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Abstract

NMR-based metabonomics discovery approaches require statistical methods to extract, from large and complex spectral databases, biomarkers or
biologically significant variables that best represent defined biological conditions. This paper explores the respective effectiveness of six multivariate
methods: multiple hypotheses testing, supervised extensions of principal (PCA) and independent components analysis (ICA), discriminant partial
least squares, linear logistic regression and classification trees. Each method has been adapted in order to provide a biomarker score for each zone of
the spectrum. These scores aim at giving to the biologist indications on which metabolites of the analyzed biofluid are potentially affected by a
stressor factor of interest (e.g. toxicity of a drug, presence of a given disease or therapeutic effect of a drug). The applications of the six methods to
samples of 60 and 200 spectra issued from a semi-artificial database allowed to evaluate their respective properties. In particular, their sensitivities and
false discovery rates (FDR) are illustrated through receiver operating characteristics curves (ROC) and the resulting identifications are used to show
their specificities and relative advantages.The paper recommends to discard two methods for biomarker identification: the PCA showing a general

low efficiency and the CART which is very sensitive to noise. The other 4 methods give promising results, each having its own specificities.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The recent biological ‘Omics’ domain is formed by several
technological platforms (Genomics, Proteomics, Metabonomics)
using multiparametric biochemical information derived from the
different levels of biomolecular organization (respectively the
genes, proteins and metabolites) to study the living organisms. All
of these Omics sciences rely on analytical chemistry methods,
resulting in complex multivariate datasets which require a large
variety of statistical chemometric and bioinformatic tools for
interpretation. Due to the central place of metabolites in organi-
zation of living systems, Metabonomics, the most recent
technology in the world of “Omics”, is particularly indicated to
extract biochemical information reflecting the actual biological
events. Genomics and proteomics information describing tran-
scriptional effects and protein synthesis do not provide a complete
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description of the perturbation cause by a disease or a xenobiotic
on an organism. Alternatively, Metabonomics analyses the entire
pool of endogenous metabolites in biofluids and creates a biolo-
gical summary more complete and also closest to the phenotype.
Consequently, the metabonomics approach is a promising
framework to build detection tools of a response of an organism
to a stressor.

Metabonomics is formally defined as “The quantitative mea-
surement of the dynamic multi-parametric metabolic response of
living systems to physiological stimuli or genetic modification”
[1]. Metabonomics aims to approach the modifications of endo-
genous metabolites consecutive to a physiopathological stimu-
lus or genetic modification by the combined use of an analytical
technology and multivariate statistical methods. Proton nuclear
magnetic resonance (lH NMR) spectroscopy generates spectral
profiles describing the concentration, size and structure of meta-
bolites contained in collected biofluid samples. This analytical
technology remains the more efficient in metabonomics as the
analysis is non-destructive, non-selective, cost-effective and
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typically takes only a few minutes per sample requiring little or no
sample pretreatment or reagent. Each resulting spectrum offers an
overview of the metabolic state of the organism at the moment of
the biofluid sampling. However, stressors from different categories
affecting the organism will alter the concentration of the meta-
bolites and consequently modify the spectral profile. On this basis,
comparison of spectra in various specific states allows to detect
alterations corresponding to biochemical changes inherent to the
presence of a stressor. These resulting changes can be mapped by
biologists to known pathways and to quickly build biochemical
hypotheses. Anyway, the principal opportunity provided by the
spectra of biofluids is the development of detection tools for the
biological response to a stressor: viewing the recordered spectral
changes as fingerprints of the reaction, the concerned regions of the
spectrum can be employed on a new spectral profile to declare if
this new observation develops the reaction.

However a typical 'H NMR metabonomics study generates
numerous biofluid samples and related complex 'H NMR spectra,
making impossible, even for a trained NMR-spectroscopist, to
reveal all the changes by a visual inspection. Moreover, sys-
tematic differences between spectra are often hidden in biological
noise. Adequate data pre-treatment and reduction tools and
chemometric methodologies are then required to extract typical
differences between spectra obtained in various states. In this aim,
each spectrum domain is first transformed in a set of regions
called descriptors corresponding each to the summed intensity
below the spectrum in its region. The observed values of all
spectra give rise to a multivariate "H NMR database, typically
characterized by a large number of variables (the descriptors).
Multivariate statistical methodologies are then applied to mine
typical differences between spectral data in different conditions.

Although the application of metabonomics as detection tools
was first developed in the pharmaceutical industry field for toxicity
predictions and screening, recently applications have expanded the
use of metabonomics to a large variety of domains of lifes
sciences. Metabonomics is becoming a promising tools for clinical
diagnosis, as well as environmental security applications [2].

Biomarkers and predictive models are the two different de-
tection tools issued from the use of statistical methodologies on
"H NMR metabonomics data. A 'H NMR metabonomics bio-
marker is defined as a stable change in a 'H NMR spectral region
associated to the alteration of an endogenous metabolite in re-
action to the contact with the considered stressor. Alteration of
these regions or descriptor(s) serves in research as an indicator of
the development of a response of the organism to the stressor. On
the other hand, predictive model are useful in research to provide
the probability of the development of this response. Predictive
model quantitatively characterizes for each spectral region its
pertinence to contribute to an adequate description of the presence
ofa response of the organism. Biologists then use this quantitative
information in order to build a model aimed at validating the
presence of reaction of the organism to a new stressor.

The metabonomics biomarkers, used in research by biologists,
are developped or identified beforehand in an experimental 'H
NMR database with chemometric analysis. The goal of the
methods is to find, in the range covered by the 'H NMR spectrum,
the area(s) which is (are) consistently altered by the given factor of

interest (disease, toxicity). Several methods can be considered in
order to identify in multivariate data the more altered variables in
presence of a chosen characteristic [3]. Usually, unsupervised
methods (Principal component analysis, Hierarchical cluster
analysis, Nonlinear mapping) constitute a first step in metabo-
nomics data analysis. Without assuming any previous knowledge
of sample class, these methods enable the visualization of the data
in a reduced dimensional space built on the dissimilarities between
samples with respect to their biochemical composition. In this step,
biomarkers are identified in a pertinent space of reduced dimension.
For this purpose, principal component analysis (PCA) has been
extensively used in metabonomics litterature. Despite apparent
satisfying published results, the known large sensitivity of PCA to
noise can suggest that improvements are expected with more robust
methods to identify biomarkers in noisy data. Moreover, the
traditional use of PCA remains highly questionable: biomarkers are
identified from the loadings of the two first principal components,
while the two first components do not necessarily contain the most
relevant variations between altered and normal spectra. Sometimes,
the results of the initial unsupervised analysis are confirmed by a
second supervised analysis. This one employs classification
methods as Partial Least Squares (PLS), SIMCA and neural
networks, allowing first to separate normal and altered spectra, and
secondly to identify more robust biomarkers [2].

This paper aims in investigating the relatives properties of
advanced statistical methods for the identification of biomarkers
from "H NMR data. As the performances of the PCA usual tool are
questionable, the choice of an appropriate method stays a open
domain. All methods covered in this paper are published tools
selected for their frequent uses in statistics or chemometrics.
Nevertheless, some of them are extended in order to fit with the
biomarker identification goal. Some of the methods are used solely
for identification, others may be used as predictive models too.
All are compared based on both qualitative and quantitative
considerations.

This paper is organized as follows. Section 2 presents six
possible methods to identify biomarkers. The first one (MHT) is
based on traditional descriptor-wise multiple hypothesis testing.
The next two (s-PCA and s-ICA) are extensions of corresponding
traditional multivariate data reduction tools. The final three
methods (PLS, linear logistic regression and CART classification
trees) provide predictive models from which biomarkers can be
extracted. The next sections are devoted to the illustration and
comparison of these methods. Section 3 presents a semi-artificial
metabonomic data base built for this purpose. Section 4 illustrates
the methods on one data set and emphasizes their particular
characteristics. Finally, Section 5 tests systematically the six
methods on several data samples and compare their performances
in terms of various criteria as sensitivity, specificity and stability.
This comparison will show that all methods, except s-PCA and
CART, give promising results. Each of these has its own ad-
vantages and provides specific information.

2. Methods

In this section, six methods envisaged for biomarker iden-
tification and/or prediction are described, after the presentation
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of unified notations. All methods are described both in an
intuitive way and an algorithmic form.

Let X be an nxm matrix of spectral data containing n spec-
tra, each of them being described by m descriptors. A binary
vector Yof size n identifies the class of each of the n spectra; n
are normal spectra (y=0) and n; (y=1) are altered ones. Section
3 will detail the difference between normal and altered spectra.

The goal here is to find among the m descriptors of the
spectrum those which are associated to the concept of class
membership, i.e. those which show systematic differences be-
tween the normal and altered classes. Each method provides so-
called “biomarker scores” for all spectral descriptors in a vector
b of size m* 1. The descriptors with the highest scores will be
considered as potential biomarkers. The number m1;, of potential
biomarkers of interest is chosen either by the biologist or
recommended based on statistical criterion included in the
method.

2.1. Multiple hypothesis testing (MHT)

2.1.1. Presentation

In the emerging-omics techniques, multiple hypothesis
testing (MHT) has become a very popular technique to
determine simultaneously if some descriptors, of a large set of
possible ones, are altered by a (biological) factor of interest.
Micro-array data analysis has been the privileged area of
application of such methods. MHT consists in calculating,
for each descriptor, a test statistic measuring the effect of the
factor of interest; in our case, this factor is Y, the altered and
normal spectral class identifier. The multiple test procedure
aims then at giving a rule to decide which of the calculated
statistics are statistically significant in controlling the total error
rate of the test. When the number of tests is very high, the false
discovery rate (FDR), i.e. the number of false discoveries over
the number of discoveries, is usually taken as the error factor to
be controlled. Several methods have been developed in a
attempt to control the FDR under independent or dependent
hypotheses [4—7]. In this paper, MHT is applied in two steps.
First, for each descriptor, a classical t statistic is calculated
to compare the mean spectral intensities of the two groups. The
p-values attached to each statistic are then calculated and trans-
formed to build biomarker scores. The Benjamini and Yekutieli
[4] rule for multiple testing under dependency is then applied
to set up a cut point between significant descriptors and non-
significant ones.

2.1.2. Algorithm

® From the spectral matrix X, calculate, for each descriptor
j=1,..., m, the following ¢ statistic:

X, —X _ 1
tjzu where xj; = — Z Xj; and
52852 M 1y =y
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® (Calculate the individual p-values attached to these ¢ statistics
as

pj = 2P(1,>]])

where £, is a Student 7 random variable with v; degrees of

freedom. v; is defined by the Welch formula as the closest
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® Define the vector of signed biomarquer scores b=(by, b,,...,
b,,) from the following transformation of the p;’s:

bj = sign(y;)(log(1/py))

® Choice as potential biomarkers the m,; descriptors with

the highest b;’s. m; can be chosen by the analyst or by

the Benjamini—Yekutieli FDR controlling rule [4]: m, =

maxy i : pisﬁ} where o is the maximum expected
=11

FDR desired for the multiple testing procedure.

2.2. Supervised principal component analysis (s-PCA)

2.2.1. Presentation

In metabonomics and "H NMR data exploration, the Prin-
cipal Component Analysis (PCA) [8] is the most commonly
used method by practitioners. However, as discussed above, the
traditional use of PCA in metabonomics remains questionnable,
notably due to the use of the two first principal components. As
PCA is here presented as a reference tool for biomarker iden-
tification, some improvements are suggested through a method
called s-PCA.

s-PCA is performed as follows. A PCA is first applied to the
matrix of centered by columns spectra X°. The normalized score
matrix is then used to find the two components which dis-
criminate best between the two groups. This is an unusual, but
effective way of using PCA. Indeed, PCA is an unsupervised
method: the principal components are computed without taking
the class information into account. The two first directions,
which are usually selected, are therefore not necessarily those
that maximize the discrimination. Here all directions are first
computed, and only the two ones that discriminate the most the
classes are kept. Then, in the plane defined by these two prin-
cipal components, the direction that maximizes the discrimina-
tion is calculated and the corresponding loadings are chosen as
biomarker scores.

2.2.2. Algorithm

e Center .X by columns: X°=X—1, X’ where X is the m x 1
vector of column means and 1,, a nx 1 vector of ones.

e Perform a PCA on X¢:X“=TPT where T'is the n x k matrix of
scores and P is the m x k matrix of loadings (k=min(n, m)).

® Normalise the score matrix as C=TI""~ where I is the
diagonal matrix with & eigenvalues.
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® By applying formulae (1) to C (instead of X), calculate ¢
statistics to compare, for each principal component, the nor-
malized scores of both groups.

® Search the two components j; and j, that maximize Iz1, i.e.
which discriminate the best between the two groups.

® In the space of the j; and j, components, find the direction
which maximizes the distance between the two groups cen-
troids and evaluate the contribution of loadings to this di-
rection: p* = DjiC1;, — Pjco, where ¢y, is the coordinate on
J1 of the mean ¢, of spectra scores from class 1 and cq, is
defined in the same way.

® Define the biomarkers scores as b=p*

® Choose a predefined number of descriptors with highest
(absolute) scores as candidate biomarkers.

2.3. Supervised independent component analysis (s-ICA)

2.3.1. Presentation

Independent component analysis (ICA) [9] is methods that
originally aimed in recovering unobserved signals or sources
from linear mixtures of them. In the context of metabonomics
"H NMR data, the media analyzed (e.g. plasma, urine) can be
seen as a mixture of individual metabolites and NMR spectra
may then be interpreted as weighted sums of NMR spectra of
these single metabolites. If the matrix X of "H NMR spectra is
rich enough, the application of ICA to "H NMR data should
then ideally recover source products included in the analyzed
media, in particular those that are biomarkers of the causal
factor of interest in the study.

ICA is applied in this context as follows. First ICA is applied
to the matrix of spectra. ¢ statistics are then calculated from the
mixing coefficients and used to identify sources that are able to
discriminate the two groups of interest. Identified sources can
ideally be interpreted as spectra of pure or complex metabolites
whose quantities have been altered by the factor of interest.
Mean NMR spectra for both altered and normal group are then
reconstructed from the identified sources and the difference
between these mean spectra are used as biomarker scores.

2.3.2. Algorithm

e Center X by lines and transpose it: X’“=X" — 1,,- X” where X
is the vector of lines (spectra) means.

e Apply ICA to X™. e.g. the fastICA algorithm with parallel
extraction of components proceeds in three steps:

— Reduce by PCA the m xn matrix X’ to a m x k matrix of
scores T (k<min(n, m)): X' “=TP"+E where E is the
error.

— Apply ICA to T: T=WS where S is the mxk matrix of
sources and W is the & x k unmixing matrix.

— Derive the mixing matrix 4 such that X" “=S4.

® Secarch for the sources that discriminate the most normal and
altered spectra.

— Calculate ¢ statistics to compare, for each source, the
mixing coefficients in both groups. The ¢ statistics are
derived by applying formulae (1) to 47, the transposed
mixing matrix.

— Choose the k* sources with the highest ¢ as those that
discriminate the most the two groups. £* can be chosen
either visually or with a FDR based method applied on
the #s.

— Build S* and A* the subset matrices of S and A corres-
ponding to these k* sources.

® (Calculate the biomarker scores as b=S* A4* Z where Z is a

(nx 1) vector with Z,=—1/ng if Y;=0 and 1/n; otherwise.

® Choose a predefined number of descriptors with highest
(absolute) scores as candidate biomarkers.

2.4. Discriminant Partial Least Squares (PLS-DA)

2.4.1. Presentation

Partial least squares discriminant analysis (PLS-DA) [10,11]
is a partial least squares regression aimed at predicting one
(or several) binary responses(s) Y from a set X of descriptors.
PLS-DA implements a compromise between the usual dis-
criminant analysis and a discriminant analysis on the sig-
nificant principal components of the descriptor variables. It is
specifically suited to deal with problems where the number of
predictors is large (compared to the number of observations)
and collinear, two major challenges encountered with '"H NMR
data.

This paper suggests to apply PLS-DA for biomarker iden-
tification as follows. First, a PLS-DA prediction model is esti-
mated [12]; the number of significant components is then chosen
according to a cross-validation based criterion. The model pro-
vides regression parameters that can be used as biomarker scores
b. The descriptors with the highest (absolute) coefficients are
candidate biomarkers.

2.4.2. Algorithm

e Center X by columns : X “=X—1,-X".

® Choose the optimal number of components of the PLS
model using an adequate validation technique and criterion.
The RMSEP (Root mean square error of prediction) [13] is
a traditional criterion used in this context. It can be cal-
culated for each size of model on an external validation
set or, when no validation set is available, by k-fold
cross-validation.

e Build the PLS regression prediction equation Y=X°b using
the previously chosen number of components.

® Define b as the vector of biomarker scores.

® Choose a predefined number of descriptors with highest
(absolute) scores as candidate biomarkers.

2.5. Linear logistic regression (LLR)

2.5.1. Presentation

Linear logistic regression (LLR) [14] generalises classical
multiple regression to binary responses. It aims at predicting the
probability of class membership 7=P (Y=1) as a function of a
set of exploratory variables x=(x1, x3,..., xz)’. In order to get a
model response in the [0, 1] interval, the 7 is transformed with

the logistic transformation: n = log(lfn) and 7 is expressed as
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a linear combination of x as n=o+d'x. The parameters are
estimated by maximum likelihood to take into account the
Bernouilli distribution of the response Y.

Several points must be discussed when applying LLR to
biomarker identification. As the number of potential regressors
(descriptors) m is high and, in most cases, larger than the
number of spectra (n < m), a dimension reduction or variable
selection technique must be first applied to allow model esti-
mation. Variable selection is privileged in this paper because the
variables (descriptors) selected in the model can directly be seen
as potential biomarkers. Forward selection (a technique that
adds descriptors and never deletes them) and stepwise-forward
(which starts with an empty set and adds or removes a single
predictor variable at each step of the procedure) have been
tested. Forward selection has demonstrated to be adequate in
this context. The Akaike AIC criterion [15] is commonly used
to select the variables to be entered into the model. The AIC
criterion is defined as AIC=—2log(L)+2(k+1) where L is the
likelihood of the estimated model, and & is the number of
variable included. When a model has been set up, biomarkers
scores may be derived from the p-values of the regression
coefficients.

2.5.2. Algorithm

e Estimate a model with the constant term only and calculate
the corresponding AIC.
® Repeat for k=1,..., my:

— Try to enter each descriptor x; (j=1...., m) as a supple-
mentary variable in the model and calculate the corres-
ponding AIC;;

— enter in the model variable x; such that AIC; is minimum.

® Stop either when a predefined maximum number mb of
descriptor is reached or when the AIC criterion can not be
decreased any more.

® Take as biomarker scores b;=0 if descriptor j is not chosen
in the model and b;=sign(,)(1/p;) for the other descriptors.

p; is the p-value of the Wald test on the regression para-

meter &;.

2.6. Classification and regression trees (CART)

2.6.1. Presentation

The CART tree classifier [16] implements a strategy where a
complex problem is divided into simplest sub-problems, with
the advantage that it becomes possible to follow the classifi-
cation process through each node of the decision tree. In the
context of this paper, CART is proposed to realise recursive and
iterative binary segmentations of the descriptor space in order
to direct spectra to smaller and smaller groups that are more
and more homogeneous with regards to the class. When
looking for biomarkers, the tree is not developed for its
capacity to predict the class membership but for its stepwise
selection of a subset of features relevant for class discrimina-
tion: the construction of the tree highlights in segmentation
rules the descriptors with a good discriminant power between
the two classes of spectra.

2.6.2. Algorithm

® Build the maximal tree model 7,,,, by repeating segmenta-
tion until the number of spectra in each subgroup is less or
equal than 5 as suggested by Breinman ([16] p82):

— Define a binary segmentation rule by a descriptor x; and
its threshold )q,(t) chosen as to maximise the decrease of the
Gini impurety criterion ([16] p38);

— based on the value of x;, direct each spectrum i of the
node to the left or the right child-node according to the
chosen segmentation rule (x; <or>x{").

e If a fixed m, is required, take as biomarkers the descriptors
x;’s corresponding to the m; segmentation rules with the
highest number of spectra in the branch under the corres-
ponding node. The biomarker score b; is this number when
x; is in this biomarker list and 0 otherwise. Note that the
number of segmentation rules in the tree may be smaller
than m,,.

® [f one want to choose automatically the number of bio-
markers m;, the tree T;,,x may be reduced to a smaller (and
optimal) tree Tt by cost-complexity pruning [17]. This
method cuts stepwise the branches of the initial tree which
minimise the increase of error rate. In this sequence of nested
trees, the optimal one is chosen with respect to its predictive
accuracy (measured by a deviance) on an external data set or
k-fold cross-validation ones.

2.7. Implementation

All algorithms have been implemented in the R language.
Links to the used libraries are available on www.cran.r-project.
org/src/contrib/Descriptions/. The following libraries were used:
for PCA, the pcurve library, for ICA: the fastICA library, for
PLS-DA: the pls-pcr library, for LLR: the Design library, for
CART: the tree library. The MHT method has been implemented
specifically for this study.

3. Description of the data
3.1. Typical metabonomics data

A typical experimental database is formed by three sets of
data: a design, a set of '"H NMR spectra and biological and/or
hysto-pathological data. The design describes the experimental
conditions underlying each available spectrum. Typical design
factors are: subject (animal or human) ID and characteristics,
treatment, dose, time of prelevement. The '"H NMR dataset
contains the spectral evaluations of biofluid samples collected
according to the design. After spectra are accumulated, a pri-
mary data reduction (“binning”) is carried out by digitizing the
one-dimensional spectrum into a series of 250 to 3000 inte-
grated regions or descriptor variables. However, a typical me-
tabonomics study involves about 30 to 200 spectra or sample
measurements. The resulting dataset is thus typically charac-
terized by a larger number m of variables than the number n of
observations. Another important characteristic of "H NMR data
is the strong association (dependency) existing between some
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descriptors, due to the fact each molecule can have more than
one spectral peak and hence contribute to a lot more than one
descriptor. As a large variety of dynamic biological systems and
processes are reflected in spectra, a range of physiological
conditions, as for example the nutritional status, can also modi-
fy spectra. Noise or biological fluctuation are thus natural in the
spectral data. Each spectrum of the 'H NMR dataset is also
usually linked to one or more variable(s) aimed at confirming by
an independent measure the presence of a response of the
organism towards the stressor. This confirmation is obtained by
means of the current gold-standard examinations (biological
measures or hysto-pathological ones) generated for the subject
from which the spectrum is measured.

3.2. Construction of a semi-artificial database

To explore the capabilities of multivariate statistical methods
to identify biomarkers, a semi-artificial database was built in
which the descriptors to be identified by the methods are con-
trolled. Knowing the biomarkers to be found offers the ad-
vantage to evaluate important characteristics of a method as the
sensitivity and the specificity of a method. The principles of this
construction lays on the addition of random artificial alterations
to normal or placebo real rat urine spectra. By convention, this
paper uses the terms “biomarkers” and “identifications” to make
a distinction between respectively the “real alterations that we
want to detect” and “the results or selection of descriptors
indicated by the method as biomarker”.

3.2.1. Placebo data

The placebo data are composed of more than 800 spectra
supposed to reflect a situation of physiological stability in rat
urine. Each of them is issued from the COMET [18] database
and corresponds to the spectral profile obtained from a “control”
rat (which did not receive any treatment). All spectra were
measured at a 'H NMR frequency of 600 MHZ at the Imperial
College London, using a flow injection process.

After acquisition, spectral FID signals were automatically
treated and converted to variables using a Matlab library
(BUBBLE) developed at Eli Lilly [19]. Bubble automatically
performed, in sequence, suppression of the water resonance, an
apodisation, a baseline correction, a warping to align shifted
peaks. To decrease the inter-sample variability, a normalization
is also realized, dividing each spectra by the median of a well
chosen part of spectral descriptors. The last step reduces, by
simple integration, the part of the spectrum between 0.2 and
10 ppm to 500 descriptors. Finally, some statistical tools (eucli-
dian and Mahalanobis distances and PCA) were used to find
outliers in the set of spectra and some of them were removed
(less than 20). A typical urine spectra coming out of this process
is given in Fig. la.

3.2.2. Simulation of alterations

Among the 500 descriptors, 46 were chosen to become
biomarkers. These 46 descriptors were, for half of the spectra in
the database, altered according to the description below, in order
to simulate the response of an organism to a stressor or treat-
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Fig. 1. (a) Typical rat urine NMR spectrum, (b) positions and mean amplitude of
alterations added to urine spectra.

ment. The 46 descriptors are chosen in ten consecutive regions
of the spectra as shown in Fig. 1b. Half of these 46 descriptors
and five regions are localized in a first part (index from 140 to
180) of the spectra contain a low level of noise; the other
descriptors and regions are localized in a second part (index
from 340 to 380) of the spectra, where the level of noise is
higher. The alterations consist in adding to the placebo spectra
random draws of Gamma distributions, whose means take the
form of 10 peaks with different widths localized in the ten
regions. Fig. 1b shows the mean height of these peaks. The
signal of these alterations represents in average 30 percent of the
noise of the spectra. Note also that four peaks have a width of
7 descriptors and the 6 other peaks have a smaller width of
3 descriptors, for a total of 46 descriptors or biomarkers.
Moreover, some pairs (see arrows in Fig. 1b) of alterations were
designed to be correlated, by using the same Gamma distri-
bution to generate peaks, so that only six independent Gamma
distributions have been used instead of 10. This last feature of
the database makes it possible to test if the biomarker identi-
fication methods are able or not to discover correlated bio-
markers. The 6 sets of 3 to 14 single descriptors or biomarkers
generated independently will be called below the “independent”
biomarkers. Note finally that each placebo spectrum was only
altered with two (randomly chosen) from the six possible inde-
pendent biomarkers. This simulates the fact that each organism
doesn’t necessarily respond the same way to a stimulus. A
dataset of 400 altered spectra (randomly chosen from the 800
placebos) was built with this methodology.

3.3. Construction of the datasets for method testing and
comparison

The dataset available consists therefore in 400 placebo
spectra and 400 “altered” spectra. The goal of the next sections
is to show that the methods are able to identify the altered
descriptors. For this purpose, subsamples of size 60 (2 x30) and
200 (2x100) have been extracted out this dataset to simulate
typical metabonomics sample sizes. In Section 4, one sample of
200 spectra was drawn randomly to illustrate the methods. In
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Fig. 2. Biomarker scores for all tested methods.

Section 5, twenty samples for each size were drawn to compare
the performances of the methods. Note that validation sets were
not used when needed in the methods (PSL and CART); k-fold
cross validation was preferred instead.

4. Illustration of the methods

The purpose of this section is to illustrate the six methods on
a subsample of 200 (100 normal and 100 altered) spectra ex-
tracted from the semi-artificial database described in Section 3.
The main results available from the six methods are reported
graphically in Figs. 2—5. Fig. 2 provides the biomarker scores
calculated for each one. Figs. 3, 4 and 5 present intermediate
outputs for s-PCA, s-ICA and CART that offer additional
support to visualize the identified descriptors and/or some spe-
cific features of these procedures. All these graphics serve
below to describe qualitative behaviour resulting from the de-
sign of the methods while systematic performance method
evaluation is kept for Section 5. Let’s first interpret the score
plot figure.

® Four methods (MHT, s-PCA, s-ICA and PLS-DA) provide
non null scores for all descriptors leading to possible complex
score profiles. Score profiles for LLR and CART methods are

simpler since they come from variable selection procedures
and non null score values only exist when a descriptor is
selected.

® The vertical lines on the graphic show the locations of the 46
“real” biomarkers. High positive scores in these regions
denote that the method was able to identify them. High
(positive or negative) scores elsewhere must be interpreted as
false discoveries.

® The sign of each score has also a meaning: a positive score
indicates that the corresponding descriptor has potentially a
positive effect on the intensity of the altered spectra. A
negative score leads to a decrease of intensity from normal to
altered spectra.

® Three methods (MHT, LLR, CART) provide criteria to select
automatically “significant” scores. These have been applied
here. The threshold of selection, drawn by an horizontal line
in the MHT graph, is calculated from the Benjamini Yeku-
tieli (B—Y) FDR rule with o=0.05. The descriptors in LLR
are those selected by minimizing AIC and in CART by
applying the pruning algorithm. This example shows that
LLR and CART seem to be very selective methods, but in the
contrary, the B—Y does not seem to really control FDR since
many false discoveries appear (much more than 5%). The
horizontal lines drawn for the three other methods (s-PCA,
s-ICA and PLS-DA) have no statistical interpretation and
are there only for visual purpose. They have been drawn
such that the number of scores appearing out of the interval
is 23, the half of the 46 “real” biomarkers.

® The MHT method identifies well all biomarkers but is also
the method that generates the most noisy score vector leading
to many false identifications. It may be shown that this
behavior increases when the sample size decreases.

® s-PCA, s-ICA and PLS-DA methods have quite similar
score profiles: they are all able to identify some (s-PCA and
PLS-DA) or all (s-ICA) biomarkers and display reasonable
noise in the other regions. s-ICA is specially able to extract
signal from noise. PLS-DA seems, as it is a predictive tool,
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Fig. 3. Projection of the spectra on the principal components which best
discriminate between normal and altered spectra. A A symbol represents a
projection of a normal spectrum and a ° of a altered one. The two * indicate the
centroids of the clouds respectively formed by each kind of spectra.
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Fig. 4. The 10 ICA sources which best discriminate between normal and altered spectra.

to privilege biomarkers from the less noisy spectral region.
More curiously, s-PCA performs better in the noisy bio-
marker region. This may be due to the fact that the t statistic
privileges high signal even in a noisy area of the spectrum.
® For LLR and CART methods, one can observe that true
discoveries are all coming from independent biomarkers.
When one descriptor from an independent biomarker is
selected by the procedure, all others are discarded because

they constitute redundant (and correlated) information. This
behavior is typical in a forward regression selection tech-
nique and in decision trees. Fig. 2 shows that LLR identifies
5 (of the 6) independent biomarkers with a little sensitivity to
noise while CART identifies only the three in the first part of
the spectra. The CART method presents indeed a high
sensitivity to noise, as illustrated by the lack of identification
of biomarkers in the second (noisy) part of the spectra. Many
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X291 < 0.857045
I

X72 < 111282

0
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X179 <|0.439958

0

Fig. 5. Classification tree before and after pruning. Horizontal bars indicate where the tree is pruned.
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other simulations have confirmed that basic CART can be
efficient in situations without or with low noise but is not
able to find signal in presence of higher noise.

The following comments can be made from Figs. 3, 4, and 5:

Fig. 3 presents, for s-PCA, the projection of the 200 spectra
in the space of the two principal components which dis-
criminate best normal and altered spectra. This graphic
is certainly helpful for most biologists very used to PCA
methods. It shows how well spectra are separated and
can detect outliers. Note that, in this example, the two best
components are the 8th and the 7th. Biologists used to work
with first components should then figure out that high

variance explained does not mean high discrimination as the
classification factor is not taken into account in a PCA. More
precisely, the space of the 7th and 8th components explains
an amount of variance smaller than the space formed by the
PC1 and PC2 (7.9% with respect to 14,8%). However,
components 7 and 8 contain the part of the variance that is
informative for the identification of biomarkers, as illustrated
by the distinction between the two kinds of spectra in Fig. 3.
Among the 100 estimated sources in s-ICA, 10 independent
sources were selected (by a FDR based procedure applied to
the ¢ statistics) to be significantly discriminant. Each of these
independent sources is illustrated in Fig. 4. The graphic is
impressive: sources S1, S2, S3, S4, S7 and S8 correspond
nearly perfectly to the 6 independent biomarkers added to
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highly variable urine spectra in the artificial database. ICA is
therefore able to extract these independent multi-descriptor
biomarkers without prior information on their number and
characteristics. The “purity” of the sources (especially S1, S2
and S7) must also be highlight: the signal can really be
extracted from the noise. Sources S5, S6, S9 and S10 are
unfortunately less useful: these represent correct biomarkers
but are only parts of the multi-peak independent biomarkers.
They are then redundant and it is difficult to explain why
they appear as independent sources. Note that the authors
realized similar graphics with the loadings of the principal
components calculated from s-PCA or PLS-DA. They are
not shown here because they do not reveal any useful infor-
mation about independent biomarkers and are much more
noisy.

® Cart tree representation shown in Fig. 5 presents the se-
quence of descriptors issued from the recursive segmenta-
tion, providing supplementary information on the order of
descriptor selection and the exact segmentation rules. The
horizontal line shows where the tree was cut by the pruning
algorithm.

5. Method comparison

The six methods described in this paper have been
illustrated using a single dataset in Section 4. The present
section compares their performances on several datasets of
different sample sizes. For this purpose, 20 samples of 200
spectra (100 altered and 100 placebo ones) and of 60 spectra
(30 altered and 30 placebo ones) were drawn at random from
the semi-artificial database described in Section 3. The 6
methods were then applied to each of these 40 datasets.
Different samples sizes are used to test the robustness of the
methods to small (but realistic in real-life situations) samples.
In addition, generating 20 samples eliminates possible effects
of a particular draw while the variability of the results can also
be studied too.

5.1. Number of identifications

The first results concern the identifications obtained from
each method. Fig. 6 provides for the 200 spectra and for each
method, the proportion of simulations where each descriptor has
been identified as a biomarker. The positive bars represent the
correct identifications; the negative bars indicate false discov-
eries. Results for the 60 spectra databases are not given because
they are very similar and only accentuate the observations
coming out of Fig. 6.

For three methods (s-PCA, s-ICA and PLS-DA), the number
of descriptors mb that the method identifies as biomarkers has to
be fixed by the analyst. As a method can be supposed to have a
limited number of correct detections, the number mb for these
methods has been fixed here at 23, the half of the total 46
biomarkers randomly added to the altered spectra. For the three
other algorithms (MHT, LLR and CART), the number of iden-
tifications mb is chosen automatically by a statistical criteria as
detailed in Section 2.

These results will be interpreted together with the ROC
curves after the next subsection.

5.2. ROC curves

As the performances of a method strongly depend on the
total number of identifications m1;, (both false identifications and
biomarkers correctly identified), it is sometimes difficult to
compare several methods which do not deliver the same number
of identifications. The receiver operating characteristic curve
(ROC [20]) provides a way to visualize the performances of a
method for a whole range of possible m,s. It must be noticed
that in the presented ROC curves the performances evolve
according an experimental condition (the value of m,) and not
according to a parameter of the method as in the traditional
ROC curves. Consequently, the ROC curves shown in this
paper can be non-monotonic. More precisely, it gives for each
number m;,, of identifications, in a chosen range, the method
sensitivity and FDR (false discovery rate). The sensitivity is
defined as the proportion of biomarkers correctly identified
(among all biomarkers); the FDR is the percentage of false
identifications (among all the m, identifications).

As explained in Section 3, there are only 6 independent
(multiple) biomarkers among the 46 ones. The sensitivity may
thus be defined with respect to the proportion of correct iden-
tifications among the 46 biomarkers, or with respect to the
proportion of correct identifications found among the 6 inde-
pendent ones. These two definitions of sensitivity (therefore
of ROC curves) give the four diagrams of Fig. 7, two for the
200 spectra case and two for the 60 spectra one. One curve
represents the mean of the 20 ROC curves obtained from the
application of one method to the 20 datasets. Each curve pre-
sents a method performance in a range of 1 to 46 number of
identifications.

Good methods are those whose curves are mostly con-
centrated in or at least reach the upper left part of the ROC
diagrams.

5.3. Discussion

The following comments can be made from Figs. 6 and 7.

The MHT method, with its FDR based threshold criterion,
selects the higher number of descriptors as potential biomarkers
(75 in average for the 200 spectra case). It is thus natural that
this method has a high sensitivity, but this is at the price of a
high FDR. This confirms the poor performance of the B—Y
decision rule in this context. The MHT ¢ scores are able to
discover biomarkers in both low and high noise region of the
spectra but loose clearly its performance in small sample. The
MHT method has also the tendency to make false discoveries
in the nosier part of the spectra. The main advantage of MHT is
then certainly its simplicity coupled with overall acceptable
performances especially in large samples. However, as other
methods don’t require it, the normality of the present H NMR
data haven’t be taken into account. A possible lack of
normality can then have consequence on the MHT score and
its performance.
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Fig. 7. Mean ROC curves (sensitivity versus false discovery rate) for the 6 methods. For clarity, curves only show symbols representing even number of identifications.

The s-PCA method, traditionally used in this context, is
performing very poorly. As explained in Section 4, s-PCA only
provides correct identifications in the presence of big alterations
in an ideal noisy spectra. This is why in the presented more
likely natural case with biggest biomarkers in a noisy part of the
spectra, s-PCA is the second worst method (after CART): even
if the number of biomarkers was chosen adequately (which
would require a well-defined criterion), an increase of the sen-
sitivity would be accompanied by a high FDR.

The ICA method is more natural than methods based on
PCA: indeed the independence statistical criterion corresponds
to the notion of independent biomarkers, contrarily to the de-
correlation as in PCA-based algorithms. This is certainly the
main advantage of ICA; the consequence is that the independent
biomarkers can be retrieved and plotted in the form of a spec-
trum (see Section 4) and the metabolites playing a role as
biomarker can thus potentially be identified.

Besides this interpretation power, the ICA method also gives
good biomarker identification performances. As it can be seen
in Fig. 6, biomarkers are correctly identified even in the noisy
part of the spectra. ROC curves go also in the upper left corners
of the diagrams, showing that sensitivity can become high when
increasing the number of identifications without deteriorating
too much the FDR. In the case of the search for independent
biomarkers, the method is even more efficient. In terms of the

mean number of biomarkers found, only the PLS-DA method
can compete with the ICA one.

From Fig. 6, it is however visible that the good
performances of PLS-DA mostly come from the less-noisy
regions of the spectra, while the ICA method is more robust in
the strongly noisy regions. At comparable performances in
terms of ROC curves, it can be concluded that ICA is more
robust to noise than PLS-DA. The PLS-DA method is however
very efficient in recovering independent biomarkers (it is the
only method that finds always all of them in the 20 experiments
with 200 spectra).

The LLR method is not adequate to find all biomarkers.
Indeed, as a purely prediction tool, it stops selecting potential
biomarkers once the predictive performances are acceptable.
This means that once a biomarker is found, all other ones that
are dependent to the first one will not be identified. Indeed, the
method gives much better performances when looking for
independent biomarkers only. It is the method which reaches the
highest sensitivity with the smaller mean number of identifica-
tions (0.8 with 5 identifications). However, from Fig. 6, it
appears that in the 20 runs, different biomarkers are selected
among each set of dependent ones. Building different models
(from slightly different samples) can thus lead the biologist
to find several biomarkers influenced by a single metabolite,
which can be interesting in some cases.
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The CART method does not lead to good performances. As a
predictive tool, it identifies only independent biomarkers. More-
over, CART only succeeds to identify independent biomarkers in
low-noise regions. The advantage of the CART method resides
in its tree representation that is easily interpretable, but coupled
to low performances and to be used in non-noisy problems only,
i.e. non realistic situation.

Finally, let us remind that PLS-DA, LLR and CART are the
only predictive methods among the six ones, providing them a
further advantage when prediction is also an objective of the
study.

5.4. Variability of the results

In addition to the comparison of the mean performances of
the methods over 20 runs, it is important to characterize the
variability of the results among the runs. A high variability can
be considered as a drawback as it makes results less repeatable,
but can also be exploited to extract additional information (as
detailed for instance in the LLR paragraph above).

Fig. 8 shows the standard deviations of the sensitivity and of
the FDR (top and bottom respectively), in the 200 and 60
spectra cases (left and right respectively) among the 20 datasets.
As it can be seen, the standard deviation of both the sensitivity
and the FDR are high in the MHT and s-PCA methods. In the

MHT case, it even increases in the 60-spectra case, proving a
low robustness to small samples. On the other hand, PLS-DA
and LLR are the more stable methods, LLR being clearly the
winner in small sample. In the ICA case, the surprising result
that the variance is higher in the 200-spectra case than in the 60-
spectra one comes from the difficulty that the ICA method has
to handle high-dimensional signals [21]. Coupled to the fact that
the ICA method is more robust to noise than other ones, it can
be concluded that the best situation to use ICA is with noisy
small samples.

6. Conclusions

Metabonomics is emerging as a valuable tool in a number of
biological applications. Althought, the choice of efficient che-
mometric methods for biomarkers identification in 'H NMR
based metabonomic remains an important research topic. This
paper proposes to revisit the traditionally used PCA method and
to explore more advances chemometrics and statistical tools to
identify biomarkers from 'H NMR spectra classified in two
groups according to a stressor factor of interest. Each proposed
method delivers biomarker scores to indicate which metabolites
of the analyzed biofluid are affected by the stressor factor. The
application of each method to samples of 60 and 200 spectra
issued from a semi-artificial database has allowed to observe the
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following properties: easiness of interpretation of the results,
robustness to noise, ability to identify biomarkers. ROC curves
have been used to represent method false discovery rates and
sensitivities.

Due to their high sensitivities to noise, the CART and the
improved PCA methods have shown bad performances in
comparison to the other methods. They are then not recom-
mended in spectral databases where the signal to noise ratio
and the number of spectra are low. ROC curves of PLS-DA and
s-ICA methods have shown good and competitive biomarker
identification performances. However, each of them presents
specific relevant characteristics. The s-ICA method is robust to
noise and more interpretable as it is able to recover independent
metabolites from complex spectra. The PLS-DA method is very
easy to apply and is efficient in recovering independent bio-
markers. As it identifies only independent biomarkers, the LLR
method can not be directly compared to the others. Neverthe-
less, it has shown to be very efficient in the context by providing
automatically the smallest number of identifications for an
already satisfying proportion of correct independent biomar-
kers. The main advantage of the last tested method, the MHT
method is its simplicity coupled with overall acceptable per-
formances especially in large samples.

This work motivates numerous further developments. First,
from the application side, the methods are currently tested by
the authors on real biological "H NMR databases. Their goal is
to ensure that the identifications coming out of the methods
correspond to metabolites present in the biofluids analyzed.
Moreover, they want to verify if the ability of s-ICA to recover
independent biomarkers can also be observed on real data. On
the methodological side, the good results of PLS-DA and LLR
motivate to explore the performances of two tools: the Penalized
Logistic Regression [22] and the LLR-PLS [23]. The high
sensitivity to noise of CART suggests exploring more robust
related methods as the Random Forests [24]. Finally, the FDR
based criterion used in MHT must clearly be improved.
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