this drawback and to find a (local) minimum of function E (30)

defined with respect to the three sets of parameters, one can perform a gradient

descent on function E simultaneously on the three sets of parameters. Using this

method however suppresses the advantage of simplicity of learning, which makes

RBFN so attractive in comparison with other neural network models. As a

compromise between precision and simplicity, a gradient descent can be

performed on the function E with respect to the three sets of parameters, but

taking as initial conditions the results of the splitted evaluation of parameters in the

previous sections. This will thus converge to a local minimum of function E

defined with respect to the whole sets of parameters, but one can expect that the

number of iterations needed in the gradient descent process will be small since the

initial conditions will be close to the convergence point. For details about this

optimization procedure, see [Verleysen 94]. Note that iterating gradient descent

on nonlinear parameters and direct computations of weights is also possible.

3.4.4 Further research topics

The same reference [Verleysen 94] shows an example of approximation of a 1-

dimensional function, using the RBFN procedure described above. This example

shows improved performance of this method over the traditional Moody's and

Darken's procedure. Nevertheless, we chose not to detail here simulations, for the

following reasons:

• general scepticism about simulations, as detailed in the preface...

• while good results have been obtained on most simulations performed on

standard benchmarks in small dimensions (1, 2 and 3), results are more

controversial in higher dimensions. Some are convincing (clearly improved

performances with respect to Moody and Darken's method), some are less

convincing because the variance of the results is too high. This can be

explained by the following comment. Most of the experiments have been

carried out on artificial databases, which were built complex enough to lead to

poor approximation results with conventional algorithms. It seems that vector

quantization on the input samples on these examples could have been

deficient, with consequences on the approximation results.

• the above development of the learning procedure for RBFN parameters is

based on the Gaussian shape of kernels. As mentioned in the context of the

IRVQ probability density estimation, the Gaussian shapes appear not to be

optimal in high dimension.

70 Chapter 3. Local learning

• the derivation of factor q is based on assumptions about the small size of

Voronoi regions, making the constant or linear hypotheses over the function to

be approximated valid. Nevertheless, small sizes in high dimensions means

an exponentially increasing (with the dimension) number of clusters. A

method to estimate the factor q should be found without the need for this

hypothesis (thus taking into account the targets yi).

• finally, centres of Gaussian (or other radial) functions should not be fixed

(only) according to the density of input values, but also according to the

difficulty to approximate function y locally. The placement of the basis

functions should also take into account the (estimate of the) first and second

derivatives of function y.

While the above procedure for RBFN learning shows conclusive advantages over

traditional methods, answering the above questions is a topic for further work.

3.5 Further developments on local learning

This chapter does not pretend to cover all aspects of learning with local models.

On the contrary, we chose to focus on a few aspects, i.e. on original developments

first about Bayesian classification through probability density estimation, and then

on approximation with Radial Basis Function Networks. Some issues about vector

quantization are also developed, for they constitute the background of these two

original methods.

The developments presented in this chapter are improvements over traditionally

used algorithms. In particular, they were designed to handle more efficiently high-

dimensional data. Experiments proved the improvements. Nevertheless, our

experience with these algorithms suggests that further work has to be achieved,

still to improve the performances in high-dimensional settings. In particular, the

method developed to estimate the probability density of a distribution (with

Bayesian classification in view) uses Gaussian kernels, whose shape is not

adapted to high-dimensional spaces (see chapter 2). We expect that using more

appropriate kernels could lead to improvements. Hypotheses used in the

derivation of the algorithm must also still be validated in high dimensions.

Concerning function approximation, we strongly believe in the advantages of

Radial Basis Function Networks, compared to more conventional Multi-Layer

Perceptrons for example. RBFN are easier to use, their performances are less

sensitive to local minima, they do not require complex optimization algorithms,

etc. Nevertheless, again, successful applications of RBFN are usually found in the

literature for low-dimensional spaces only. The learning principles presented in

this chapter, in particular the way to estimate adequate kernel locations and

widths, are designed to improve the performances of RBFN, while keeping

learning simple. These principles were developed under hypotheses that are not

 Chapter 3. Local learning 71

very different from those considered in density approximation. For the same

reasons, these hypotheses should be checked in high-dimensional settings, and

the algorithm modified accordingly; the possibility to use non-Gaussian kernels

should be considered too.

Chapter 4

Dimension reduction

4.1 Introduction

By dimension reduction, we mean a way to transform vectors (samples) defined in

dimension d, into vectors defined in dimension q, with q ≤ d. Of course, dimension

reduction must obey certain rules, or criterions, in order to be useful.

Dimension reduction is made necessary because handling data in large

dimensions is not easy. Chapter 2 dealt with the problems related to visualisation

and intuitive perception of data in dimension greater than 3, while chapter 3

concerns learning in high-dimensional spaces. Despite the techniques described

in these chapters, working with high-dimensional data remains difficult. All efforts

should thus be done in order to work with data whose dimension is as small as

possible.

When some knowledge about the data is available, one should of course take

benefit from this knowledge in order to represent or decompose the data in small-

dimensional vectors.

This chapter deals with the situation where no information is available about high-

dimensional vectors, making it possible to decompose them (or when all

information available has already been taken into account, but still leading to high-

dimensional data). Our aim here will be to find blind methods to reduce the

dimensionality of the space; blind means here that no a priori information about

the data is used to perform this dimension reduction.

4.1.1 Dimension reduction and bias-variance trade-off

Dimension reduction does not only lead to easier representation and improved

learning. It is also an important step towards better generalization (at fixed quality

of learning), or, in more statistical terms, towards a better bias-variance trade-off.

However, let us examine here intuitively this crucial question related to learning.

74 Chapter 4. Dimension reduction

Figure 23 shows a dataset of 5 points in a 1-dimensional space. For illustration

purposes, we used here polynomials of increasing order to approximate this

dataset, rather than neural networks. The reason is that the number of parameters

in a polynomial can be incremented easily and is directly related to the number of

degrees of freedom of the approximation function. Such discussion is not so

simple for example with RBFN networks, where weights obviously play the role of

free parameters, but centres and kernel widths do not play exactly the same role.

Nevertheless, the following comment is valid for polynomial interpolation as well

as for RBFN (or other neural model) learning.

-20

-10

0

10

20

-2.5 -1.5 -0.5 0.5 1.5 2.5

-20

-10

0

10

20

-2.5 -1.5 -0.5 0.5 1.5 2.5

-20

-10

0

10

20

-2.5 -1.5 -0.5 0.5 1.5 2.5

Figure 23: approximation of a dataset by polynomials of increasing order.

The dataset in Figure 23 is approximated by polynomials respectively of degree 1,

3 and 5. Degree 1 is obviously not enough in order to approximate data correctly.

On the contrary, the centre and right graphs of the figure show that both degrees 3

and 5 are adequate to interpolate correctly the dataset. More precisely, the mean

square error between the targets and the approximation, measured on all points of

the dataset, is greater than 0 in the left graph, while it is equal to 0 in the middle

and right graphs.

Nevertheless, if we have to choose between the approximations of the middle and

right graphs, we will choose the centre one, without discussion. The reason is that

we see intuitively on the graphs that intermediate points, not contained in the

dataset, will be better approximated by the function in the middle figure than the

function in the right one, if these intermediate points are drawn from the same

"smooth" distribution. The approximation function in the left graph has a bias,

while the one in the right graph expresses too much variance with respect to the

dataset.

The conclusion of this discussion is that the number of degrees of freedom of an

approximation function must be chosen high enough to interpolate the data

correctly, but not too high in order to limit overfitting. Choosing a good

compromise is an important and difficult question that will not be addressed here.

However, our efforts towards dimension reduction can be seen as a contribution to

this problem. Indeed, neural models such as MLP and RBFN, have a number of

 Chapter 4. Dimension reduction 75

parameters directly dependent on the number of their inputs. Single-output MLP

with one hidden layer have a number of parameters equal to

 12 ++= HHdP (46)

where H is the number of neurons in the hidden unit and d the dimension of input

vectors (assuming parametric thresholds in each neuron), while RBFN have

)d(HPHP 2andbetween +== (47)

parameters, depending whether the centres and/or widths of radial kernels may be

considered as free parameters or not. (Our point of view is that it is not correct to

count them as parameters equivalent to weights, since the quality of

approximation is not sensitive to small variations of these parameters, neither it is

correct to count only weights, since an adequate placement of centres and widths

improves approximation; the correct evaluation of the number of degrees of

freedom is probably between these two extremes.)

In both cases, we see that reducing the number of inputs d leads to a

corresponding reduction in the number of degrees of freedom of the problem, and

thus to a better bias-variance trade-off. Of course, the dimension reduction should

not lead to loss of information: if we compare two problems, one with d inputs and

the other with q (≤ d) inputs, the transformation from the first to the latter must

leave all other considerations unchanged. In particular, the information contents in

the input data (and in the targets) must remain unchanged too. Reducing the

dimension of vectors (input samples) without altering (too much) the information

they contain is the key question in the following.

4.1.2 Dimension reduction and intrinsic dimension

The assumption justifying dimension reduction is that the dataset actually lies on a

(nonlinear) manifold of smaller dimension than the data space. In this case, it is

theoretically possible to perform dimension reduction without significant loss of

useful information. It is then natural to consider that dimension reduction will be

efficient down to the intrinsic dimension of the dataset, but inefficient for smaller

dimensions. Efficient means here that the goal of dimension reduction is

achieved, i.e. that there is no significant loss of information in the reduction.

Measuring the usefulness of information in this context, i.e. deciding if the

(unavoidable) loss of information has an impact or not on further processing, is a

difficult task. As we will see below, the loss of information is usually measured in

terms of variance of the dataset in the linear dimension reduction case. A similar

measure in nonlinear context inevitably depends on the reduction method itself.

76 Chapter 4. Dimension reduction

Nevertheless, whatever the measure considered, the method used to perform

dimension reduction will not do better than guessing the submanifold on which the

data are supposed to be located. Any deviation of the initial data (the samples)

from this submanifold will thus be erased in the reduction process, exactly as

deviations from a planar surface in a three-dimensional space disappear when the

data are projected on the surface. In some situations, these deviations may be

considered as noise. Therefore, dimension reduction not only reduces the size of

the vectors, but also reduces the noise in the data. These two aspects of

dimension reduction should be considered and evaluated separately.

Nevertheless, as they both are consequences of the same operation, it is

extremely difficult to appreciate what are the respective amounts of noise

reduction and of loss of useful information. This aspect of dimension reduction

should however be kept in mind, advantages and drawbacks being closely mixed

here.

Besides this (important) question about the relevance of the information lost in the

dimension reduction process, two difficulties remain that will impinge on how the

reduction is performed.

First, the intrinsic dimension of the data is usually unknown. Chapter 2 described

methods to estimate the intrinsic dimension, but it was made clear that the concept

itself of intrinsic dimension may be discussed. For example, different definitions

and associated measures lead to different estimations, all of them being

justifiable. Intrinsic dimension estimations must be taken as approximate

measures of a lower bound to the dimension on which a dataset can be projected.

This problem is related to the above discussion of bias-variance trade-off: when

the dataset is reduced to a too low dimension, some information is lost, and any

further approximation (or classification, etc.) will be less successful than if it had

been performed on the original dataset; bias will be introduced. On the other

hand, if the dimension of the dataset is not sufficiently reduced, some non-

necessary information (like noise) or correlated information (see below) will

remain, worsening the performances of the subsequent approximation too. A

good choice of the intrinsic dimension (or better the dimension on which the data

will be projected) is thus a compromise between these two drawbacks; only

simulations (trials and errors) can usually lead to a good choice.

Secondly, and this is the justification of the following in this chapter, data are

usually linked by nonlinear relationships. Remember the example of Figure 12,

where two-dimensional data form a non-planar surface in a three-dimensional

space. The importance of nonlinearities is usually underestimated, based on our

traditional experience of conventional statistics. Indeed most standard tools as the

Principal Component Analysis described below are aimed at removing linear

dependencies (second-order correlations) between data or features. Second-order

correlations have numerous advantages: they are easy to measure, the

differentiation of error functions leads to linear formulas, etc.; this is the main

reason for their widespread use. Nevertheless, real-world data exhibit nonlinear

correlations; adapted methods should then be developed, as it will be seen below.

 Chapter 4. Dimension reduction 77

Note that in some literature, the term correlation is restricted to second-order

dependencies. In the following, we will use this term for any (linear or not)

dependency, following the conventional use of this term in the neural network

community rather than in the statistical one.

4.1.3 Dimension reduction in classification

Classification methods and algorithms usually perform clustering of the space.

They rely on distance measures between vectors; for example, regions defined by

the set of points nearest from a centroid than from any other (Voronoi regions) are

associated to class representatives (the centroids) and by this way to their class.

The distance measure between samples is thus a key criterion for the

classification.

Nevertheless, we mentioned in chapter 2 that the concept itself of distance

between vectors becomes meaningless in high-dimensional spaces. In particular,

we mentioned a result proving that samples on a random distribution seem to be

normalized in high-dimensional spaces, whatever the distribution. But if samples

are randomly drawn from a distribution, distances between samples are random

vectors too. Distances between vectors seem thus also to be normalized

(concentrated around a fixed value)! This is one of the reasons why classification

algorithms fail in high-dimensional spaces; the reason is not related to the method,

but to the concept of (Euclidean) distance behind. An efficient dimension

reduction of the samples will thus improve the results of a subsequent

classification in such situations.

4.1.4 Why and how to perform dimension reduction?

Dimension reduction is made necessary in a wide range of learning problems,

because learning high-dimensional data remains difficult, despite all efforts made

to overcome the problems. When this is possible, data should thus be made as

low-dimensional as possible, of course without loosing relevant information.

Dimension reduction could be compared to preprocessing of data as performed in

most pattern analysis schemes. In the latter case however, features are extracted

in a "non-blind" way, i.e. according to what can be expected from the data, while in

the first one blind extraction of information is performed.

The following of this chapter describes method to perform blind dimension

reduction. Classical linear Principal Component Analysis is first described, before

non-linear methods more adapted to the preprocessing of data before non-linear

data analysis tools. Finally, an original application of the concept of non-linear

dimension reduction to time-series prediction is presented.

78 Chapter 4. Dimension reduction

4.2 Linear dimension reduction

4.2.1 Principal component analysis

Principal Component Analysis (PCA), that finds its origin in [Pearson 01], is the

standard, commonly used method to reduce the dimension of a dataset. The

concepts of PCA have been described in chapter 2. While PCA is a very classical

method widely used by some scientific communities, it remains unfortunately

unknown or badly used by others. For this reason, and because it forms the

background to nonlinear projection methods described in the next section, we

chose to detail PCA here in more mathematical terms. For this description, we will

follow [Choppin 98].

PCA is a method that projects d-dimensional samples on a submanifold of lower

dimension. The principle is to find an "ideal" subspace to project the samples, i.e.

a subspace where the projections of the samples will keep most of the information

contained in the original set.

The term projection takes here its meaning of linear operator. The traditional

concept of projection means that a sample xi will be replaced by (projected to)

another d-dimensional point yi situated on the subspace. The projection is

orthogonal, i.e. yi is chosen to minimize the distance between yi and the original

sample xi. In some literature the term projection is reserved for linear transforms

of data. We will use it here both for linear and nonlinear transforms, linear

projections being associated to the conventional PCA method.

Linear projection means that PCA is defined by a projection matrix, whose lines (or

columns) are the reference vectors of the subspace. The point here is to

determine the subspace to project on, with the minimum loss of information. In

other words, it means to define the subspace so that average distance between

the initial points xi and the projected ones yi is minimal.

4.2.1.1 PCA reference vectors

We may see the task of determining the subspace to project on as a sequential

process: find the direction corresponding to the best axis passing through the set

of samples; then supposing that all the points were in a plane perpendicular to the

first axis, find the second best direction; and so on. The "best" axis is defined in

the least mean square sense, i.e. by minimizing the mean difference between a

sample and its projection on the axis.

 Chapter 4. Dimension reduction 79

xi

yi

xi - yi

Figure 24: projection of samples on an axis, and associated notations.

Let us look more formally at the first best axis of projection. Looked for is the unit

vector u1 for which (see Figure 24)

 �
=

−=
N

i

ii yxE
1

2

1 (48)

is minimized. Since ||xi - yi||2 = ||xi||2 - ||yi||2, this is equivalent to maximize

 �
=

=
N

i

i
' yE

1

2

1 . (49)

As

1

1T

u

u
xy

ii = . (50)

is the orthogonal projection of xi on u1, the projection of each sample can be

rewritten in matrix notation:

 1

1
T

1
T

2

1
T

1

2

1

Xu

ux

ux

ux

y

y

y

NN

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

�
�
�
�
�

�

�

�
�
�
�
�

�

�

��
. (51)

The problem is finally to find the unit vector u1 that maximizes equation (49), i.e.

80 Chapter 4. Dimension reduction

 ()1TT

1
1

1

1

T

1

maxarg XuXuu
uu =

= . (52)

The solution of this problem is well known in linear algebra: u1 is the eigenvector

of X
T
X associated with its largest eigenvalue λ1.

Looking at the quantity (49) to maximize, it appears that this quantity is nothing

else than the variance of projected points. In other words, the axis for which the

mean square distance (48) is minimal is the axis that maximizes the variance (49)

of the projected points.

4.2.1.2 Geometrical properties

Figure 25 shows two examples of projections of dataset on the best and worst

axes, respectively left and right figures. In the first case, the variance of the

projected points is maximal, while it is minimal in the second case. The left figure

also corresponds to the most appropriate representation of projected points: they

are as apart as possible on the axis.

Figure 25: projection of samples on the best and worst axes.

The first axis u1 found by maximizing the variance of the projected points is called

the first canonical axis or the first principal component.

The process of finding the "best" axis can be repeated on the data after projection

on a subspace orthogonal to the first canonical axis, to find the second one, and so

on. It can be proved that the axes found by this process correspond to the

 Chapter 4. Dimension reduction 81

eigenvectors of matrix X
T
X, in decreasing order of their associated eigenvalues.

Another nice result of PCA is that the percentage Vp of variance "kept" after

projection on the first p canonical axes is equal to the normalized sum of the

associated eigenvalues

�

�

=

=

λ

λ

=
N

j
j

p

j
j

pV

1

1
. (53)

This result gives the possibility to choose the dimension of the projection space,

once a required percentage of variance kept after projection has been fixed. If all

dependencies between data could be linear, this would give us a way to estimate

the intrinsic dimension of a dataset. Unfortunately, nonlinear dependencies are

more common in engineering and physical problems than linear ones, and are not

taken into account by a second-order method as PCA.

4.2.1.3 Advantages and drawbacks

PCA is a widely used method for dimension reduction. Its success partly comes

from its applications in visualisation, and more precisely from the similarity

between PCA and natural vision. Let us imagine indeed that we have to view (in

two dimensions) a three-dimensional object. If the possibility exists, we will move

(or move the object) so that we will see its "best" view. Best is defined in the

sense that we will see the largest number of details in the object, or, in

mathematical terms, we will maximize the variance of its view. PCA is nothing

else than a generalization of this concept to higher-dimensional spaces.

Besides this fact, PCA has a number of advantages:

• PCA is a well-known technique. It is used and has proved to be useful in

many applications fields, not only by specialists of data analysis. Its success

makes that efficient implementations of the method exist, and can be found in

commercial softwares.

• Unlike many adaptive or neural-based methods, PCA does not suffer from

parameters that influence the convergence or the performances of the method.

Except numerical problems that could occur in matrix inversion, the PCA

method is straightforward.

• The PCA method leads to an objective measure of the information kept/loss in

the process.

82 Chapter 4. Dimension reduction

But it also has drawbacks:

• Despite the fact that there is no parameters tuning in PCA, inversion or

diagonalization of matrix X
T
X may be (and is often) ill-conditioned. Numerical

techniques must be used to properly find its eigenvalues and eigenvectors.

• PCA is a linear method, which is sensitive to (second-order) correlations only.

PCA will thus not catch any nonlinear relationship between data. Looking back

for example to Figure 12, it can be seen that it is not possible to find a two-

dimensional plane adequate for a projection of this dataset.

This last comment is of highest importance for the following of our work. We

showed that it is necessary to reduce the size of the space in many situations, for

the reasons explained in the introduction of this chapter. Now, we showed that

PCA is not an adequate method (for dimension reduction), at least if strong

nonlinear relationships exist between data (which is the case in most real

situations). There is thus a need for nonlinear dimension reduction tools. This is

the topic of the next sections.

4.3 Nonlinear dimension reduction

A lot of tools or algorithms that can be used for nonlinear dimension reduction

exist in the literature. It is not our intention here to make an exhaustive review of

these techniques. Some are used in data analysis, some in statistics, some in the

neural network community, or in other areas, and it is difficult to compare them

objectively in general situations. We have to remind that, unlike linear methods

such as PCA, nonlinear methods suffer from two difficulties concerning the

evaluation of their performances:

1. nonlinear methods are usually adaptive and/or iterative; this means that

parameters (strongly) influence the convergence of the algorithm. Making a

method obtaining good results is thus often a question of efforts devoted to

parameter tuning. Of course, a primary objective in designing the methods

themselves is to make them as insensitive as possible to all parameters.

Nevertheless, some sensitivity still remains in most cases.

2. Quality criterions are not so obvious as in linear cases. As described in

chapter 2, Euclidean distance measures loose their meaning in high

dimensions. Furthermore, most standard correlation criteria are based on

second-order relationships; they are thus adapted to measure linear

projections, but not nonlinear ones.

In the following, we will briefly describe two methods used for dimension reduction,

that we feel necessary to understand the following: Kohonen maps in section

4.3.1, and Multi-Dimensional Scaling and Sammon's mapping in section 4.3.2.

 Chapter 4. Dimension reduction 83

Then, section 4.3.3 will detail a third method on which we focused our attention,

for some reasons explained below. The first method is known in the neural

network field, while the second one is mostly known is statistics. The third one

uses interesting features from both.

4.3.1 Kohonen maps

Kohonen maps [Kohonen 95], or self-organizing feature maps, are now widely
known methods in the field of artificial neural networks. Kohonen maps are
basically a vector quantization, coupled to an interesting property of topology
preservation. Shortly, the two aspects of Kohonen maps work as follows.

First, d-dimensional samples are quantized as in any other vector quantization

methods. This means that the initial dataset containing n d-dimensional samples

is replaced by a reduced set, containing m d-dimensional samples. We call

codebook the reduced set. The codebook is designed in such a way that it

contains as much information as possible from the original set. It is usually built
by minimizing the mean Euclidean distance between the original samples and the
centroids (samples from the codebook), but it can also be viewed as building a set
of centroids with the same properties as if they were randomly sampled from the
initial (unknown) distribution of vectors. The number m of centroids is a parameter

of the method.

Besides this traditional vector quantization aspect, centroids are labeled in the
Kohonen algorithm. These labels can be natural numbers, pairs of natural
numbers, or n-tuples of natural numbers; usually couples of natural numbers are

considered. The centroids can thus be seen as ordered on a grid, whose
coordinates are these sets of natural numbers. More precisely, when the centroids
are placed in the d-dimensional space (after vector quantization), a grid can be

drawn, that goes through the centroids in the order of their labels.

The nice topological property of the Kohonen algorithm is that, after convergence,
the grid will be smooth. In other terms, two centroids whose labels are close to
one another (two close centroids on the grid) will have close locations in the d-

dimensional space. How this property is achieved is the consequence of the
algorithm itself, and goes beyond the scope of this discussion.

Our interest here is to see that centroids can be characterized in two ways. First,
they are defined by their position in the d-dimensional space. Secondly, they are

identified by their position on the grid; this position is a two-dimensional vector.
Going from one system of coordinated to the other may thus be seen as a
reduction from dimension d to dimension 2. Figure 26 shows a 2-dimensional

Kohonen map after convergence in a horseshoe distribution. In theory, any
dimension other then 2 could be taken too. (Nevertheless, Kohonen maps are
mostly used for visualisation purposes, so dimension 3 is seldom exceeded.)

84 Chapter 4. Dimension reduction

Since the transformation performed by the Kohonen map preserves the topology,
these can be seen as a nonlinear dimension reduction method. This property has
for example been exploited in an image compression scheme as described in
[Amerijckx 98].

Figure 26: Horseshoe distribution and resulting Kohonen map. From [Choppin 98].

While Kohonen maps are easy, powerful methods in many data analysis problems,
they suffer from two drawbacks concerning dimension reduction:

1. We already mentioned that the grid dimension of Kohonen maps is usually set
to two. Higher dimensions are rarely used. There is thus not so much
experience about the efficiency of Kohonen maps (including possible
convergence problems, high-dimensional restrictions, etc.) in these
dimensions.

2. The grid used in the Kohonen map is fixed in advance. This means that the
topology of the grid is not necessarily in accordance with the dataset. Figure
27 shows a typical well-known example of Kohonen map which is not adapted
to the distribution: the map used is a typical two-dimensional rectangular one,
while the data are distributed in a cactus form (from [Kohonen 88]). It may be
seen that even after convergence centroids are located in regions of the space
where there are no samples from the distribution (as a result of the non-
convexity of the distribution). More seriously than in the toy example
illustrated here, this phenomenon easily occurs with high-dimensional
distributions. Note that there are now attempts to develop variants of the
Kohonen algorithm with evolvable grid; see [Dittenbach 00] for example.

 Chapter 4. Dimension reduction 85

3. Kohonen's algorithm includes vector quantization. Samples are thus not only
projected, but also quantized. This may be undesirable in practical situations.
To remedy this point, several possibilities exist to interpolate between
centroids in the projection space. Among them, projection on the plane
defined by the three nearest centroids, mapping similar to Sammon's one (as
explained in the next section), or variations around these themes, are the most
common [Lee 99].

Figure 27: Two-dimensional rectangular Kohonen map in a "cactus" distribution. From

[Kohonen 88].

4.3.2 Nonlinear multi-dimensional scaling and
Sammon's mapping

The purpose of these two methods is again to project d-dimensional samples on q-

dimensional ones, keeping most or all of the information contained in the initial
samples. The principle is here to place points in the q-dimensional space, and to

measure how the distances between these points in the output space are similar to
the distances between the corresponding points in the input space.

In the case of nonlinear multi-dimensional scaling (MDS) [Shepard 62, Shepard
65], the objective function is simply the ratio of the input distances by the output
distances, weighted in such a way that small output distances are more important

86 Chapter 4. Dimension reduction

than large ones. Weighting aims at conserving a local topology (locally, sets of
input points will resemble sets of output points). Conserving global topology is
only possible in specific unrealistic situations; emphasizing local topology is thus a
way to realize most of the objective in practical circumstances.

Sammon's mapping [Sammon 69] is similar to MDS. However, the objective
function is now a mean square error between distances (between pairs of samples)
in the input and output spaces. Contrary to MDS, weighting is done with respect to
input distances in Sammon's mapping.

In the next section, we will present a new nonlinear projection tool, the curvilinear

component analysis (CCA), proposed by Demartines and Hérault [Demartines 97],

and our improvements to this method. CCA has common points with MDS and
Sammon's mapping, but has several advantages too.

4.3.3 Curvilinear component analysis (CCA)

4.3.3.1 Description of the method

The basic idea behind CCA is similar to Sammon's mapping and MDS. The aim is
to fix points in the q-dimensional space, with a topology similar to the topology of

the initial points in the d-dimensional space. In CCA's spirit, the word topology

means "the distances between all pairs of points in the database". So CCA tries to
find coordinates in the projection space such that they reproduce the distances
measured in the initial space. Formally, CCA works by minimizing an error
function that is nothing more than a sum of squares of the differences between
distances in the original and projection spaces:

 () ()λ−=��
= =

,YFYXE ij

N

i

N

j
ijij

1 1

2

 (54)

where N is the number of points in the database, Xij is the distance between points

xi and xj in the original d-dimensional space, and Yij is the distance between points

yi and yj in the projection q-dimensional space. F(Yij, λ) is a monotonically

decreasing function of the distance Yij in the projection space, parameterised by λ.
This function gives more importance to small distances, and therefore to the

conservation of the local topology. Demartines suggests to use a step function of

the form

 ()
�
�
�

λ>
λ≤

=λ
ij

ij
ij Y

Y
,YF

if0

if1
. (55)

 Chapter 4. Dimension reduction 87

The weighting function F(Yij, λ) depends on the output distances (contrary to most

dimension reduction methods). This implies a recursive procedure to find the
locations of the point yi in the projection space.

As conventional gradient descent on the error function E can be particularly

tedious and computationally heavy, Demartines suggests a simplified procedure
where each point yi is in turn considered as fixed, and all other points around yi are

moved. Under some supplementary assumptions, this lead to the adaptation rule

 () ()() ij,
Y

yy
YX,YFty

ij

ij
ijijijj ≠∀

−
−λα=∆ . (56)

Working with equations (54 to 56) is however still computationally intensive: the
number of distances both in the initial and projection spaces is proportional to N

2
!

CCA then uses vector quantization to reduce the size of the database in the initial
space, in order to decrease drastically this computational load. Only centroids are
then adjusted according to criterion (54) and adaptation rule (56). The drawback is
that centroids only are projected, and an interpolation procedure must be designed
to make the correspondence between a point xk (different from a centroid) in the

initial space and a point yk in the projected space. This is done by minimizing the

same cost function (54) but for point yk only.

For in-depth comparison between CCA and other conventional nonlinear
projection tools, we refer the reader to [Demartines 97]. The same reference also
suggests a way to measure the quality of the projection, in the form of a graph.

It can be shown that CCA outperforms other nonlinear projection algorithms in
many situations. Using a simple criterion based on distances in the projection
space, and using a simplified procedure for gradient-like descent are the two major
arguments.

4.3.3.2 Choosing the parameters for CCA

CCA requires three parameters: first the projection space dimension q, and

secondly the two time decreasing parameters α(t) and λ(t) used by the adaptation
rule. Dimension q can be computed by fractal dimension estimation [Grassberger

83] or by LPCA (see below). The learning factor α(t) requires no particular
attention (for example, exponential decrease between 0.95 to 0.01). However, the

neighborhood factor λ(t) is critical: if λ(t) decreases too slowly, the nonlinear
dependencies are not well unfolded, whereas a fast decrease compromises the
convergence.

Although CCA outperforms many other nonlinear projection algorithm, this
dependency on critical parameters (and on the density of samples) raises

88 Chapter 4. Dimension reduction

difficulties to unfold "hard nonlinear" structures like a spiral. In such a case, CCA
converges with difficulty: large distances Xij in the initial structure are poorly

correlated with the corresponding distances Yij in the unfolded and projected

structure.

4.3.3.3 Curvilinear Distance Analysis

Looking at the example of a spiral, CCA globally remains a good idea, but perhaps
the use of another distance than the Euclidian one could improve the
convergence. The best distance function should produce the same result for both
the initial spiral and its projection. To reach this goal, one needs a kind of

"curvilinear distance" δij, like in Figure 28 (c). Such a distance, in accordance with

the idea of sparse distance matrix suggested in [Guérin-Dugué 99], is computed
inside the spiral and not through the spiral, like the Euclidian distance [Lee 00].

 - a - - b - - c -

Figure 28: The curvilinear distance. (-a-) two points in a spiral. (-b-) the Euclidian distance

between the two same points. (-c-) the curvilinear distance.

An approximation of the curvilinear distance can be computed in two steps (see

Figure 29):

Step 1: Linking the centroids

After the vector quantization, the centroids can be linked (or connected) so that

they become a graph. Two centroids get linked when they are the nearest ones

from a database vector. This idea of linking centroids is not new (see for example

the work of Bernd Fritzke [Fritzke 91]). In CCA, the first utility of links is visual: for

example, crossing links often means projection faults.

Step 2: Computing a distance via the links

Links also have a second utility: they help to compute the above mentioned

curvilinear distance. A good approximation of δij is given by the sum of the

 Chapter 4. Dimension reduction 89

Euclidian lengths of all links in the shortest path from centroid i to centroid j,

provided there are no "shortcut" links.

Figure 29: Approximation of the `curvilinear distance' by means of the shortest path the

links between centroids (here the distance between both blackened centroids).

We propose an enhanced version of Demartines' CCA, called CDA (Curvilinear

Distances Analysis). The objective function remains identical, but the Euclidian

distance Xij in (54) is replaced by the curvilinear distance δij:

 () ()λ−δ=��
= =

,YFYE ij

N

i

N

j
ijij

1 1

2

. (57)

This objective function gives a new adaptation rule:

 () ()() ()
ij,

Y

Y
yy,YFty

ij

ijij
ijijj ≠∀

−δ
−λα=∆ . (58)

According to (55), the weighting function F(Yij, λ) should be a negative step
function. In order to make the choice of λ less crucial, we suggest to relate the
location of the step to the largest value of the argument Yij; moreover, λ is made

decreasing with time, by analogy with adaptation parameters in gradient descent

algorithms: starting with a too large value and then decreasing it makes it possible

to have a rough approximation during the first iterations, and then to refine it

gradually. Equation (55) then becomes

 () () �
�

�
�
�

� −λ=λ ijkl
l,k

ij YY)t(,YF maxsign . (59)

90 Chapter 4. Dimension reduction

In order to obtain a compromise between the original CCA and the new objective

function, one may define a generalized distance between centroids i and j in the

original d-dimensional space:

 ()() () ijijij tXt δω+ω−=∆ 1 . (60)

The generalized distance ∆ij helps to build a unique algorithm that combines the

Euclidian distance and the curvilinear one; the result is an algorithm with a third

parameter ω(t), varying between 0 and 1, and allowing to dynamically switch

between classical CCA and CDA.

4.3.3.4 Automatic choice of the parameters

The second improvement brought to CCA is the complete automation for the

choice of parameters. The goal is to get a method as simple as PCA, i.e. a method

with a single parameter Vp (the percentage of variance kept after projection).

Parameters for vector quantization

Samples in the initial space are quantized in CCA, by a vector quantization (VQ)

technique. Usually, adaptive VQ (as Simple Competitive Learning, Learning

Vector Quantization, etc.) requires two parameters: the number of centroids and a

learning factor α(t). In CDA, we use a dynamic VQ in which centroids are created

when all availables ones lie further from a sample than a fixed threshold r. In

other words, when a sample xi is introduced in the VQ (SCL or other adaptive one)

process, the closest centroid yj is moved according to equation (7), only if

 () ry, j <ixdist . (61)

Otherwise, a new centroid yk is created at the location of sample xi. Of course, the

smaller the threshold r, the better the VQ quality, so r can be made proportional to

the tolerable loss l:

 ()ij
i,j

Xlr max= . (62)

Unlike PCA, the use of a "tolerable loss" l is qualitative only. There is obviously no

proof that the use of equation (62) will ensure a quantization error smaller than l.

 Chapter 4. Dimension reduction 91

Parameters for CDA

CDA requires four parameters: first the projection space dimension q, and then the

three parameters used by the adaptation rule α(t), λ(t) and ω(t).

The optimal dimension q of the projection space is easily determined by a method

called LPCA (local PCA [Kambhatla 97]). LPCA works by performing a vector

quantization and then a PCA on each Voronoi region after vector quantization,

assuming that the database is locally linear (i.e. at the scale of the Voronoi

regions). Given the tolerable loss l, the required dimension pVj of the projection

space is computed for each Voronoi region Vj, according to PCA standard

procedure (the dimension is chosen so that the effective loss of variance is smaller

than l). The global projection dimension p is simply the mean of all pVj. Again, no

mathematical proof guarantees that p will lead to an effective loss smaller than l;

however, we assume (and verify experimentally) that, in the range of a Voronoi

region, CDA works at least as well as PCA. Note that nothing prevents to use the

same vector quantization for CDA and for LPCA!

For the learning factor α(t) and the neighborhood factor λ(t), one uses the classical
exponential decrease (as in numerous adaptative algorithms), within the following

arbitrary chosen bounds:

 () 0201 .t ≥α≥ , (63)

and

 ()
()
()ij

i,j

ij
i,j

t
δ

δ
≥λ≥
max

min

1 . (64)

Note for completeness that an exponentially decreasing law does not satisfy the

Robbins-Monro conditions; it is however widely and successfully used in practice.

In Demartines' CCA, the choice of the bounds for λ(t) is quite difficult. The CDA
method is less sensitive to the choice of λ(t), due to the enhancement brought by

the curvilinear distance: experiments show that the convergence is improved and

accelerated.

Finally, how to determine the last parameter ω(t)? Intuitively, if the dependencies
in the database are almost linear, ω(t) should be set near zero since CCA works
perfectly in this case. In the same way, if the dependencies are strongly nonlinear,

a value for ω(t) near one should take profit of the curvilinear distances. With this

reasoning in mind, the value of ω(t) is empirically set as follows. At time t, the

current neighborhood D is defined as the couples (i, j) for which the curvilinear

92 Chapter 4. Dimension reduction

distance between points xi and xj is smaller than the threshold defined in (59):

 () () () ()
�
�
�

�
�
�

δλ≤δ= ij
j,i

ij tj,itD max . (65)

We then measure the linearity of the database in this neighborhood. An indicative

measure of the linearity is the mean of the ratios between the Euclidean distances

and the corresponding curvilinear ones. The more "linear" the database is, the

closer these ratios will be from 1. This results in ω(t) set as

 ()
() () ��

�
�
�

��

�
�
�

�
�

	

�
�

�

δ
−

π
π=ω �

∈
1

1
1

22-

min ,
X

D
t

tDj,i ij

ij
. (66)

Note that the above described mean ratio will come close to 1 after the database

is successfully unfolded (after convergence of the algorithm). Moreover, looking

at equation (60), ω(t) must be close to 1 at the beginning of the convergence (to

take advantage of the notion of curvilinear distance), but must approach 0 after

convergence (the curvilinear distance δij remains an approximation, so precision of

the convergence will be increased by using the Euclidean distance Xij instead δij of

as soon as the two distance measures are deemed to be representative of the

same quantity). This explains the last parenthesis in equation (66): at the

beginning of the convergence the neighborhood D includes pairs of points distant

from one another (thus having low ratio Xij/δij), while only close points (with ratio

Xij/δij close to 1) remain at the end. The multiplying factor of this parenthesis has

been set heuristically (it has been calculated in order to make the product equal to

1 in case of a circle). Finally, ω(t) is bounded by 1 as required by its definition
(60).

4.3.3.5 Examples

This section shows some artificial databases projected with the CDA algorithm.

Their purpose is only illustrative: much more complex structures can be

successfully handled by CDA, but their visual aspect is less meaningful.

Although the implementation allows to tune the parameters, all examples below

are projected by the automatic method. Figure 30, Figure 31 and Figure 32 below

include some vectors of the database (shown as points), all centroids (circles) and

links (lines); centroids and links in the projection space are however not shown for

Figure 31 and Figure 32.

 Chapter 4. Dimension reduction 93

Horseshoe

The horseshoe is a two-dimensional rectangle embedded in a three-dimensional

space, slightly curved to obtain three quarters of a cylinder. The horseshoe is a

classical benchmark for nonlinear projection method.

Figure 30 shows (left) the horseshoe distribution in a 3-dimensional space, and

(right) its projection by CDA on a 2-dimensional plane.

Figure 30: Left: horseshoe distribution in a 3-dimensional space. Right: its projection on a

2-dimensional plane.

Trefoil knot

The trefoil knot (Figure 31) is a mono-dimensional object embedded in a three-

dimensional space. The CDA unties it in a mono-dimensional space rapidly and

automatically.

Figure 31 shows (left) the trefoil knot in a 3-dimensional space and (right) its

projection on a 1-dimensional line. Unit axes are represented to illustrate the

scale of the diagrams.

Sphere

The projection of the sphere is a more complex. Indeed, a good projection on a

plane requires that the algorithm cuts and stretches the sphere (if not, the

projection would not be bijective).

Figure 32 shows (left) the sphere in a 3-dimensional space, and (right) its

projection on a 2-dimensional plane. Links are not represented in the projected

figure for clarity of the illustration.

94 Chapter 4. Dimension reduction

Figure 31: Left: trefoil knot in a 3-dimensional space. Right: its projection on a 1-

dimensional line.

Figure 32: Left: sphere in a 3-dimensional space. Right: its projection on a 2-dimensional

plane.

4.3.3.6 Discussion and further work

The CCA method nicely answers the problem of nonlinear projection. The whole

process is as easy as PCA, but with the advantage of nonlinear capabilities. The

method has similarities with better known projection methods like Sammons'

mapping and MDS, but has proven to perform better on difficult artificial

databases.

Two improvements have been suggested to enhance the robustness of CCA: the

approximation of curvilinear distances, and more automation in the choice of the

parameters. The enhanced CDA method has thus been developed to be as

generic as possible. It must be clear however that, in such nonlinear context,

there is a compromise to find between the generic character of a method, and its

 Chapter 4. Dimension reduction 95

performances on specific databases. Another concern, not addressed here, would

be to develop CCA in order to make it as powerful as possible on a specific

database, looking at the way to adjust the parameters according to the specific

application, etc.

In our context of the development of a generic projection method, we believe that

the interpolation algorithm could still be improved. Testing the performances of

the method on various real-world datasets is also still a topic for further work.

Another point merits to be discussed. The concern of nonlinear projection with

algorithms such as CDA is to unfold the datasets, better than what PCA for

example would be able to do. Looking at Figure 31, this means that PCA applied

on the dataset of the left figure would create confusions between points (non-

bijective projection), while CDA generates a bijective projection. Unfortunately,

this advantage is accompanied by a drawback: there is no other choice than to

"break" the knot, at one point or another, in order to unfold it. Local neighborhoods

are thus not maintained, at least for a small part of the dataset. The

consequences of this drawback on the use of projected data instead of the original

ones should be evaluated.

4.4 Application of dimension reduction to time-

series forecasting

4.4.1 The time-series forecasting problem

Time series forecasting is a problem encountered in many industrial (electrical

load, river flow…) and economic (exchange rates, stock exchange…) tasks.

Often, prediction must be done without indication about the (unknown) underlying

process; input values to the prediction method must thus be chosen by trial and

error. In some situations, a priori information can be fed into the prediction

method, but this remains an exception: as an example, weekly and monthly past

values are obviously good candidates to predict the electrical load.

In most situations however information about the underlying process is hardly

available. The selection of a regressor, i.e. a vector of past values that will be

used as input to the forecasting algorithm, is thus a difficult task. On one hand, it

is interesting to have a large vector, containing as much information as possible.

The idea is that the forecasting algorithm will itself choose what the key features

are to take into account from this vector. On the other hand, high-dimensional

input vectors lead to a high-dimensional parameter space, with all problems and

limitations detailed in the first chapter of this work. A compromise is thus

necessary for optimal performances.

96 Chapter 4. Dimension reduction

Forecasting with nonlinear methods is then usually achieved through one of the

two following methods:

1. Linear prediction tools (for example ARX) are built on the same problem and

data. In the linear case, methods exist to choose the optimal regressor.

Optimal means here that the selection will lead to the best performances,

under the assumption that the forecasting model is linear. Of course, better

forecastings will hopefully be obtained with a nonlinear model. Moreover,

there is no guarantee that the optimal regressor chosen in the linear case will

lead to optimal performances when a nonlinear forecasting model will be used.

On the contrary, it will be seen in the examples below that nonlinear

forecasting algorithms will usually need smaller input vector than linear

methods. Nevertheless, choosing the optimal (in the linear case) regressor to

be used in the nonlinear algorithm is a good starting point.

2. Trials and errors (usually coupled to cross-validation) are used to evaluate the

optimal regressor with a nonlinear forecasting algorithm. Nevertheless, it

should be noted that this method is particularly computationally intensive. Not

only a large number of simulations must be carried out with different input

vectors, but it must be reminded that any simulation involving nonlinear

optimisation must itself be repeated several times, to compensate the risks for

falling in local minima, etc. Furthermore, choosing the regressor does not only

mean to choose the auto-regressive order, but rather each of the components

of the vector: even if a p-dimensional regressor is sufficient, maybe a better

choice than the p last values of the series could be done.

In the following, we will concentrate our investigations on auto-regressive models:

input values to the forecasting algorithm are restricted to past values of the series.

In real problems, so-called exogenous variables are used in addition to past

values. For example, weather variables are used in electrical load prediction, and

tendencies from other Stock Exchanges are used to predict the daily fluctuation of

a specific index. Our discussion below can be easily extended to situations where

exogenous variables are used. Nevertheless, extension of the theorem used

below, and experiments, remain a topic for further work.

The following paragraphs describe an original method used to choose the

variables that will feed a nonlinear forecasting algorithm. It uses nonlinear tools,

avoiding the first above drawback, and starts from the variables instead of

checking the results a posteriori, decreasing the computational load.

We will not address the problem of forecasting itself. We will concentrate on the

selection or the construction of the input vector to the forecasting method. We will

make the assumption that these two operations do not depend on one another: the

first step is to build the shortest vector containing the most information for a further

forecasting, and the second step consists in using this vector in the best possible

way. For our experiments, we will use standard MLP or RBFN (nonlinear)

 Chapter 4. Dimension reduction 97

networks for the prediction.

4.4.2 Input variable selection

Most prediction methods use variable selection. In the case of auto-regressive

models, input variables (to the prediction method) are selected among all past

values of the series, according to some criteria. For example, forecasting of the

hourly electrical load in a region or country (at time t + 1) usually requires the

values of the load at times t, t - 1, ... , t – p, but also the values at times t – 7, t –

 365, etc. since these last values have a probably stronger influence on the

prediction than other randomly selected ones.

Variable selection is the process of finding the best past values in the series. Let

us now imagine a hypothetic series where some past values are linearly

correlated, for example that

 () ()21 ptkxptx −=− . (67)

where k is some constant. In this case, either x(t – p1) or x(t – p2) can be used in a

linear auto-regressive prediction model; the form

 () () () () �� +−++−+=+ 110
1

11 ptxwtwwtxwtx p (68)

is strictly equivalent to the form

 () () () () �� +−++−+=+ 210
2

11 ptxwtxwtxwtx p ; (69)

the only difference is that the parameters multiplying x(t – p1) or x(t – p2) in both

expressions will be adjusted in such a way that

12
pp kww = . (70)

This adjustment will occur automatically in the fitting process of parameters w.

Note that we made the assumption that the term corresponding to time t – p1 is

null in equation (69) and the same for the term corresponding to time t – p2 in

equation (68).

In linear context, one could think to use PCA to select variables. PCA performed

on a set of past values including x(t – p1) and x(t – p2) will lead to a reduced set

containing one multiple of either x(t – p1) or x(t – p2). Regardless of the

multiplying coefficient, which in any case will be learned, or fitted, in the same way

98 Chapter 4. Dimension reduction

as in equation (70), this means that PCA will perform the selection of variables

between x(t – p1) and x(t – p2). Of course, the same argument could be developed

when variables (past values) are linear combination of several other past values,

since PCA will capture the linear relationship between any set of variables.

To conclude the discussion about the linear case, we have to mention that using

PCA to reduce the size of the auto-regressive vector will have little effect. Indeed,

if two past values are correlated as in the example above, keeping the two terms

in the prediction model will not increase the effective number of degrees of

freedom of the model (since the two terms are multiple one from the other). Using

fewer variables after PCA is thus only a formal change in the model, but without

effect on the bias-variance trade-off. Nevertheless, even if the dimension

reduction performed by the PCA will have no effect in this context, PCA will have

a beneficial effect in the reduction of the noise of the series, as detailed in the

introductory part of this chapter.

Note that the use of the terms "variable selection" is not strictly correct when PCA

is used. Indeed PCA will project the initial values, so that the resulting variables

are no longer selected from the initial set, but are linear combinations of the initial

values. However, a linear prediction tool used either on the initial values or on the

result of the PCA will compensate for PCA's linear combinations.

In real applications however, relations between past values, if any, will be

nonlinear in general. PCA will not capture these relations, and thus will be unable

to reduce the size of the auto-regressive vector. We remind once again that

reducing this size is of utmost importance for the quality of the prediction, as soon

as a nonlinear prediction model is used. There is thus a need for nonlinear

dimension reduction as explained in this chapter. In the following, we will mainly

use CCA as a way to project an initial regressor on a reduced one. The initial

regressor will be chosen so that it is deemed to contain all the information

necessary for an optimal forecasting. Then this vector will be projected on a

smaller one, whose (minimal) dimension must be determined. Choosing adequate

sizes for the initial and for the projected regressors will be discussed from the

viewpoint of Taken's theorem as detailed below.

In the following, we present two examples of time-series forecasting, using

nonlinear dimension reduction as preprocessing tool applied to the auto-regressive

vector. These two examples are variations around the same theme, but differ in

the implementation details (choice of the nonlinear dimension reduction method,

evaluation of the intrinsic dimension of the auto-regressive vector, choice of the

forecasting model used after dimension reduction, etc.) [Verleysen 99], [Lendasse

00], [Lendasse 00-2], [Lendasse 00-3]. Setting up a robust (insensitive to

parameters) method valid in a large spectrum of situations is still a research topic.

For this reason, we sacrifice our principle to refrain from examples. The validation

of the proposed method will not be possible in a theoretical way, as all possible

improvements in the prediction will result from a (positive) balance between

advantages (in the prediction, because of a smaller input vector) and the

 Chapter 4. Dimension reduction 99

drawbacks (the loss of information in the dimension reduction process). Our point

here is to show that preliminary studies will at least not decrease the

performances. Furthermore, even at equal performances, the fact that the method

is quite straightforward (no parameter tuning or sensitive choice) is viewed as an

advantage. For the same reasons, we present the two examples below without

attempt to compare the respective methodologies and implementation details.

Future work will include the design of a unique methodology to perform time-series

forecasting with nonlinear dimension reduction of the auto-regressive vector.

Before presenting the examples, we have to mention a central theorem related to

the choice of the autoregressive vector.

4.4.3 Taken's theorem

An important question when nonlinear dimension reduction is considered, is to

know the dimension of the space on which an initial regressor may be projected

without loss of information.

A first idea would be to consider the regressors as high-dimensional vectors, and

to extract the intrinsic dimension of the set of regressors, as explained in the first

chapter. As the intrinsic dimension is the "true" dimension of the set of vectors (or,

more precisely, of the submanifold containing the vectors), one could think that it

will be possible to project on a subspace of the same dimension.

Indeed this is possible, for example using the CCA method. Unfortunately, the

projection can be non-bijective, as illustrated in the example below. This is a

strong limitation in our case. Indeed, our idea to project the initial regressors on

smaller ones implicitly assumes that the same information is contained in both

vectors (or both sets of vectors). Not loosing information in the projection means

that the initial vectors could be retrieved from the projected ones (i.e. that the

projection may be inverted). Unfortunately, projecting on a space of dimension p,

where p is the intrinsic dimension of the set of initial regressors, will not guarantee

this condition. Let us examine for example the artificially generated series

illustrated in Figure 33. Figure 34 shows (left) the set of points in a two-

dimensional space, formed by the value of any sample in the series as a function

of the preceding sample, and (right) the set of points in a three-dimensional space,

formed by the value of any sample in the series as a function of the two preceding

samples. In both figures, the set of points forms a line, leading to the fact that the

intrinsic dimension of the series is one. Note that the thickness of the lines is due

to noise added when the series has been generated.

Nevertheless, knowing the value of xt-1 is not sufficient to predict the next value xt.

The set of points in Figure 34 (left) is clearly not a function: between two to four xt

values may correspond to the same xt-1. The situation is improved in Figure 34

(right), but it is difficult to see if the illustrated relation xt = f(xt-1, xt-2) is now a

100 Chapter 4. Dimension reduction

function or not.

Figure 33: Artificial series to illustrate Taken's theorem

Figure 34: State diagram of the series illustrated in Figure 33. Left: yt as a function of yt-1.

Right: yt as a function of yt-1 and yt-2.

Intuitively, it seems thus that, in some specific cases, one should project on a

subspace of dimension greater than p (the intrinsic dimension) in order to maintain

the projection bijective, i.e. to keep all the information in a set of regressors.

Taken's theorem [Takens 85, Camastra 99] makes this intuition more explicit.

Without going into the mathematical details that can be found in the references,

Taken's theorem states the following.

 Chapter 4. Dimension reduction 101

Let us imagine a time series x(t). The series must be sufficiently long and

stationary to make some kind of prediction possible. By stationary, we mean here

constant mean, variance and auto-correlation coefficients. Regressors are built

based on this series. If the series contains N values, and if the size chosen for the

regressors is d (d last values of the series), it will be possible to construct N – d

regressors associated to the next value in the series. It is assumed that size d is

chosen sufficiently large to contain all the information necessary for a "good"

prediction. If the series is known from value x(1) to value x(N), the set of

regressors will be

() () () ()
() () () ()

() () () () �
�
�
�
�

�

�

�
�
�
�
�

�

�

−

−−−−−
−−+−−

=

dxdxxx

NxNxdNxdNx

NxNxdNxdNx

R

121

231

121

�

����

�

�

. (71)

Note that value x(N) is not used here in the set of regressors, since it will be used

as output value (target) during learning of the forecasting function, for the first

regressor in the matrix (first line).

Then, the intrinsic dimension of the set of N – d d-dimensional regressors is

computed. Let q be this intrinsic dimension, with q < d.

Taken's theorem states that it is sufficient to use a size of regressor between q and

2q + 1 for the prediction, without loss of information (regardless of the way how the

prediction is performed).

Two conditions must be checked to validate the use of Taken's theorem:

1. If the value found for 2q + 1 is greater than d, this means that the initial value

d has not been taken sufficiently large. In this case, a greater value must be

chosen and the whole procedure must be repeated.

2. In any case, the procedure should be repeated with at least a second value for

d, greater than the initial one. The intrinsic dimension q found in both cases

must be equal; otherwise, the procedure should again be repeated with a

greater value for d.

Taken's theorem will be used in our procedure for time-series forecasting: we will

start from regressors of size 2q + 1 instead of the intuitive size q. The reason for

this has been made clear with the example in Figure 34.

The geometrical interpretation of Taken's theorem is that there exists a space of

dimension between q and 2q + 1, where the parametric representation of a q-

102 Chapter 4. Dimension reduction

surface is bijective with respect to the coordinates of the space. In other words,

the process underlying the time series has an intrinsic dimension equal to q, but

the q-surface could have intersection points if drawn in a space whose dimension

is too small. The smallest dimension of the space in which it is guaranteed that

the q-surface will not intersect itself is 2q + 1. It is thus necessary to use

regressors of dimension 2q + 1 to know the current position of the process in the

state space.

Despite these comments, and since the intrinsic dimension of the set of regressors

is q, it is possible to project the regressors from dimension 2q + 1 to q-dimensional

vectors, the projection being bijective. This is a direct consequence of the intrinsic

dimension concept. We will use CCA (or other projection methods) for this task. It

should be clear that the vectors before projection are regressors (they contain past

values of the initial series), while the vectors after projection aren't regressors

anymore: they do not contain past values of the series, but a (lower dimensional)

parametric representation of these values. This is in the spirit of a state vector.

Nevertheless, as CCA is used as preprocessing to the forecasting method, we will

continue to use the term regressor whether the initial regressor has been reduced

or not.

4.4.4 Example 1

The first example used to illustrate the method is an artificial time series built from

the nonlinear equation

 () () () ε+−+=+ 21
2

tbxtaxtx . (72)

where a and b are constants and ε stands for noise.

Obviously, the nonlinear regressor order of this time series is 2 (it is generated

from 2 past values). Let us note the absence of a x(t – 1) term, as well as the

presence of a noise ε (about 10% of the maximum value of the series). The series

does not contain any exogenous variable, and is shown in Figure 35.

We begin by looking at the results of a forecasting by a linear (auto-regressive)

model on this series. Figure 36 shows the sum (on 1000 points) of the quadratic

errors obtained with a linear AR model of increasing order. Obviously, the error

decreases with the order. However, it is also evident from Figure 36 that a linear

model cannot capture the nonlinear dynamics of the series with a low regressive

order (although only two past values are used to build the series).

 Chapter 4. Dimension reduction 103

Figure 35: artificial time series generated by equation (72).

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10

Figure 36: Sum of quadratic errors (on 1000 test points) obtained with an AR model for

different values of the regressor order.

We then proceed by using the nonlinear methodology described above. To ensure

that the whole dynamics of the series is collected, we build an initial regressor

matrix (equation 71) of order 6. The Grassberger-Procaccia algorithm to estimate

the intrinsic dimension of the series (i.e. of the set of regressors) gives 2.12, which

is close to the exact value 2. Note that the noise ε added to the series inevitably
increases the intrinsic dimension.

The following step of the method is the projection of the set of the points (rows of

the regressor matrix) from R
6
 to R

2
by CCA. The dimension of the final regressor

vector is thus 2. Note that Taken's theorem informs us that choosing 5 as initial

dimension would have been sufficient.

In a next step we use this 2-dimensional regressor as input to a nonlinear

prediction model. As an example, we use a Multi-Layer Perceptron with one

hidden layer and five hidden units. The sum of quadratic errors obtained with this

104 Chapter 4. Dimension reduction

MLP is around 5 (on 1000 points), which is significantly lower than the errors

illustrated in Figure 34 (linear model).

We also compare this result to the error obtained with a similar Multi-Layer

Perceptron, where the input vector is the set of d last values from the raw series.

Figure 37 shows this error as a function of d. The horizontal dotted line

corresponds to the error obtained with our method, for comparison; we conclude

that we obtain (for this example) an error similar to a result obtained by trial and

error on several nonlinear (MLP) models, which was the goal of our investigation.

This ease of implementation will be valuable when dealing with a “real-size” data

set for which the nonlinear regressor order is unknown.

0

2

4

6

8

10

12

1 2 3 4 5 6

Figure 37: Sum of quadratic errors (on 1000 points) obtained with a MLP network for

different values of the regressor order. The dotted horizontal line corresponds to the result

of the proposed method for comparison.

4.4.5 Example 2

An interesting example of time series in the field of finance is the Belgian Bel 20

index. The application of time series forecasting to financial market data is a real

challenge. The efficient market hypothesis (EMH) remains up to now the most

generally admitted one in the academic community, while essentially challenged

by the practitioners. Under EMH, one of the classical econometric tools used to

model the behaviour of stock market prices is the geometric Brownian motion. If it

does represent the true generating process of stock returns, the best prediction

that we can obtain of the future value is the actual one (they follow a random

walk). Results presented in this section must therefore be analysed with a lot of

caution.

To succeed in determining the variations of the Bel 20 index, other variables that

could have influence on the index are included as inputs (exogenous variables).

We selected international indices of security prices (SBF 250, S&P500, Topix,

FTSE100, etc), exchange rates (Dollar/Mark, Dollar/Yen, etc), and interest rates

(T-Bills 3 months, US Treasury Constant Maturity 10 years, etc).

 Chapter 4. Dimension reduction 105

We used 2600 daily data of the BEL 20 index over 10 years to have a significant

data set. The problem considered here is to forecast the sign of the variation of

the Bel 20 index at time t+5, from available data at time t.

According to Refenes et al. [Refenes 97] and Burgess [Burgess 95], we use 42

technical indicators directly resulting from the inputs and the exogenous variables,

for example:

• xt , xt-10, xt-20, xt-40, …, yt , yt-10, …: returns ;

• xt - xt-5, xt-5 - xt-10, …, yt - yt-5, …: differences of returns ;

• K(20), K(40), … : oscillators ;

• MM(10), MM(50), … : moving averages ;

• MME(10), MME(50), … : exponential moving averages ;

• etc.

If we carry out a Principal Component Analysis (PCA) on these 42 variables, we

note that 95% of the original variance is kept with the first 25 principal

components: 17 variables can be removed without significant loss of information.

The PCA is used to facilitate the subsequent processing by the CCA algorithm

(lower computational load and better convergence properties).

The time series of the target variable, xt+5, whose sign has to be predicted, is

illustrated in Figure 38.

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 500 1000 1500 2000 2500 3000

Figure 38: Daily values of the BEL20 index.

106 Chapter 4. Dimension reduction

This variable has to be predicted using the resulting 25 variables selected after

PCA. The interpolator we use is a Radial-Basis Function (RBFN) network as

described in chapter 3. Our interest goes to the sign of the prediction only, which

will be compared to the real sign of the target variable.

The Grassberger-Proccacia method is used to estimate the intrinsic dimension q of

the data set; we obtain an approximate value of 9. We then use the CCA

algorithm to project the 25-dimensional data (after PCA) on a 9-dimensional

space. The RBFN interpolator is used on the resulting 9-dimensional input

vectors.

Note that Takens' theorem does not apply here, since we have exogeneous

variables. Nevertheless, we use the same idea as behind this theorem. We start

from a set of sufficiently large vectors containing the information, and we project

them on vectors whose dimension is chosen according to the intrinsic dimension of

the initial set.

The network is trained with a moving window of 500 data. Each of these data

consists in a 9-dimensional input vector (see above) and a scalar target (variation

of the BEL 20 index). We use 500 data as a compromise between

• a small stationary set but insufficient for a successful training, and

• a large but less stationary training set.

For each window, the 500 input-target pairs form the training set, while the test set

consists in the input-target pair right after the training set. This procedure is

repeated for 2100 moving windows. On average, we obtain 60,3% correct

approximations of the sign of the series on the training sets, and 57.2% on the test

sets.

These results are encouraging. Moreover, it can be seen that better results are

obtained during some periods and worse results during others. The first ones

correspond to time periods where the series is more stationary than the last ones.

Figure 39 represents a moving average on 90 days on the results of the prediction.

It clearly shows that that the prediction results themselves do not form a random

series: when the forecasting is correct over several consecutive days, the

probability that it will be correct at the next time step is high.

To quantify this idea, we filter the results with the following heuristics. We look at

the average of sign predictions (correct – not correct) over the last 5 days. If this

average increases or remains constant at time t, then we take the forecasting at

time t+1 into consideration. If it decreases, then we disregard the forecasting at

time t+1. With this method, we keep 75.4% of the forecasts; the average score of

correct prediction rises to 65.3% (about 70% of increases and 60% of decreases).

This way of working is a first attempt to use our mathematical procedure in a real-

 Chapter 4. Dimension reduction 107

world financial context.

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800 1000 1200 1400 1600

Figure 39: Percentage of correct approximations of the sign on a 90-days moving window.

4.5 Conclusion and further work

The objective of this chapter is to bypass the difficult problem of learning high-

dimensional data, by projecting the data on lower dimensional spaces. Traditional

PCA may be used, either on the whole dataset either locally, or more advanced

nonlinear projection methods. We chose to detail the promising Curvilinear

Component Analysis algorithm, and we added a few improvements to this method

in order to make it more robust for a wide range of applications.

The main original contribution of this chapter is the application of the concept of

nonlinear projection to the problem of forecasting time series. Taken's theorem

gives us a theoretical justification of the possibility to predict time series with a

limited number of past values. Although Taken's theorem does not apply stricto

sensu to problems with exogeneous variables, we use the idea behind the theorem

to project large-dimensional input vectors on smaller ones, in order to improve the

prediction.

The results presented on two examples are preliminary. We are convinced that

the idea could be successfully used in complex prediction problems, like those

encountered in finance. Nevertheless, some progress has still to be made in the

robustness of the projection algorithm. Moreoever, the applicability of Taken's

theorem to problems with exogeneous variables should still be invectigated too.

Finally, the examples presented in this chapter use standard prediction methods

after the projection procedure; a better coupling between the projection and the

prediction should still be investigated.

Chapter 5

Discussion

In this work, we tried to describe problems and limitations related to the concept of
"learning from data", when high-dimensional data are involved. Working with
high-dimensional data is not a mathematical or theoretical question without
consequence in practical situations. On the contrary, most data analysis problems
encountered in real world applications explicitly deal with high-dimensional data.
Indeed high-dimensional related problems already arise in dimensions as low as 4
or 5!

Artificial neural networks have been "invented" to solve problems where other
more traditional data analysis tools fail. Since artificial neural networks can
effectively outperform other methods in specific situations, it has been argued that
they solve all problems, including those related to high dimensions! This is
obviously not true, even if this work shows methods to deal with such problems,
probably more effectively than conventional data analysis tools.

All data analysis tools have difficulties to work with high-dimensional data.
Generally speaking, this is not due to limitations of the methods themselves, but
rather on the intrinsic nature of high-dimensional data. Some examples were
given in Chapter 2 to show that basic concepts, such as the (Euclidean) distance
between vectors, lose their meaning when the dimension of the space increases.
It is thus not surprising that standard analysis tools based on these concepts will
fail.

In particular, two models for approximation of functions widely known in the neural
network community, the multi-layer perceptron (MLP) and radial basis function
networks (RBFN), do not perform identically with low- or high-dimensional data.
But the same problem exists with other methods, such as polynomials. Actually,
things are much worse with polynomials than with MLP or RBFN! Contrary to
some generally accepted ideas, we are convinced that RBFN networks, and more
generally models based on local approximation of data, are at least equally (and

probably better) suited to high-dimensional problems than global methods such as
MLP. The advantages of learning with local models are thus critical for the choice
of an approximation method.

110 Chapter 5. Discussion

It remains that learning high-dimensional data is not an easy task and usually
results in compromises. Statisticians and mathematicians call these compromises
the bias-variance dilemma, or bias-variance tradeoff (which is probably more

appropriate). The bias-variance tradeoff is detailed in Chapter 2. Shortly, it can
be viewed as the fact that the better a finite set of data (with noise) is
approximated by a function, the less useful this function is, because it fits the
noise rather than an underlying distribution of data. Of course, intentionally
degrading the approximation of the dataset to get rid of noise fitting is not a
solution (at least not an easy one)!

Most criticism over "neural network" methods over the last ten years is a
consequence of the underestimation of the bias-variance tradeoff by many
authors. It is not unusual to find articles in the literature, where authors use more
parameters in their model than the number of samples available for learning;
obtaining "good" learning performances is not difficult in these conditions!
Realistic performances, i.e. performances estimated in generalization, are
however much worse...

In this work, we tried to build methods that are a priori better suited than other

ones, for high-dimensional problems. This is the topic of Chapter 3. In most
cases, there is no proof that any of the proposed method will perform better than

any other one, in real high-dimensional problems. Everyone who ever worked with
high-dimensional nonlinear optimization methods knows that it is always possible
to find a problem that will prove the superiority of a method over the others,

whatever the method... For this reason, we avoided as much as possible to base
our arguments on examples. Our view is thus more guided by intuition, theoretical
proofs being hardly feasible in this context.

The second main direction of this work is a direct consequence of the bias-
variance tradeoff. Since a large part of the problem is based on the relative

number of parameters in a model compared to the number of samples available
for learning, the idea is to work in a space whose dimension is as low as possible.

Most real-world data are high-dimensional because they are represented in a high-

dimensional space. Indeed each dimension corresponds to a feature of the data,

which is often a physical quantity measured by a sensor in an engineering context,
or an indicator on the data in more mathematical framework. This does not mean
that each feature is necessary (for further approximation or classification), nor that
the features are independent one from another! One could take profit from this
redundancy or from the lack of usefulness of some information to reduce the
dimension of the feature space (keeping the same number of learning data), in
order to make the bias-variance tradeoff moving towards to right side. The
justification of this approach resides in the concept of intrinsic dimensionality of
data, which is usually lower than the representation dimension. This is the topic of
Chapter 4, where nonlinear dimension reduction tools are considered.

 Chapter 5. Discussion 111

Using tools that are better suited to high-dimensional data, and reducing the
dimension of data in real applications, does not mean that the curse of
dimensionality problem is solved. It must be accepted that this problem remains
effective, but that the two axes of this work are attempts to reduce it.

If the tradeoff cannot be entirely eliminated, a framework must be set up, where a

posteriori tests must be able to measure the results of learning, in an objective

way. Again, learning results are of no interest if they do not reflect the
generalization ability of a method, i.e. a measure of its performance when it is

used with new data not used during learning.

Regarding the fact that the number of data available in a real application is always
too low (with respect to the dimension of the space), it is inefficient to partition the
dataset into a learning and a test set, the first one being used to fit the model, and
the second one to test it. Using only a part of the dataset for learning will further
decrease the performances of the method. On the other hand, using the same
data for learning and test may lead to erroneous conclusions concerning the
generalization ability of the method.

Cross-validation [Stone 74] must be used to remedy to this problem. Shortly, the
dataset is again split into two parts, one used for learning and the other for test,
but this procedure is repeated for several (many) different partitions. Averaging
the results leads to a reasonable estimate of the performances of the method
applied to the whole dataset.

The ultimate version of cross-validation is the leave-one-out procedure, where
only one data is used for test at each iteration. Using almost all data for learning
gives an average performance that is close to the true performance of the method.
Nevertheless, it must be mentioned that, unlike most linear data analysis tools, the
learning must be entirely repeated for each partition of the dataset. (With linear
methods, it is usually possible to set up an incremental learning procedure where
the result of the learning with one training set is updated to reflect the change in
one data of the learning set; this is not possible in general with nonlinear
methods). It must be mentioned that leave-one-out applied to nonlinear
optimization algorithms often implies a huge computing load.

Other ways not considered here, to improve the bias-variance dilemma, are
related to pruning and/or regularization.

Pruning consists in the design of large networks (or methods with many
parameters), thus overfitting the data, and then reducing the complexity of the
network by removing connections (or parameters) based on a statistical test on the
learning data. Shortly, if a parameter has no or little influence on the interpolation
performance, it can be removed to improve the bias-variance tradeoff. Pruning is
an efficient method implemented in many commercial and freeware softwares, but
sometimes suffers from the lack of an objective stopping criterion. [Cottrell 95] is

112 Chapter 5. Discussion

to our knowledge the only existing attempt to relate the pruning stopping condition
to an objective statistical criterion.

Another possible direction to improve the bias-variance tradeoff is to include a
penalty term in the function to optimize. This term is used for regularization, i.e. to
avoid large parameters, or parameters having (alone) too much influence on the
interpolation results. The purpose is to make the approximation function
smoother, without changing the number of parameters. The recent Support Vector
Machines (SVM) theory is based on these concepts (see [Campbell 00] for a
review on SVM learning).

All these ways to improve the bias-variance tradeoff (and to improve learning with
neural networks in realistic problems) should not make forget that learning
complex, highly nonlinear data remains difficult. While tremendous progress has
been made in data analysis tools in the last decade, the design of robust methods,
aimed to be used in a large class of applications, without extensive a priori
knowledge about the data, remains an exciting challenge for further research.

References

[Amerijckx 98] C. Amerijckx, M. Verleysen, P. Thissen, J.D. Legat, "Image
compression by self-organized Kohonen map", IEEE Transactions on Neural

Networks, vol. 9, no. 3, pp. 503-507, May 1998.

[Blayo 92] F. Blayo, M. Verleysen, "Setting initial conditions for the RCE model”, in
Proceedings of the 1st IFIP Working Group 10.6 Workshop, Grenoble (France),

March 1992, pp.31-35.

[Broomhead 88] D.S. Broomhead, D. Lowe, "Multivariable functional interpolation
and adaptive networks", Complex Systems, no. 2, pp. 321-355, 1988.

[Burgess 95] A.N. Burgess, "Nonlinear model identification and statistical
significance tests and their application in financial modelling", in Artificial Neural

Networks, Proceedings of the Inst. Elect. Eng. Conf., 1995.

[Cacoullos 66] T. Cacoullos, "Estimation of a multivariate density", Annals of Inst.

Stat. Math., vol. 18, pp. 178-189, 1966.

[Choppin 98] A. Choppin, Unsupervised classification of high dimensional data by

means of self-organizing neural networks. M.Sc. thesis, Université catholique de

Louvain, Computer Science Dept., June 1998.

[Camastra 99] F. Camastra, A.M. Colla, "Neural short-term prediction based on
dynamics reconstruction", Neural Processing Letters, vol. 9, no. 1, pp. 45-52,

February 1999.

[Campbell 00] C. Campbell, "Algorithmic approaches to training Support Vector
Machines: a survey", in ESANN'2000 Proceedings, European Symposium on

Artificial Neural Networks, Bruges (Belgium), April 2000, to be published, D-Facto

publications (Brussels).

114 References

[Comon 92] P. Como, G. Bienvenu, T. Lefebvre, "Supervised design of optimal
receivers", in NATO Advanced Study Institute on Acoustic Signal Processing and

Ocean Exploration, Madeira (Portugal), July-August 1992.

[Comon 94] P. Comon, J.-L. Voz, M. Verleysen, "Estimation of performance
bounds in supervised classification", in ESANN'94 Proceedings, European

Symposium on Artificial Neural Networks, Brussels (Belgium), April 1994, pp. 37-

42, D-Facto publications (Brussels).

[Comon 95] P. Comon, "Supervised classification: a probabilistic approach", in
ESANN'95 Proceedings, European Symposium on Artificial Neural Networks,

Brussels (Belgium), April 1995, pp. 111-128, D-Facto publications (Brussels).

[Cottrell 95] M. Cottrell, B. Girard, Y. Girard, M. Mangeas, C. Muller, "Neural
modeling for time series: a statistical stepwise method for weight elimination",
IEEE Trans. on Neural Networks, vol. 6, no. 6, pp. 1355-1364, 1995.

[de Bodt 99] E. de Bodt, M. Cottrell, M. Verleysen, "Using the Kohonen algorithm
for quick initialization of simple competitive learning algorithm", in ESANN'99

Proceedings, European Symposium on Artificial Neural Networks, Bruges

(Belgium), April 1999, pp. 19-26, D-Facto publications (Brussels).

[Demartines 94] P. Demartines, "Analyse de données par réseaux de neurones
auto-organisés", Ph.D. dissertation, Institut National Polytechnique de Grenoble,
France, 1994.

[Demartines 97] P. Demartines, J. Hérault, "Curvilinear Component Analysis: a
self-organizing neural network for nonlinear mapping of data sets", IEEE Trans. on

Neural Networks, vol. 8, no.1, pp. 148-154, January 1997.

[Dittenbach 00] M. Dittenbach, D. Merkl, A. Rauber, "Using growing hierarchical
Self-Organizing Maps for document classification", in ESANN'2000 Proceedings,

European Symposium on Artificial Neural Networks, Bruges (Belgium), April 2000,

pp. 7-12, D-Facto publications (Brussels).

[Donckers 99] N. Donckers, A. Lendasse, V. Wertz, M. Verleysen, "Extraction of
intrinsic dimension using CCA – Application to blind sources separation", in
ESANN'99 Proceedings, European Symposium on Artificial Neural Networks,

Bruges (Belgium), April 1999, pp. 339-344, D-Facto publications (Brussels).

[Fort 00] J.C. Fort, G. Pagès, "Asymptotics of optimal quantizers for some scalar
distributions", submitted to Journal of Applied Probability, 2000.

 References 115

[Fritzke 91] B. Fritzke, "Let it grow – self organizing feature maps with problem
dependent cell structure", in Artificial neural networks, vol. 1, T. Kohonen, K.

Mäkisara, O. Simula, J. Kangas eds., ICANN'91 Proceedings, International

Conference on Artificial Neural Networks, Helsinki (Finland), June 1991, pp. 403-

408, North-Holland (Amsterdam), 1991.

[Fukunaga 89] K. Fukunaga, R.R. Hayes, "The reduced Parzen classifier", IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 4, pp. 423-

425, April 1989.

[Gersho 79] A. Gersho, "Asymptotically optimal block quantization", IEEE Trans.

Information Theory, vol. 25, pp. 373-380, 1979.

[Gersho 92] A. Gersho, R.M. Gray, Vector quantization and signal processing.

Kluwer Academic Publishers (Boston – Dordrecht – London), 1992.

[Gonzales 77] R.C. Gonzales, P. Wintz, Digital image processing. Addison-

Wesley Publishing Company (Reading, MA), 1977 (2
nd
 edition 1979).

[Gonzales 97] A.I. Gonzales, M. Graña, A. D'Anjou, F.X. Albizuri, M. Cottrell, "A
sensitivity analysis of the self-organizing maps as an adaptice one-pass non-
stationary clustering algorithm: the case of color quantization of image
sequences", Neural Processing Letters, vol. 6, no. 3, pp. 77-89, December 1997.

[Graf 00] S. Graf, H. Luschgy, Foundations of quantization of probability

distributions. Spirnger-Verlag, Lecture Notes in Mathematics 1730, 2000.

[Grassberger 83] P. Grassberger, I. Procaccia, "Measuring the strangeness of
strange attractors", Physica D, vol. 56, pp. 189-208, 1983.

[Guérin-Dugué 99] Guérin-Dugué A., Teissier P., Delso Gafaro G., Hérault J.,
"Curvilinear Component Analysis for high dimensional data representation: II.
Examples of additional mapping constraints in specific applications", in
Engineering Applications of Bio-Inspired Artificial Neural Networks, J. Mira, J.V.

Sanchez-Andres eds., IWANN'99 Proceedings, International Work-Conference on

Artificial and Natural Neural Networks, Alicante (Spain), June 1999, pp. 635-644,

Springer-Verlag, Lecture Notes in Computer Science 1607.

[Hentschel 83] H. G. E. Hentschel, I. Procaccia, "The infinite number of
generalized dimensions of fractals and strange attractors", Physica 8D, pp. 435-

444, 1983.

[Hertz 91] J. Hertz, A. Krogh, R. Palmer, Introduction to the theory of neural

computation. Santa Fe Institute, Addison-Wesley (Redwood City, CA), 1991.

116 References

[Hlavackova 97] K. Hlavackova, M. Verleysen, "Synthesis of neural networks
using splines for approximation of functions", Neurocomputing, vol. 17, nos. 3-4,

pp. 159-167, 1997.

[Kambhatla 97] N. Kambhatla, T.K. Leen, "Dimension reduction by local principal
component analysis", Neural Computation, vol. 9, no. 7, pp. 1493-1516, October

1997.

[Karhunen 99] J. Karhunen, S. Malaroiu, "Local independent component analysis
using clustering", in ICA'99 Proceedings, First International Workshop on

Independent Component Analysis and Signal Separation, Aussois (France),

January 1999, pp. 43-48.

[Kohonen 88] T. Kohonen, Self-organization and Associative Memory. Springer

Series in Information Sciences, Vol. 8, 2
nd
 edition, Springer (Berlin), 1988.

[Kohonen 95] T. Kohonen, Self-organising Maps. Springer Series in Information

Sciences, Vol. 30, Springer (Berlin), 1995.

[Kohonen 98] T. Kohonen, "Comparison of SOM point densities based on different
criteria", Neural Computation, vol. 11, no. 8, pp. 2081-2095, November 1999.

[Lee 99] J. Lee, B. van Hout, Analyse de données non linéaires par réseaux de

neurones artificiels (cartes auto-organisatrices). M.Sc. thesis, Université

catholique de Louvain, Computer Science Dept., June 1999.

[Lee 00] J. Lee, A. Lendasse, N. Donckers, M. Verleysen, "A robust nonlinear
projection method", in ESANN'2000 Proceedings, European Symposium on

Artificial Neural Networks, Bruges (Belgium), April 2000, pp. 13-20, D-Facto

publications (Brussels).

[Lendasse 00] A. Lendasse, E. de Bodt, V. Wertz, M. Verleysen, "Non-linear time
series forecasting – Application to the Bel 20 stock market index", European

Journal of Economic and Social Systems, vol. 14, no. 1, pp. 81-92, 2000.

[Lendasse 00-2] A. Lendasse, J. Lee, V. Wertz, M. Verleysen, "Time series
forecasting using CCA and Kohonen maps – Application to electricity
consumption", in ESANN'2000 Proceedings, European Symposium on Artificial

Neural Networks, Bruges (Belgium), April 2000, pp. 329-334, D-Facto publications

(Brussels).

[Lendasse 00-3] A. Lendasse, J. Lee, E. de Bodt, V. Wertz, M. Verleysen,
"Dimension reduction of technical indicators for the prediction of financial time
series – Application to the Bel 20 stock market index", submitted to IEEE

Transactions on Neural Networks, special issue on Financial Analysis.

 References 117

[Moody 89] J. Moody, C. Darken, "Learning with localized receptive fields", in
Proceedings of the 1988 Connectionist Models Summer School, G. Hinton, T.

Sejnowski eds., San Mateo (CA), Morgan Kaufmann, 1989.

[Orr 96] M.J.L. Orr, Introduction to Radial Basis Function networks. Technical

report, University of Edinburgh, Centre for Cognitive Science. Available from
http://www.anc.ed.ac.uk/~mjo/papers/intro.ps.

[Pagès 97] G. Pagès, "A space quantization method for numerical integration",
Journal of Computational and Applied Mathematics, vol. 89, pp. 1-38, 1997.

[Pearson 01] K. Pearson, "On lines and planes of closest fit to systems of points in
space", Phil. Mag., vol. 6, pp. 559-572.

[Poggio 90] T. Poggio, F. Girosi, "Networks for approximation and learning",
Proceedings of the IEEE, vol. 78, no. 9, pp. 1481-1497, September 1990.

[Refenes 97] A.N. Refenes, A.N. Burgess, Y. Bentz, "Neural networks in financial
engineering: a study in methodology", IEEE Transactions on Neural Networks, vol.

8, no. 6, pp. 1222-1267, 1997.

[Reilly 82] D. Reilly, L. Cooper, C. Elbaum, "A neural model for category learning",
Biological Cybernetics, vol. 45, no. 1, pp. 35-41, 1982.

[Ritter 86] H. Ritter, "Asymptotic level density for a class of vector quantization
processes", IEEE Transactions on Neural Networks, vol.2, pp. 173-175, 1991.

[Robbins 51] H. Robbins, S. Monro, "A stochastic approximation method", Ann.

Math. Stat., vol. 22, pp. 400-407, 1951.

[Sammon 69] J.W. Sammon, "A nonlinear mapping algorithm for data structure
analysis", IEEE Trans. on Computers, vol. C-18, pp. 401-409, 1969.

[Shepard 62] R. N. Shepard, "The analysis of proximities: Multidimensional scaling
with an unknown distance function, parts I and II", Psychometrika, vol. 27, pp. 125-

140 and 219-246, 1962.

[Shepart 65] R.N. Shepard, J.D. Carroll, "Parametric representation of nonlinear
data structures", in, Proceedings of the International Symposium on Multivariate

Analysis, P. R. Krishnaiah, ed. pp. 561-592, Academic Press, 1965.

[Silverman 86] B.W. Silverman, Density estimation for statistics and data analysis.

Chapman and Hall, 1986.

[Specht 90] D.F. Specht, "Probabilistic Neural Networks", Neural Networks, vol. 3,

no. 1, pp. 109-118, 1990.

118 References

[Stone 74] M. Stone, "Cross-validatory choice and assessment of statistical
predictions", J. R. Statistical Soc. B, vol. 36, pp. 111-147.

[Takens 85] F. Takens, "On the numerical determination of the dimension of an
attractor", in Lecture Notes in Mathematics vol. 1125, pp. 99-106, Springer-Verlag,

1985.

[Verleysen 92] M. Verleysen, F. Blayo, J.D. Legat, “LVQ-like procedure for the
initialization of the RCE model”, in Proceedings of the Congrès Satellite du

Congrès Européen de Mathématiques: Aspects Théoriques des Réseaux de

Neurones, Paris (France), July 1992, pp.35-45.

[Verleysen 93] M. Verleysen, P. Thissen, J.D. Legat, "Optimal decision surfaces in
LVQ1 classification of patterns", in ESANN'93 Proceedings, European Symposium

on Artificial Neural Networks, Brussels (Belgium), April 1993, pp. 209-214, D-Facto

publications (Brussels).

[Verleysen 93-2] M. Verleysen, P. Thissen, J.D. Legat, "Learning vector
classification: an improvement on LVQ algorithms to create classes of patterns", in
New Trends in Neural Computation, J. Mira, J. Cabestany, A. Prieto eds.,

IWANN'93 Proceedings, International Workshop on Artificial Neural Networks,

Sitges (Spain), June 1993, pp. 340-345, Springer-Verlag, Lecture Notes in
Computer Science 686.

[Verleysen 94] M. Verleysen, K. Hlavackova, "An optimized RBFN network for
approximation of functions", in ESANN'94 Proceedings, European Symposium on

Artificial Neural Networks, Brussels (Belgium), April 1994, pp. 175-180, D-Facto

publications (Brussels).

[Verleysen 96] M. Verleysen, K. Hlavackova, "Learning in RBFN networks", in
ICNN'96 Proceedings, International Conference on Neural Networks, Washington

DC (USA), June 1996, special sessions volume pp. 199-204.

[Verleysen 99] M. Verleysen, E. de Bodt, A. Lendasse, "Forecasting financial time
series through intrinsic dimension estimation and non-linear data projection", in
Engineering Applications of Bio-Inspired Artificial and Natural Neural Networks, J.

Mira, J. Sanchez-Andres eds., IWANN'99 Proceedings, International Workshop on

Artificial Neural Networks, Alicante (Spain), June 1999, pp. II596-II605, Springer-

Verlag, Lecture Notes in Computer Science 1607.

[Voz 94] J.-L. Voz, P. Thissen, M. Verleysen, J.-D. Legat, " Application of
suboptimal Bayesian classification to handwritten numerals recognition", in
Proceedings of the IEE European Workshop on Handwriting Analysis and

Recognition: A European Perspective, Brussels (Belgium), July 1994, pp. 9-1 – 9-

8, IEE publications (London).

 References 119

[Xie 93] Q. Xie, C.A. Laszlo, R.K. Ward, "Vector quantization technique for
nonparametric classifier design", IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 15, no. 12, pp. 1326-1330, December 1993.

[Zador 82] P.L. Zador, "Asymptotic quantization error of continuous signals and the
quantization dimension", IEEE Trans. on Information Theory, vol. IT-28, no. 2, pp.

139-149, March 1982.

