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Abstract 

 
Kohonen self-organisation maps are a well know 

classification tool, commonly used in a wide variety of 
problems, but with limited applications in time series 
forecasting context. In this paper, we propose a 
forecasting method specifically designed for long-term 
trends prediction, with a double application of the 
Kohonen algorithm. We also consider practical issues 
for the use of the method. 

 
 

1. Introduction 
 
The self-organizing maps (SOM), developed by 

Teuvo Kohonen in the 80’s [1], has now become a well-
known tool, with established properties [2, 3]. These 
Kohonen self-organizing maps have been commonly 
used since their first description in a wide variety of 
problems, as classification, feature extraction, pattern 
recognition and other related applications 

As shown in a few previous works [4, 5, 6, 7, 8, 9], 
the SOM may be used to forecast time series at short 
term. The method presented here shows how long-term 
forecasting can be achieved when applying the SOM 
algorithm twice, the goal being to predict global trends 
and not accurate next values. Furthermore we will 
explain how we can use favourably the SOM to 
generalize the method for time series where we want to 
predict more than a single scalar value. For example, in 
the case of some a priori known periodicity, we could be 
interested to predict all values for a period as a whole. 
Such a case will be called a multi-dimensional 

forecasting in the later, to be opposed to the prediction of 
a unique scalar value, the one-dimensional case. 

In the following of this paper, we first recall some 
basic concepts about the SOM classification tool. Then 
we introduce the proposed forecasting method, the 
double vector quantization, and explain how to use it 
with one- and multi-dimensional time series. Next, we 
introduce the problem of model structure selection and 
describe a methodology to validate the forecasting 
capacities of our method. Finally, some experimental 
results will be shown for both the one- and multi-
dimensional cases. 

 
2. The Kohonen Self-Organizing Maps 

 
The Kohonen self-organizing maps (SOM) can be 

defined as an unsupervised classification algorithm from 
the artificial neural network paradigm. Any run of this 
algorithm results in a set, with a priori fixed size, of 
prototypes. Each one of those prototypes is in fact a 
vector of the same dimension as the input space. A 
physical neighbourhood relation links the prototypes. 
Due to this neighbourhood relation, we can easily 
graphically represent the prototypes in a 1- or 2-
dimensional grid. 

After the learning stage each prototype represents a 
subset of the initial input set in which the inputs share 
some similar features. Using Voronoï’s terminology, the 
prototype corresponds to a centroïd of a region or zone, 
each zone being one of the classes obtained by the 
algorithm. The SOM thus realizes a vector quantization 
(VQ) of the input space (a Voronoï tessellation) that 
respects the original distribution of the inputs. 
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Furthermore, a second property of the SOM is that the 
resulting prototypes are ordered according to their 
location in the input space. Similar features in the input 
space are associated either to the same prototype (as in 
classical VQ), or to two prototypes that are neighbours 
on the grid. This last property, known as the topology 
preservation, does not hold for other standard VQ 
methods like competitive learning. 

Though we could have chosen some other classical 
VQ method, we decided to use the SOM in our double 
vector quantization method because the ordered 
prototypes can be easily represented graphically, 
allowing a more intuitive interpretation: the 1- or 2-
dimensional grid can be viewed as a 1- or 2-dimensional 
space where the inputs are projected by the SOM 
algorithm, even if, in fact, the inputs are rather projected 
on the prototypes themselves (with some interpolation if 
needed in continuous case). This projection operation for 
some specific input is proceeded by determining the 
nearest prototype with respect to some distance metric 
(usually the Euclidian distance). 

 
3. The double quantization method 

 
The method described here aims to forecast the long-

term evolution of a time series. It is based on the SOM 
algorithm and can be divided into two stages: the 
characterization and the forecasting. The characterization 
stage can be viewed as the learning, while the 
forecasting can be viewed as the use of a model in a 
generalization procedure. 

The method is presented for one-dimensional (scalar) 
data and can be extended naturally to higher-dimension 
data. Discussion about the method application to one- 
and multi-dimensional time-series will be provided. 

 
3.1. Method description: the characterization 

 
Though the determination of an optimal regressor in 

time series forecasting (at least in a non-linear prediction 
case) is an interesting and open question, we consider 
here that we know the optimal, or at least an adequate, 
regressor of the time series. Classically, the regressor can 
for example be chosen according to some statistical 
resampling (cross-validation, bootstrap, etc.) procedure. 

As for many other time series analysis methods, we 
convert the inputs into regressors, leading to n-λ+1 data 
in a λ-dimension space, where λ is the regressor size, or 
lagging order, and n the number of data at our disposal in 
the time series. We note the resulting data vectors 
xt = {x(t-λ+1), …, x(t)}, where λ ≤ t ≤ n, and x(t) is the 
original time series at our disposal with 1 ≤ t ≤ n. 

We then manipulate the obtained vectors xt and create 
the so-called “deformations” yt according to: 

ttt xxy −= +1 . (1) 
Note that each yt is associated to one xt. Putting all yt 
together in chronological order, we get a second time 

series, the deformation series in the so-called 
deformation space to be opposed to the original space 
containing the xt. Of course, we have n-λ deformations 
of dimension λ.   

We can now apply the self-organizing map algorithm 
to each of these two spaces, classifying both the original 
data xt and the deformations yt respectively. Note that in 
practice any kind of map can be used, but we believe that 
one-dimensional maps (or strings) are more adequate in 
this context. 

As a result of the vector quantization by the SOM on 
all xt data of the original space, we obtain n1 prototypes 
Xi with 1 ≤ i ≤ n1. Let us denote Ci the Voronoï class 
associated to Xi. For the second application of the SOM 
on all deformations yt in the deformation space, we 
obtain n2 prototypes Yj, 1 ≤ j ≤ n2. Similarly we use the 
notation C'j for the Voronoï class associated to Yj. Note 
that section 4 will be devoted to the question of choosing 
the values of n1 and n2. 

To perform the forecasting, we need some more 
information than the two sets of prototypes. We 
therefore compute a matrix fij based on the relations 
between the xt and the yt with respect to their projections 
on the Xi and Yj respectively. We call this matrix fij the 
frequency table, where element (i,j) contains the number 
of xt projected on prototype Xi for which the associated 
deformations yt are projected to the prototype Yj. In other 
words, we count the number of xt in Ci such that the 
corresponding yt are in C’j. Those empirical frequencies 
are normalized by the number of data in the subset of the 
original space corresponding to the prototype Xi i.e. the 
number of xt in class Ci. More formally: 

{ }
{ }it

jtttit
ij
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'CxxCx
f

∈
∈−=∈

= +

#

ysuch that  # 1 , (2) 

with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. The class of each data is 
determined by projecting them on the best matching 
prototype according to the Euclidean distance metric 
used in Kohonen algorithm. In that frequency table, each 
line i represent the empirical conditional probability that 
the deformation yt belongs to the classes C'j in the 
deformation space, given the fact that the original vector 
xt belongs to class Ci in the original space. The 
computation of this frequency table completes the 
characterization part of the method. 

 
3.2. Method description: the forecasting 

 
Once we have the prototypes Xi and Yj together with 

the frequency table, we can forecast a time series 
evolution over a rather long-term horizon k, where 
horizon 1 is defined to be the next value, i.e. t+1 for 
instant t.  

The methodology for such a forecasting can be 
described as follows. First, consider a new input x(t) for 
some instant t. Knowing the x(t) series until time t, we 
compute the corresponding xt. Therefore we can find the 
corresponding prototype in the original space, for 
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example Xk (this operation is in fact equivalent to 
determining the class Ck of xt). We then look in the 
frequency table and randomly choose a deformation 
prototype Yl among the Yj according to the frequency 
distribution defined by fkl, 1 ≤ l ≤ n2. The prediction for 
instant t+1 is obtained using relation (1): 

ltt Yxx̂ +=+1 . (3) 
where 1+tx̂  is the estimate of xt+1 given by our time 
series prediction model. However in this case we are not 
interested in a vector 1+tx̂  of predictions, but only in a 

single scalar value ( )1+tx̂ . The predicted value ( )1+tx̂  

is finally extracted from the last column of 1+tx̂ . 
We can iterate the described procedure, plugging in 

( )1+tx̂  for x(t), computing xt+1, obtaining 2+tx̂  and 

extracting ( )2+tx̂ . We then do the same for ( )3+tx̂ , 

( )4+tx̂ , …, ( )ktx̂ + . This ends the run of the algorithm 
to obtain a single prediction of the series at horizon k. 

Next, remind that the goal of the method is not to 
perform a single long-term prediction, but to extract 
tendencies from possible forecasts.  Therefore we repeat 
many times the whole long-term forecasting procedure at 
horizon k, as detailed above.  As part of the method 
(random choice of the deformation in the frequency 
table, according to an empirical law) is stochastic, 
repeating the procedure leads to different forecasts.  
Observing the evolution of all those different long-term 
predictions together with the evolution of their mean, we 
can infer a global trend for the future of the time series.  

We would like to emphasis once again on the fact that 
the double quantization method is not designed for the 
problem of determining a precise estimate for instant t+1 
but is more specifically devoted to the problem of long-
term evolution, which can only be obtained in terms of 
trends. 

 
3.3. Using the method 

 
As introduced earlier, we can apply our method to 

both one- and multi-dimensional cases. We will now 
explain how to manipulate the time series to make this 
possible. 

First, we consider the one-dimensional case. Consider 
a scalar time series as for example the one shown in Fig 
1.1 and Fig 1.2.  

The simplest idea is to use a single value from the 
series, the last known value at time t, to predict the value 
at time t+1. Such way of working does not use many of 
the available past information on the series and therefore 
produces low-quality forecasts. This first approach is 
illustrated in Fig. 1.1. The solid segments correspond to 
the past information used for prediction, the dotted ones 
to the prediction itself. Each horizontal line corresponds 
to a single forecasting. The predictions sequence is 
symbolized by the top-down left-right ordered sequence 
of horizontal lines.  

To improve the forecasting, we first transform the 
data into regressors of size λ. We obtain n-λ+1 data of 
dimension λ from the original 1-dimensional time series 
of n data. In our case, each prediction is obtained by 
forecasting a λ-dimensional vector 1+tx̂ ; a simple scalar 
value of interest is then extracted from this vector. This 
is illustrated in Fig 1.2.  The dotted segments in Fig. 1.2 
correspond to the ( )1+tx̂  values extracted from the 1+tx̂  
predictions. 

The choice of an optimal regressor falls out of the 
scope of this paper. In the following the regressor is 
supposed to contain the most relevant information from 
the past evolution of the time series i.e. we suppose it to 
be optimal.  

 
Figure 1.1 : Using scalar information t (solid) 
for t+1 prediction (doted). 

 
Figure 1.2 : Applying a regressor to the data: 
using t-k, …, t (solid) to predict t+1 (doted).  
 
Secondly, we now consider the multi-dimensional 

case. This case can be encountered when, for example, 
we know that there exists some periodicity µ in the time 
series. In such situation it could be advantageous to 
forecast in a single step all values for the existing period, 
what we will call in the later a block (see Fig 2.1 and Fig 
2.2).  

In these figures, we illustrate a series where the size 
of the blocks is µ=7. Fig. 2.1 shows a prediction 
paradigm similar to the one in Fig. 1.1, where the scalar 
values have been replaced by 7-dimensional blocks. In 
other words, the prediction of the next 7 values ( ( )1+tx̂  
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to ( )7+tx̂ ) is based only on the last 7 known ones (x(t-
6) to x(t)). Considering again an original scalar series of 
n values, we are able to build n/µ-1 regressors (under the 
hypothesis that n is a multiple of µ). The prediction 
procedure described in Section 3.2 is then applied in an 
identical way, with λ=µ. Only the last step of this 
procedure is changed: instead of keeping only one value 

( )1+tx̂  from the vector prediction 1+tx̂ , we keep all µ 
values of this vector as forecasts. 

The next step is to extend this procedure to the case 
where more than µ past values are considered. This is 
illustrated in Fig. 2.2, where the size λ of the regressors 
is a multiple p (here p=2) of µ. In that case again, the 
procedure from Section 3.2 is applied, with λ=pµ. µ 
predictions ( ( )1+tx̂  to ( )ktx̂ + ) are then extracted from 

the λ-dimensional prediction 1+tx̂ . 

 
Figure 2.1 : Predicting a block at instant t+1 
(doted) of µ values (corresponding to the 
periodicity of the time series) using the 
information of the block at t (solid)  

 
Figure 2.2 : Manipulating regressors of 
blocks of data: predicting µ values at 
instant t (doted) using information of the p 
previous blocks of length µ (solid). 
 

4. Model structure selection 
 
In section 3.1, we introduced the characterization of 

the double quantization method, which can be viewed as 

the learning stage of the algorithm. We have then said 
that a priori values for n1 and n2 have to be chosen. 

Once we have chosen n1 and n2, we can apply the 
characterization, which results in a model of the time 
series. But, of course, we can choose other values for n1 
and n2 and thus obtain another model. Since we can have 
many different models for the same time series, it 
becomes necessary to compare these models with respect 
to a criterion and select the best one as “the” idealized 
description of the time series. 

 
4.1. Selecting the best model 

 
As usually done in this context of model selection, we 

use a simple cross-validation technique. We divide the 
whole set of inputs at our disposal in two different 
subsets: the learning set, used for the characterization, 
and the validation set, used for the forecasting. Then we 
learn the n1+n2 prototypes on the learning set, and 
validate the resulting model during the forecasting stage 
of our method. 

If the idea is quite simple, it is not really so simple in 
practice. Having no information about the possible 
values for n1 and n2, we have to test a relatively large 
range of values for n1 and n2, leading to a double loop in 
the model selection procedure and a final number of, at 
most, n1 x n2 models. 

To compare the n1 x n2 models, we define a quadratic 
error criterion between the predicted scalar output 

( )1+tx̂  given by the model and the real value x(t+1) in 
the validation set : 

( ) ( )( )211 +−+= tx̂txεt . (4) 
The validation error achieved by a specific model 

with n1 prototypes in its original space and n2 prototypes 
in its deformation space is thus the sum-of-squares error 
over the whole validation set Vset: 

( ) ( )( )∑ +−+=
setV

nn tx̂txSSE 211
21

. (5) 

This criterion is sufficient for comparing the models 
but has a limited intuitive interpretation. We therefore 
introduce an normalized error criterion: 

( ) ( )( )

( ) ( )[ ]( )∑

∑

+−+

+−+

=

set

set

V

V
nn

txEtx

tx̂tx

NSSE
2

2

11

11

21
, (6) 

where E[.] denotes the mean and is estimated on the 
known values of the series. The interpretation of this 
criterion is more intuitive: if its value is near one, then 
we are considering a model that does not perform better 
than giving the mean as prediction, which indeed is a 
poor informative forecasting. 

The comparison of the different tested models with 
different combinations of n1 and n2 can be summarized 
graphically in a plot of the error (NSSE) with respect to 
the values of n1 and n2 respectively.  
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4.2. Evaluating the performances of our method 
 
In the experimental results shown below, we do not 

divide our input database in two subsets but in three: the 
learning set for the characterization, the validation set for 
the forecasting, as above, and we keep unused a third set, 
the test set, for an estimation of the generalization 
performances of our method. The aim is to observe how 
the best model can behave in real conditions.  

The first step of our methodology is to choose the 
best model with the learning and validation sets, as 
detailed in section 4.1. Once we know the values for n1 
and n2, we can perform a new learning on a new set of 
data, recomposed from the previous learning and 
validation sets. The assumption here is that the best 
model with n1 and n2 prototypes in each space is still the 
best for the new learning set, and that its performances 
are strengthened with the information obtained from the 
enhanced learning set. We then use the forecasting part 
of the method to forecast the long-term evolution of the 
time series.  

In real applications of our method, these predictions 
are the final results. In our case, as we kept unused a 
third part of the time series, we can compare those final 
results with the real values, and then evaluate the 
generalisation performances of the method over the test 
set. 

 
5. Experimental result 

 
We have applied our method on an electrical 

consumption time series [5], testing the generalisation 
performances of the selected best model for this multi-
dimensional example. 

The whole dataset contains about 72 000 hourly data 
and is plotted in Fig 3. Due to the daily periodicity of the 
time series, we are interested in daily predictions and 
thus consider here blocks of µ=24 values, the time 
window becoming daily instead of hourly. This is an 
illustration of the multi-dimensional case described in 
section 3.3. 

 
Figure 3 : The electrical consumption time 
series. 
 

Having now at our disposal 3000 data, we use 2000 of 
them for the learning, 800 for the validation and 200 for 
the test. Note that each of these three sets contains 24-
dimensional vectors.  

We apply here many different regressors to the series, 
using our intuitive understanding of the process. As a 
result, we choose a final regressor with the 24 hourly 
values of today, the 24 values of yesterday, the 24 ones 
of two days ago, of six and of seven days ago. This 
regressor is maybe not the optimal one, but it is the one 
that makes the lowest error compared to other regressors 
we have tested. Since the regressor contains p = 5 data of 
dimension 24, we work in a 120-dimensional space. 

We then run the algorithm again on the learning set 
with values for n1 and n2 varying each from 5 to 200 
prototypes with an increment of 5. We thus evaluate the 
validation error for 1600 different models, and we obtain 
in Fig. 4 the graph of the SSE error. We choose the best 
n1 and n2 to be 160 and 140 respectively; the model 
results in a NSSE of 0.1369. 
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Figure 4 : Sum-of-squares error versus the 
number of prototype in each original and 
deformation space. 
 
We then learn another model with 160 and 140 

parameters vectors in each space with the new learning 
set, now containing 2000+800 data. The forecasting 
obtained from this model during the forecasting stage of 
our algorithm is repeated 1000 times. We show in Fig. 5 
a comparison between the mean of those 1000 long-term 
predictions and the real values. A confidence interval at 
95 % level is also provided. This interval covers what we 
call an envelope in which the time series will most 
probably stay at long term. A first zoom is provided for 
convenience (Fig. 5), and a second one (Fig. 6) draws 
the attention to the first three days of the forecast. Those 
forecasts are obtained while iterating the predictions 
from instant t until the final long-term horizon k. For 
example, from 1+tx̂ , 2+tx̂  and 3+tx̂ , each of them in 
dimension 120, we extract blocks of 24 values to obtain 
the 72 first predicted hourly values for the first three 
days depicted in figure 6. 
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Figure 5 : Comparison between the true 
values (dashed) and the mean of the 
predictions (solid), plus the envelope 
(confidence interval at 95 % level, doted). 

 
Figure 6 : Comparison between the true 
values (dashed) and the predictions mean 
(solid) for the first 72 hours (3 days). 
 
Fig. 7 shows 3 predictions obtained by the Monte-

Carlo procedure (before taking the mean). This figure 
tends to empirically prove the consistence of the method. 
Indeed different predictions seem to have the same 
shape; this is our main argument for determining long-
term trends. Fig. 8 illustrates the robustness of the 
method: we take in purpose a model that is not the best 
one (with n1 = 150 and n2 = 150) and show the same 
comparisons as in Fig. 5. Though this model has a NSSE 
of 0.1858, we can see that the results are quite similar. 
For convenience, Fig. 9 presents a comparison of the 
forecasting mean between the best model and our second 
non-optimal choice for the first 72 hours. 

 
Figure 7 : Plot of 3 simulations obtained by 
the generic Monte-Carlo procedure (before 
taking the mean). 

 
Figure 8 : Comparison between the true 
values (dashed) and the predictions mean 
(solid) plus the envelope (confidence 
interval at level 95 %, doted) for a sub-
optimal model with n1 = 150 and n2 = 150. 

 
Figure 9 : Forecastings mean comparison 
between the best model (solid) and another 
sub-optimal model (dashed) for the first 72 
hours (3 days) with the real values (doted). 
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6. Conclusion 
 
In this paper, we have presented a time-series 

forecasting method based on a double classification of 
the regressors and of their differences (deformations), 
using the SOM algorithm. The use of SOMs makes it 
possible to apply the method both on one- and multi-
dimensional time series, as discussed in section 3.3 and 
illustrated in section 5. A model selection procedure 
aimed to an automatic choice of the parameters (number 
of SOM classes) in the method has also been presented, 
in addition to some empirical proofs of the consistence 
and robustness of the method. 

The proposed method is not designed to obtain an 
accurate forecast of the next values of a series, but rather 
aims to determine long-term trends.  

Further work includes an additional Monte-Carlo 
procedure for the characterization stage, in order to 
avoid being trapped in a local minimum as a result of the 
SOM initialisation, and the use of more efficient 
validation procedures as (k-fold) cross-validation, leave-
one-out or bootstrap.  
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