
Long-Term Time Series Forecasting Using Self-Organizing Maps: the Double
Vector Quantization Method

Geoffroy Simon
Université catholique de Louvain

DICE - Place du Levant, 3
B-1348 Louvain-la-Neuve Belgium

Email: simon@dice.ucl.ac.be

 Amaury Lendasse
Université catholique de Louvain

CESAME - Avenue Georges Lemaitre, 4
B-1348 Louvain-la-Neuve Belgium

Email: lendasse@auto.ucl.ac.be

Marie Cottrell
Université Paris I - Panthéon Sorbonne

UMR CNRS 8595
SAMOS-MATISSE - Rue de Tolbiac, 90

F-75634 Paris cedex 13 France
Email: marie.cottrell@univ-paris1.fr

 Michel Verleysen
Université catholique de Louvain

DICE - Place du Levant, 3
B-1348 Louvain-la-Neuve Belgium

Email: verleysen@dice.ucl.ac.be

Abstract

Kohonen self-organisation maps are a well know

classification tool, commonly used in a wide variety of
problems, but with limited applications in time series
forecasting context. In this paper, we propose a
forecasting method specifically designed for long-term
trends prediction, with a double application of the
Kohonen algorithm. We also consider practical issues
for the use of the method.

1. Introduction

The self-organizing maps (SOM), developed by

Teuvo Kohonen in the 80’s [1], has now become a well-
known tool, with established properties [2, 3]. These
Kohonen self-organizing maps have been commonly
used since their first description in a wide variety of
problems, as classification, feature extraction, pattern
recognition and other related applications

As shown in a few previous works [4, 5, 6, 7, 8, 9],
the SOM may be used to forecast time series at short
term. The method presented here shows how long-term
forecasting can be achieved when applying the SOM
algorithm twice, the goal being to predict global trends
and not accurate next values. Furthermore we will
explain how we can use favourably the SOM to
generalize the method for time series where we want to
predict more than a single scalar value. For example, in
the case of some a priori known periodicity, we could be
interested to predict all values for a period as a whole.
Such a case will be called a multi-dimensional

forecasting in the later, to be opposed to the prediction of
a unique scalar value, the one-dimensional case.

In the following of this paper, we first recall some
basic concepts about the SOM classification tool. Then
we introduce the proposed forecasting method, the
double vector quantization, and explain how to use it
with one- and multi-dimensional time series. Next, we
introduce the problem of model structure selection and
describe a methodology to validate the forecasting
capacities of our method. Finally, some experimental
results will be shown for both the one- and multi-
dimensional cases.

2. The Kohonen Self-Organizing Maps

The Kohonen self-organizing maps (SOM) can be

defined as an unsupervised classification algorithm from
the artificial neural network paradigm. Any run of this
algorithm results in a set, with a priori fixed size, of
prototypes. Each one of those prototypes is in fact a
vector of the same dimension as the input space. A
physical neighbourhood relation links the prototypes.
Due to this neighbourhood relation, we can easily
graphically represent the prototypes in a 1- or 2-
dimensional grid.

After the learning stage each prototype represents a
subset of the initial input set in which the inputs share
some similar features. Using Voronoï’s terminology, the
prototype corresponds to a centroïd of a region or zone,
each zone being one of the classes obtained by the
algorithm. The SOM thus realizes a vector quantization
(VQ) of the input space (a Voronoï tessellation) that
respects the original distribution of the inputs.

ANNPR'2003 proceedings - Artificial Neural Networks in Pattern Recognition
Florence (Italy), 12-13 September 2003, IAPR-TC3, pp. 8-14

Furthermore, a second property of the SOM is that the
resulting prototypes are ordered according to their
location in the input space. Similar features in the input
space are associated either to the same prototype (as in
classical VQ), or to two prototypes that are neighbours
on the grid. This last property, known as the topology
preservation, does not hold for other standard VQ
methods like competitive learning.

Though we could have chosen some other classical
VQ method, we decided to use the SOM in our double
vector quantization method because the ordered
prototypes can be easily represented graphically,
allowing a more intuitive interpretation: the 1- or 2-
dimensional grid can be viewed as a 1- or 2-dimensional
space where the inputs are projected by the SOM
algorithm, even if, in fact, the inputs are rather projected
on the prototypes themselves (with some interpolation if
needed in continuous case). This projection operation for
some specific input is proceeded by determining the
nearest prototype with respect to some distance metric
(usually the Euclidian distance).

3. The double quantization method

The method described here aims to forecast the long-

term evolution of a time series. It is based on the SOM
algorithm and can be divided into two stages: the
characterization and the forecasting. The characterization
stage can be viewed as the learning, while the
forecasting can be viewed as the use of a model in a
generalization procedure.

The method is presented for one-dimensional (scalar)
data and can be extended naturally to higher-dimension
data. Discussion about the method application to one-
and multi-dimensional time-series will be provided.

3.1. Method description: the characterization

Though the determination of an optimal regressor in

time series forecasting (at least in a non-linear prediction
case) is an interesting and open question, we consider
here that we know the optimal, or at least an adequate,
regressor of the time series. Classically, the regressor can
for example be chosen according to some statistical
resampling (cross-validation, bootstrap, etc.) procedure.

As for many other time series analysis methods, we
convert the inputs into regressors, leading to n-λ+1 data
in a λ-dimension space, where λ is the regressor size, or
lagging order, and n the number of data at our disposal in
the time series. We note the resulting data vectors
xt = {x(t-λ+1), …, x(t)}, where λ ≤ t ≤ n, and x(t) is the
original time series at our disposal with 1 ≤ t ≤ n.

We then manipulate the obtained vectors xt and create
the so-called “deformations” yt according to:

ttt xxy −= +1 . (1)
Note that each yt is associated to one xt. Putting all yt
together in chronological order, we get a second time

series, the deformation series in the so-called
deformation space to be opposed to the original space
containing the xt. Of course, we have n-λ deformations
of dimension λ.

We can now apply the self-organizing map algorithm
to each of these two spaces, classifying both the original
data xt and the deformations yt respectively. Note that in
practice any kind of map can be used, but we believe that
one-dimensional maps (or strings) are more adequate in
this context.

As a result of the vector quantization by the SOM on
all xt data of the original space, we obtain n1 prototypes
Xi with 1 ≤ i ≤ n1. Let us denote Ci the Voronoï class
associated to Xi. For the second application of the SOM
on all deformations yt in the deformation space, we
obtain n2 prototypes Yj, 1 ≤ j ≤ n2. Similarly we use the
notation C'j for the Voronoï class associated to Yj. Note
that section 4 will be devoted to the question of choosing
the values of n1 and n2.

To perform the forecasting, we need some more
information than the two sets of prototypes. We
therefore compute a matrix fij based on the relations
between the xt and the yt with respect to their projections
on the Xi and Yj respectively. We call this matrix fij the
frequency table, where element (i,j) contains the number
of xt projected on prototype Xi for which the associated
deformations yt are projected to the prototype Yj. In other
words, we count the number of xt in Ci such that the
corresponding yt are in C’j. Those empirical frequencies
are normalized by the number of data in the subset of the
original space corresponding to the prototype Xi i.e. the
number of xt in class Ci. More formally:

{ }
{ }it

jtttit
ij

Cx

'CxxCx
f

∈
∈−=∈

= +

#

ysuch that # 1 , (2)

with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. The class of each data is
determined by projecting them on the best matching
prototype according to the Euclidean distance metric
used in Kohonen algorithm. In that frequency table, each
line i represent the empirical conditional probability that
the deformation yt belongs to the classes C'j in the
deformation space, given the fact that the original vector
xt belongs to class Ci in the original space. The
computation of this frequency table completes the
characterization part of the method.

3.2. Method description: the forecasting

Once we have the prototypes Xi and Yj together with

the frequency table, we can forecast a time series
evolution over a rather long-term horizon k, where
horizon 1 is defined to be the next value, i.e. t+1 for
instant t.

The methodology for such a forecasting can be
described as follows. First, consider a new input x(t) for
some instant t. Knowing the x(t) series until time t, we
compute the corresponding xt. Therefore we can find the
corresponding prototype in the original space, for

ANNPR'2003 proceedings - Artificial Neural Networks in Pattern Recognition
Florence (Italy), 12-13 September 2003, IAPR-TC3, pp. 8-14

example Xk (this operation is in fact equivalent to
determining the class Ck of xt). We then look in the
frequency table and randomly choose a deformation
prototype Yl among the Yj according to the frequency
distribution defined by fkl, 1 ≤ l ≤ n2. The prediction for
instant t+1 is obtained using relation (1):

ltt Yxx̂ +=+1 . (3)
where 1+tx̂ is the estimate of xt+1 given by our time
series prediction model. However in this case we are not
interested in a vector 1+tx̂ of predictions, but only in a

single scalar value ()1+tx̂ . The predicted value ()1+tx̂

is finally extracted from the last column of 1+tx̂ .
We can iterate the described procedure, plugging in

()1+tx̂ for x(t), computing xt+1, obtaining 2+tx̂ and

extracting ()2+tx̂ . We then do the same for ()3+tx̂ ,

()4+tx̂ , …, ()ktx̂ + . This ends the run of the algorithm
to obtain a single prediction of the series at horizon k.

Next, remind that the goal of the method is not to
perform a single long-term prediction, but to extract
tendencies from possible forecasts. Therefore we repeat
many times the whole long-term forecasting procedure at
horizon k, as detailed above. As part of the method
(random choice of the deformation in the frequency
table, according to an empirical law) is stochastic,
repeating the procedure leads to different forecasts.
Observing the evolution of all those different long-term
predictions together with the evolution of their mean, we
can infer a global trend for the future of the time series.

We would like to emphasis once again on the fact that
the double quantization method is not designed for the
problem of determining a precise estimate for instant t+1
but is more specifically devoted to the problem of long-
term evolution, which can only be obtained in terms of
trends.

3.3. Using the method

As introduced earlier, we can apply our method to

both one- and multi-dimensional cases. We will now
explain how to manipulate the time series to make this
possible.

First, we consider the one-dimensional case. Consider
a scalar time series as for example the one shown in Fig
1.1 and Fig 1.2.

The simplest idea is to use a single value from the
series, the last known value at time t, to predict the value
at time t+1. Such way of working does not use many of
the available past information on the series and therefore
produces low-quality forecasts. This first approach is
illustrated in Fig. 1.1. The solid segments correspond to
the past information used for prediction, the dotted ones
to the prediction itself. Each horizontal line corresponds
to a single forecasting. The predictions sequence is
symbolized by the top-down left-right ordered sequence
of horizontal lines.

To improve the forecasting, we first transform the
data into regressors of size λ. We obtain n-λ+1 data of
dimension λ from the original 1-dimensional time series
of n data. In our case, each prediction is obtained by
forecasting a λ-dimensional vector 1+tx̂ ; a simple scalar
value of interest is then extracted from this vector. This
is illustrated in Fig 1.2. The dotted segments in Fig. 1.2
correspond to the ()1+tx̂ values extracted from the 1+tx̂
predictions.

The choice of an optimal regressor falls out of the
scope of this paper. In the following the regressor is
supposed to contain the most relevant information from
the past evolution of the time series i.e. we suppose it to
be optimal.

Figure 1.1 : Using scalar information t (solid)
for t+1 prediction (doted).

Figure 1.2 : Applying a regressor to the data:
using t-k, …, t (solid) to predict t+1 (doted).

Secondly, we now consider the multi-dimensional

case. This case can be encountered when, for example,
we know that there exists some periodicity µ in the time
series. In such situation it could be advantageous to
forecast in a single step all values for the existing period,
what we will call in the later a block (see Fig 2.1 and Fig
2.2).

In these figures, we illustrate a series where the size
of the blocks is µ=7. Fig. 2.1 shows a prediction
paradigm similar to the one in Fig. 1.1, where the scalar
values have been replaced by 7-dimensional blocks. In
other words, the prediction of the next 7 values (()1+tx̂

ANNPR'2003 proceedings - Artificial Neural Networks in Pattern Recognition
Florence (Italy), 12-13 September 2003, IAPR-TC3, pp. 8-14

to ()7+tx̂) is based only on the last 7 known ones (x(t-
6) to x(t)). Considering again an original scalar series of
n values, we are able to build n/µ-1 regressors (under the
hypothesis that n is a multiple of µ). The prediction
procedure described in Section 3.2 is then applied in an
identical way, with λ=µ. Only the last step of this
procedure is changed: instead of keeping only one value

()1+tx̂ from the vector prediction 1+tx̂ , we keep all µ
values of this vector as forecasts.

The next step is to extend this procedure to the case
where more than µ past values are considered. This is
illustrated in Fig. 2.2, where the size λ of the regressors
is a multiple p (here p=2) of µ. In that case again, the
procedure from Section 3.2 is applied, with λ=pµ. µ
predictions (()1+tx̂ to ()ktx̂ +) are then extracted from

the λ-dimensional prediction 1+tx̂ .

Figure 2.1 : Predicting a block at instant t+1
(doted) of µ values (corresponding to the
periodicity of the time series) using the
information of the block at t (solid)

Figure 2.2 : Manipulating regressors of
blocks of data: predicting µ values at
instant t (doted) using information of the p
previous blocks of length µ (solid).

4. Model structure selection

In section 3.1, we introduced the characterization of

the double quantization method, which can be viewed as

the learning stage of the algorithm. We have then said
that a priori values for n1 and n2 have to be chosen.

Once we have chosen n1 and n2, we can apply the
characterization, which results in a model of the time
series. But, of course, we can choose other values for n1
and n2 and thus obtain another model. Since we can have
many different models for the same time series, it
becomes necessary to compare these models with respect
to a criterion and select the best one as “the” idealized
description of the time series.

4.1. Selecting the best model

As usually done in this context of model selection, we

use a simple cross-validation technique. We divide the
whole set of inputs at our disposal in two different
subsets: the learning set, used for the characterization,
and the validation set, used for the forecasting. Then we
learn the n1+n2 prototypes on the learning set, and
validate the resulting model during the forecasting stage
of our method.

If the idea is quite simple, it is not really so simple in
practice. Having no information about the possible
values for n1 and n2, we have to test a relatively large
range of values for n1 and n2, leading to a double loop in
the model selection procedure and a final number of, at
most, n1 x n2 models.

To compare the n1 x n2 models, we define a quadratic
error criterion between the predicted scalar output

()1+tx̂ given by the model and the real value x(t+1) in
the validation set :

() ()()211 +−+= tx̂txεt . (4)
The validation error achieved by a specific model

with n1 prototypes in its original space and n2 prototypes
in its deformation space is thus the sum-of-squares error
over the whole validation set Vset:

() ()()∑ +−+=
setV

nn tx̂txSSE 211
21

. (5)

This criterion is sufficient for comparing the models
but has a limited intuitive interpretation. We therefore
introduce an normalized error criterion:

() ()()

() ()[]()∑

∑

+−+

+−+

=

set

set

V

V
nn

txEtx

tx̂tx

NSSE
2

2

11

11

21
, (6)

where E[.] denotes the mean and is estimated on the
known values of the series. The interpretation of this
criterion is more intuitive: if its value is near one, then
we are considering a model that does not perform better
than giving the mean as prediction, which indeed is a
poor informative forecasting.

The comparison of the different tested models with
different combinations of n1 and n2 can be summarized
graphically in a plot of the error (NSSE) with respect to
the values of n1 and n2 respectively.

ANNPR'2003 proceedings - Artificial Neural Networks in Pattern Recognition
Florence (Italy), 12-13 September 2003, IAPR-TC3, pp. 8-14

4.2. Evaluating the performances of our method

In the experimental results shown below, we do not

divide our input database in two subsets but in three: the
learning set for the characterization, the validation set for
the forecasting, as above, and we keep unused a third set,
the test set, for an estimation of the generalization
performances of our method. The aim is to observe how
the best model can behave in real conditions.

The first step of our methodology is to choose the
best model with the learning and validation sets, as
detailed in section 4.1. Once we know the values for n1
and n2, we can perform a new learning on a new set of
data, recomposed from the previous learning and
validation sets. The assumption here is that the best
model with n1 and n2 prototypes in each space is still the
best for the new learning set, and that its performances
are strengthened with the information obtained from the
enhanced learning set. We then use the forecasting part
of the method to forecast the long-term evolution of the
time series.

In real applications of our method, these predictions
are the final results. In our case, as we kept unused a
third part of the time series, we can compare those final
results with the real values, and then evaluate the
generalisation performances of the method over the test
set.

5. Experimental result

We have applied our method on an electrical

consumption time series [5], testing the generalisation
performances of the selected best model for this multi-
dimensional example.

The whole dataset contains about 72 000 hourly data
and is plotted in Fig 3. Due to the daily periodicity of the
time series, we are interested in daily predictions and
thus consider here blocks of µ=24 values, the time
window becoming daily instead of hourly. This is an
illustration of the multi-dimensional case described in
section 3.3.

Figure 3 : The electrical consumption time
series.

Having now at our disposal 3000 data, we use 2000 of
them for the learning, 800 for the validation and 200 for
the test. Note that each of these three sets contains 24-
dimensional vectors.

We apply here many different regressors to the series,
using our intuitive understanding of the process. As a
result, we choose a final regressor with the 24 hourly
values of today, the 24 values of yesterday, the 24 ones
of two days ago, of six and of seven days ago. This
regressor is maybe not the optimal one, but it is the one
that makes the lowest error compared to other regressors
we have tested. Since the regressor contains p = 5 data of
dimension 24, we work in a 120-dimensional space.

We then run the algorithm again on the learning set
with values for n1 and n2 varying each from 5 to 200
prototypes with an increment of 5. We thus evaluate the
validation error for 1600 different models, and we obtain
in Fig. 4 the graph of the SSE error. We choose the best
n1 and n2 to be 160 and 140 respectively; the model
results in a NSSE of 0.1369.

0

50

100

150

200

0
50

100
150

200

100

150

200

250

300

350

Figure 4 : Sum-of-squares error versus the
number of prototype in each original and
deformation space.

We then learn another model with 160 and 140

parameters vectors in each space with the new learning
set, now containing 2000+800 data. The forecasting
obtained from this model during the forecasting stage of
our algorithm is repeated 1000 times. We show in Fig. 5
a comparison between the mean of those 1000 long-term
predictions and the real values. A confidence interval at
95 % level is also provided. This interval covers what we
call an envelope in which the time series will most
probably stay at long term. A first zoom is provided for
convenience (Fig. 5), and a second one (Fig. 6) draws
the attention to the first three days of the forecast. Those
forecasts are obtained while iterating the predictions
from instant t until the final long-term horizon k. For
example, from 1+tx̂ , 2+tx̂ and 3+tx̂ , each of them in
dimension 120, we extract blocks of 24 values to obtain
the 72 first predicted hourly values for the first three
days depicted in figure 6.

ANNPR'2003 proceedings - Artificial Neural Networks in Pattern Recognition
Florence (Italy), 12-13 September 2003, IAPR-TC3, pp. 8-14

Figure 5 : Comparison between the true
values (dashed) and the mean of the
predictions (solid), plus the envelope
(confidence interval at 95 % level, doted).

Figure 6 : Comparison between the true
values (dashed) and the predictions mean
(solid) for the first 72 hours (3 days).

Fig. 7 shows 3 predictions obtained by the Monte-

Carlo procedure (before taking the mean). This figure
tends to empirically prove the consistence of the method.
Indeed different predictions seem to have the same
shape; this is our main argument for determining long-
term trends. Fig. 8 illustrates the robustness of the
method: we take in purpose a model that is not the best
one (with n1 = 150 and n2 = 150) and show the same
comparisons as in Fig. 5. Though this model has a NSSE
of 0.1858, we can see that the results are quite similar.
For convenience, Fig. 9 presents a comparison of the
forecasting mean between the best model and our second
non-optimal choice for the first 72 hours.

Figure 7 : Plot of 3 simulations obtained by
the generic Monte-Carlo procedure (before
taking the mean).

Figure 8 : Comparison between the true
values (dashed) and the predictions mean
(solid) plus the envelope (confidence
interval at level 95 %, doted) for a sub-
optimal model with n1 = 150 and n2 = 150.

Figure 9 : Forecastings mean comparison
between the best model (solid) and another
sub-optimal model (dashed) for the first 72
hours (3 days) with the real values (doted).

ANNPR'2003 proceedings - Artificial Neural Networks in Pattern Recognition
Florence (Italy), 12-13 September 2003, IAPR-TC3, pp. 8-14

6. Conclusion

In this paper, we have presented a time-series

forecasting method based on a double classification of
the regressors and of their differences (deformations),
using the SOM algorithm. The use of SOMs makes it
possible to apply the method both on one- and multi-
dimensional time series, as discussed in section 3.3 and
illustrated in section 5. A model selection procedure
aimed to an automatic choice of the parameters (number
of SOM classes) in the method has also been presented,
in addition to some empirical proofs of the consistence
and robustness of the method.

The proposed method is not designed to obtain an
accurate forecast of the next values of a series, but rather
aims to determine long-term trends.

Further work includes an additional Monte-Carlo
procedure for the characterization stage, in order to
avoid being trapped in a local minimum as a result of the
SOM initialisation, and the use of more efficient
validation procedures as (k-fold) cross-validation, leave-
one-out or bootstrap.

7. Acknowledgements

We would like to thank Professor Osowsky from

Warsaw Technical University for providing us the Polish
Electrical Consumption data used in our example. G.
Simon is funded by the Belgian F.R.I.A. M. Verleysen is
Senior Research Associate of the Belgian F.N.R.S. The
work of A. Lendasse is supported by the Interuniversity
Attraction Poles (IAP), initiated by the Belgian Federal
State, Ministry of Sciences, Technologies and Culture.
The scientific responsibility rests with the authors.

8. References

 [1] Kohonen T., Self-organising Maps, Springer Series in
Information Sciences, Vol. 30, Springer, Berlin, 1995.

[2] Cottrell M., Fort J. C., Pagès G., Theoretical aspects of the
SOM algorithm, Neurocomputing, 21, p. 119-138, 1998.

[3] Cottrell M., de Bodt E., Verleysen M., Kohonen maps
versus vector quantization for data analysis, in Proc of ESANN,
M. Verleysen Ed., D Facto, Brussels, 1997.

[4] Cottrell M., de Bodt E., Grégoire Ph., Simulating Interest
Rate Structure Evolution on a Long Term Horizon: A Kohonen
Map Application, Proceedings of Neural Networks in The
Capital Markets, Californian Institute of Technology, World
Scientific Ed., Pasadena, 1996.

[5] M.Cottrell, B.Girard, P.Rousset, Forecasting of curves
using a Kohonen classification, Journal of Forecasting, 17, p.
429-439.

[6] Walter J., Ritter H., Schulten K., Non-linear prediction with
self-organising maps, Proc. of IJCNN, San Diego, CA, 589-
594, July 1990.

[7] Juha Vesanto, Using the SOM and Local Models in Time-
Series Prediction, In Proceedings of Workshop on Self-
Organizing Maps (WSOM’97), Espoo, Finland, pp. 209-214,
1997.

[8] T. Koskela, M. Varsta, J. Heikkonen, and K. Kaski,
"Recurrent SOM with Local Linear Models in Time Series
Prediction", Proc. of ESANN'98, 6th European Symposium on
Artificial Neural Networks, D-Facto, Brussels, Belgium, pp.
167-172, April 1998.

[9] Lendasse A., Verleysen M., de Bodt E., Cottrell M.,
Grégoire P., Forecasting Time-Series by Kohonen
Classification, European Symposium on Artificial Neural
Networks 1998, Bruges (Belgium), April 1998, pp221-226, D-
Facto Publications (Brussels), ISBN 2-9600049-8-1.

ANNPR'2003 proceedings - Artificial Neural Networks in Pattern Recognition
Florence (Italy), 12-13 September 2003, IAPR-TC3, pp. 8-14

