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Supervised and interpatient classification of heart beats is primordial in many applications requiring long-term monitoring of
the cardiac function. Several classification models able to cope with the strong class unbalance and a large variety of feature sets
have been proposed for this task. In practice, over 200 features are often considered, and the features retained in the final model
are either chosen using domain knowledge or an exhaustive search in the feature sets without evaluating the relevance of each
individual feature included in the classifier. As a consequence, the results obtained by these models can be suboptimal and difficult
to interpret. In this work, feature selection techniques are considered to extract optimal feature subsets for state-of-the-art ECG
classification models. The performances are evaluated on real ambulatory recordings and compared to previously reported feature
choices using the same models. Results indicate that a small number of individual features actually serve the classification and that
better performances can be achieved by removing useless features.

1. Introduction

The diagnosis of cardiac pathologies requires monitoring the
cardiac function by recording and processing the electro-
cardiogram (ECG) signal. The diagnosis may rely on just a
few transient factors of short duration such as intermittent
arrhythmia; long-term ECG recordings are therefore usually
required. The manual analysis of such long-term ECG
signals, containing hundreds to thousands of heart beats to
evaluate, proves tedious and error prone.

Several computer-aided heart beat classification algo-
rithms have been proposed for this task. These algorithms
can be divided in two categories: interpatient or intrapatient
classification systems [1]. Intrapatient classification requires
labeled beats from the tested patient in the training of the
model. By contrast, interpatient models classify the beats of
a new tested patient according to a reference database built
from data coming from previously diagnosed patients. In real
situations, labeled beats are usually not timely available for a
new patient which makes the intrapatient classification not

applicable. For this reason, this work focuses on interpatient
classification.

Supervised classifiers used to automate the classification
pro-cess require the extraction of discriminative features
from the heart beat signals. Spurious features can harm the
classifier, especially in the presence of unbalanced classes and
a large number of features [2, 3]. Moreover, feature selection
serves the interpretability of the classifier, since discrimina-
tive features are identified. This property is especially useful
in medical applications where the selected features may help
to understand the causes and the origin of the pathologies.

Unfortunately, very little information is available to
decide how to extract and build features from the heart
beat time series. In this work, a large number of fea-
tures previously proposed for heart beat classification are
extracted, and two feature selection methods are investigated
to select optimal feature subsets: the wrapper approach using
a forward-backward search strategy with a weighted linear
discriminant classifier and the filter approach using the
mutual information criterion with a weighted support vector
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machine classifier. Experiments are conducted on real ambu-
latory signals from the Physiobank arrhythmia database.

The following of this paper is organized as follows.
Section 2 details the state of the art in interpatient classifica-
tion and emphasizes our contributions to this field. Section 3
provides a short theoretical background over the classifiers
used in this work. Section 4 reviews methods for feature
selection, together with their pros and cons in this particular
heart beat classification application. Section 5 details the
database used in the experiments and the processing of the
ECG signals. Section 6 details the experiments and presents
the results. Eventually, Section 7 draws some conclusions.

2. State of the Art and Contributions

The first study to establish a reliable interpatient clas-
sification methodology is [4], where a weighted linear
discriminant analysis (LDA) model is trained to classify the
beats in the four classes defined by the standards of the
AAMI [5]. This algorithm was later improved using the
same classifier and other features first in [6] and later by
the same authors in [7]. The common point between these
algorithms is the use of the weighted LDA classifier, which
has three strong limitations. First, it is a linear classifier which
will fail to detect nonlinear decision functions. Second,
the LDA classifier is based on a Gaussian assumption over
class distributions which is not always validated. Finally, the
estimation of its parameters becomes difficult in the case of
strongly correlated features because of the singularity of the
covariance matrix.

For this reason, more powerful classifiers such as support
vector machines (SVMs) have also been considered. In [8],
hierarchical SVMs are used, but the reported algorithm
does not improve the results of [4]. Later, [1] proposed an
algorithm based on a support vector machine classifier opti-
mizing a weighted cost function. This algorithm increased
the performances of [4] for the pathological classes.

Nevertheless, distinct features groups are considered in
each study which makes it difficult to assess their discrim-
inative power on a fair basis. For example, morphological,
segmentation, and R-R interval features are considered in [4,
6, 7]. On the other hand, [8] exploited R-R intervals, Hermite
basis function expansions, and higher-order statistics. In [1],
all these feature sets are considered, but the feature selection
is performed only at the group level, without evaluating the
relevance of each individual feature included in the classifier.

In this work, our contribution consists in the extraction
of all these feature sets and the evaluation of the relevance
of each individual feature. For this purpose, a wrapper
approach using a forward-backward search strategy and a
filter approach using the mutual information criterion are
investigated. This is, to our knowledge, the first work (1)
evaluating the relevance of all commonly used feature sets
on a common ground and (2) using the mutual information
criterion to select optimal heart beat features. As it will be
detailed later, the mutual information criterion indeed offers
many advantages over model-based approaches such as a
low computational cost. In the next section, a theoretical

background over the weighted LDA and the weighted SVM
classifiers is provided, together with an introduction to the
mutual information criterion.

3. Theoretical Background

Let us define the ith P-dimensional observation xi =
{x1

i , x2
i , . . . , xPi } and the associated class value yi ∈

{1, 2, . . . ,K} for a given heart beat i with i ranging from 1 to
N , N being the total number of heart beats in the dataset and
K the number of classes. Traditional classifiers optimizing
the accuracy make the hidden assumption that the classes are
equally balanced [3]. However, in a heart beat classification
task, around 90% of beats are normal beats, while all the
pathological classes represent the other 10%. For this reason,
weights have to be introduced in the classifier to handle
that situation. Higher costs are then given to the minority
classes so as to guide the training process to solutions which
favor these classes. Two distinct models are considered in this
work: the weighted LDA model [4, 6, 7] and the weighted
SVM model [1].

3.1. Weighted LDA. The traditional linear discriminant anal-
ysis (LDA) classifier is first described, next it is shown how to
adapt its formulation in the case of unbalanced datasets [4].
The LDA approaches the classification problem by assuming
that the conditional probability density functions p(xi |
yi = k) are normally distributed with the simplifying
homoscedastic assumption that the class covariances are
identical. All the parameters w of the model are thus
summarized by the mean class vectors µk and the unique
covariance matrix Σ. These parameters are identified by
maximizing the log-likelihood function defined as

max
µ1,µ2,...,µK ,Σ

K∑

k=1

∑

{i|yi=k}
log
(
fk
(

xi,µk,Σ
))

, (1)

where fk(xi,µk,Σ) are the value of a Gaussian distribution
with mean µk and covariance Σ. The optimization can be
done in closed form and yields the following solution:

µk =
∑
{i|yi=k} xi

Nk
,

Σ = 1
N

K∑

k=1

∑

{i|yi=k}

(
xi − µk

)(
xi − µk

)T
.

(2)

In unbalanced situations, a popular technique is to add dis-
tinct class misclassification weights in the objective function.
In the case of the LDA classifier, the following decomposition
and weighting is applied to the sum over observations in (1)
[4]:

max
µ1,µ2,...,µK ,Σ

K∑

k=1

ck
∑

{i|yi=k}
log
(
fk
(

xi,µk,Σ
))

, (3)
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where the ck parameters are the weights associated to each
class. The parameters of the model are now estimated with

µk =
∑
{i|yi=k} xi

Nk
,

Σ =
∑K

k=1 ck
∑
{i|yi=k}

(
xi − µk

)(
xi − µk

)T

∑K
k=1 ckNk

.

(4)

Inference is then achieved using

y∗i = max
k

fk(xi),

fk(xi) = −
(

1
2

)
µTk Σ

−1µk + µTk Σ
−1xi,

(5)

which corresponds to assigning xi to the class having the
smallest Mahalanobis distance between the class mean and
xi.

3.2. Weighted SVM. A support vector machine (SVM) is a
supervised learning method introduced by Vapnik [9]. The
two-class case is described here, so yi ∈ {−1, +1}, because its
extension to multiple classes is straightforward by applying
the one-against-all or one-against-one approaches. In this
work, as detailed in Section 6, the one-against-one approach
will be used in the experiments.

SVMs are linear machines that rely on a preprocessing to
represent the features in a higher dimension, typically much
higher than the original feature space. With an appropriate
nonlinear mapping ϕ(x) to a sufficiently high-dimensional
space, finite data from two categories can always be separated
by a hyperplane. In SVMs, the distance from this hyperplane
to the nearest data point on each side, referred to as the
margin, is maximized. Assume that each observation xi has
been transformed to zi = ϕ(xi). The soft-margin formulation
of the SVM allows examples to be misclassified or to lie inside
the margin by the introduction of slack variables ξi in the
objective constraints

min
w

N∑

i=1

ξi + λ‖w‖2, (6)

s.t.

⎧
⎨
⎩
yi(〈w, zi〉) ≥ 1− ξi, ∀i = 1 · · ·N ,

ξi ≥ 0, ∀i = 1 · · ·N ,
(7)

where w are the parameters of the hyperplane. For any
feasible solution, misclassified examples have an associated
slack value ξi greater than 1. We can see from (6) that mini-
mizing the first term minimizes the classification error, while
minimizing the second term is equivalent to maximizing the
classification margin.

This classical SVM formulation has been shown to suffer
from class unbalance and in worst unbalanced cases to yield a
classifier biased towards the majority class [10]. The reason is
that classifying everything in the majority class is what makes
the margin the largest, with zero cumulative loss on the
abundant majority examples. The only trade-off is the small

amount of cumulative loss on the few minority examples
which do not count for much. To overcome this problem,
different penalties for each class can be included in the first
term of (6),

min
w

⎛
⎜⎝c1

∑

{i|yi=1}
ξi + c−1

∑

{i|yi=−1}
ξi

⎞
⎟⎠ + λ‖w‖2. (8)

This weighted formulation of the SVM classifier has been
successfully proposed for heart beat classification in [1].

By introducing the Lagrangian multipliers αi, this primal
formulation can be rewritten in a so-called dual form. The
optimization is then typically achieved by solving the system
using quadratic programming [11]. In the dual form, the
explicit form of the mapping function ϕ must not be known
as long as the kernel function K(xi, x j) = ϕ(xi)ϕ(x j) is
defined. The sign of the following decision function is then
used to determine the predicted class value y∗i for a new
unlabeled observation:

y∗i = sign
(
f (xi)

)
,

f (xi) = wTϕ(xi) =
N∑

j=1

αj y jK
(

x j , xi

)
.

(9)

3.3. Mutual Information. Mutual information (MI) [12] has
proven to be a very effective criterion in the context of
feature selection, as it is able to detect nonlinear relationships
between (groups of) features. The MI value between a given
feature and the class labels gives a score over the predictive
power of this feature. As an example, in a different area, [13]
successfully used MI to determine the most relevant features
in spectrometric nonlinear modeling.

Formally, the MI of a pair of random variables x, y is
a symmetric measure of the dependence between these two
variables and is defined as

I
(
x; y

) = H(x) + H
(
y
)−H

(
x, y

)
, (10)

where H(x) is the entropy of x, which is a measure of the
uncertainty on x. The entropy is defined for a continuous
random variable as:

H(x) = −
∫
fx(ζx) log fx(ζx)dζx, (11)

where fx is the probability density function of x. Equation
(10) can be written in terms of conditional entropy as

I
(
x; y

) = H
(
y
)−H

(
y | x), (12)

where H(y | x) is the conditional entropy of y given
x, measuring the uncertainty about y once x is known.
Following (12), MI can thus be seen as the reduction of
uncertainty about y brought by the knowledge of x and is
thus a natural criterion for feature selection assuming that y
is an output we want to predict from x, a set of features.

Eventually, the MI can be expressed as

I
(
x; y

) =
∫∫

fx,y

(
ζx, ζy

)
log

fx,y

(
ζx, ζy

)

fx(ζx) fy
(
ζy
) dζxdζy. (13)
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Unfortunately, in practice neither fx, fy nor fx,y are
known. The MI cannot thus be directly computed; it has
to be estimated from the available samples. Several methods
have been proposed for this task, including a histogram-
based estimator [14], a Parzen-window-based estimator [15],
and a k-NN-based estimator [16]. The MI offers many
practical advantages such as the ability to detect nonlinear
relationships between the variables and the labels, the use of
multiclass labels, and a low computational complexity.

4. Feature Selection

Feature selection is traditionally achieved either by wrapper
or filter approaches [17]. Wrapper approaches are based
on the accuracy of a specific classifier. As an example, the
exhaustive wrapper consists in feeding a model with the
2P−1 possible feature subsets (P being the total number
of features) and to choose the one for which the model
performs the best. This strategy is therefore the optimal
feature selection technique for a given model. However,
such an exhaustive search is intractable in practice since it
would require the training (including the time-consuming
optimization of potential hyperparameters) of 2P−1 different
models.

When simple and fast (e.g., linear) models are consid-
ered, one can nevertheless circumvent this issue by using
an incremental wrapper approach [18]. One of the most
common incremental search procedures is the forward-
backward selection algorithm. Its principle is to select at each
step the feature whose addition to the current subset leads
to the highest increase in prediction performances. Then it
is checked if the removal of one of the previously selected
features allows to increase the performances of the model.
More precisely, the procedure usually begins with the empty
set of features. The first selected feature is then the one which
individually maximizes the performances of the model. The
second step consists in finding the feature from the feature
set which leads to the best increase in performance when
combined to the previously selected feature. The procedure
continues, but from the third step, a backward step is added
to possibly remove a feature if this makes the model perform
better. The algorithm is ended when no feature can increase
the performance anymore or when a fixed number of features
have been reached.

Although this incremental search is not guaranteed to
converge to the selection of the optimal subset of features,
it has been proven to be very efficient in practice and reduces
the required number of models to train from 2P−1 to O(P)
[19]. Since the training of the weighted LDA model does
not require the estimation of any hyperparameter and has
a closed-form solution, it only takes a few seconds on a
modern computer. Hence, a wrapper algorithm based on a
forward search strategy can be used for the weighted LDA
classifier. Wrapper approaches, when affordable, are indeed
preferred to filter approaches because they are expected to
produce better results since they are designed for a specific
model.

On the other hand, when it is not affordable to train tens
or hundreds of prediction models, feature selection should
rather be achieved by filter methods. Filter approaches are
based on a criterion independent of the performances of
the model (see, e.g., [20, 21]). Those methods are thus
much faster than wrapper procedures and are well suited
in conjunction with more sophisticated (i.e., nonlinear)
models. For example, if the one-against-one approach is
used for the multiclass weighted SVM classifier, P(P − 1)/2
models must be trained for one choice of features, and each
model itself requires the tuning of two hyperparameters by
leave-one-patient-out cross-validation. To give an idea of the
running time, a wrapper forward selection strategy for the
weighted SVM model would run in the order of several weeks
on a modern computer. Clearly, in such situations, a filter
strategy should thus rather be considered.

Since MI is able to detect relationships between random
variables and is naturally suitable for multiclass problems, it
is a powerful criterion for filter procedures [22, 23]. However,
MI can detect nonlinear relationships, and a linear classifier
using the given features could possibly fail in grasping
the required nonlinear discriminative information. For this
reason, only the weighted SVM model with a nonlinear
kernel should be tested on the variables selected by the MI
ranking procedure. As far as the running time is considered,
it only takes a few seconds on a modern computer to estimate
the MI value between hundreds of features and the class
labels using histograms.

Eventually, is it also worth mentioning that only the
computational cost of the feature selection strategy and of
the training of the model is to be taken into account, since
the computational cost of testing can be achieved in real time
for both models.

5. Methodology

Previous work on interpatient heart beat classification uses
features extracted from the heart beat signal using either a
priori knowledge or by comparing several combinations of
feature sets. There is thus a lack of assessment of the relevance
of individual features. In this work, two feature selection
techniques are investigated to select the individual features
serving the classification task. A large number of features
are considered and compared on a fair basis. This section
introduces the methodology followed in our experiments.

5.1. ECG Data. The standard MIT-BIH arrhythmia database
[24] is used in the experiments. It contains 48 half-hour-long
ambulatory recordings obtained from 48 patients, for a total
of approximatively 110.000 heart beats manually labeled into
15 distinct beat types. According to the AAMI standards, the
four recordings including paced beats are rejected for a total
of 44 experimental recordings [5].

For each recording, two signals from two distinct leads
are available. The sampled ECG signals are first filtered
using the same filtering procedure as in [1, 4, 8] to remove
unwanted artifacts such as baseline wanderings due to
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respiration, power line interference, and other highfrequency
artifacts.

The 44 available recordings are divided in two indepen-
dent datasets of 22 recordings each with approximatively
the same ratio of heart beats classes [4]. The first dataset is
the training set and is used to build the model. The second
dataset is the test set and is used to obtain an independent
measure of the performances of the classifier.

The R spike annotations provided with the database are
used as a marker to separate and identify the beats. The MIT-
BIH heart beat-labeled types are then grouped according
to the AAMI recommendations into four more clinically
relevant heart beat classes (see Table 1 for grouping details).
Table 2 shows the number of beats in each class and their
frequencies in the two datasets.

5.2. Feature Extraction. The popular feature groups previ-
ously proposed for heart beat classification are extracted
from the heart beat time series: R-R intervals (used in
almost all previous works), segmentation intervals [4, 25],
morphological features [4, 26], Hermite basis function
expansion coefficients (HBF) [8, 27, 28], and higher-order
statistics [8, 29]. The following of this section describes the
features included in each of the groups.

(1) Segmentation intervals (24 features): the ECG char-
acteristic points, corresponding to the onset and
offset of P, QRS, and T waves, are annotated using
the standard ecgpuwave (see http://www.physion-
et.org/physiotools/software-index.shtml) segmenta-
tion software provided with the MIT-BIH arrhythmia
database. A large variety of 24 features are then
computed from the annotated characteristic waves:

(a) QRS wave: flag, area, maximum, minimum,
positive area, negative area, standard deviation,
skewness, kurtosis, length, QR length, and RS
length;

(b) P wave: flag, area, maximum, minimum, and
length;

(c) T wave: flag, area, maximum, minimum,
length, QT length, and ST length.

When the characteristic points needed to compute
a feature failed to be detected in the heart beat
annotation step, it has been chosen in this work to set
the feature value to the patient’s mean feature value
rather than discarding the beat. Note that only a very
small portion of the beats failed to be annotated (e.g.,
the Q and S points of the QRS complex failed to be
detected in only 0.60% of the beats).

(2) R-R intervals (8 features): this group consists of four
features built from the original R spike annotations
provided with the MIT-BIH database: the previous
R-R interval, the next R-R interval, the average R-R
interval in a window of 10 surrounding R spikes, and
the signal mean R-R interval. The same four features
are also computed using the R spikes detected by the
annotation algorithm.

(3) Morphological features (19 features): ten features are
derived by uniformly sampling the ECG amplitude
in a window defined by the onset and offset of the
QRS complex, and nine other features in a window
defined by the QRS offset and the T-wave offset.
As the ECG signals were already sampled, linear
interpolation was used to estimate the intermediate
values of the ECG amplitude. Here again, when the
onset or offset points needed to compute a feature
were not detected, the feature value is set to the
patient’s mean feature value.

(4) HBF coefficients (20 features): the parameters for
computing the HBF expansion coefficients as defined
in [8] are used. The order of the Hermite polynomial
is set to 20, and the width parameter σ is estimated so
as to minimize the reconstruction error for each beat.

(5) Higher-order statistics (30 features): the 2nd, 3rd,
and 4th order cumulant functions are computed.
The parameters as defined in [28] are used; the
lag parameters range from −250 msec to 250 msec
centered on the R spike, and 10 equally spaced sample
points of each cumulant function are used as features,
for a total of 30 features.

(6) Normalized R-R intervals (6 features): these features
correspond to the same features as in the R-R
interval group except that they are normalized by
their mean value for each patient. These features are
thus independent from the mean normal behavior
of the heart of patients, which can naturally be very
different between individuals, possibly misleading
the classifier.

(7) Normalized segmentation intervals (21 features): this
group contains the same features as in the segmen-
tation group, except that they are normalized by
their mean value for each patient. The normalization
is obviously not applied to boolean segmentation
features. Here again, the objective is to make each
feature independent from the mean behavior of the
heart of a patient, because it can naturally be very
different between individuals.

Several studies have shown that using the information
from both leads can increase the classification performances
[4, 6]; all features are therefore computed independently
on both leads (except the four R-R intervals and the three
normalized reference R-R intervals computed from original
annotations which are common to both leads), for a total of
249 individual features.

6. Experiments and Results

For the reasons detailed in Section 4, two distinct approaches
to the feature selection problem are followed, depending
on the complexity of the classification model employed, a
wrapper procedure with the weighted LDA model using a
forward-backward search strategy and a ranking procedure
with the weighted SVM model using the MI criterion.
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Table 1: Grouping of the MIT-BIH-labeled heart beat types according to the AAMI standards.

Normal beats (N) Supraventricular ectopic
beats (S)

Ventricular ectopic beats (V) Fusion beats (F)

Normal beats Atrial premature beat
Premature ventricular
contraction

Fusion of ventricular and
normal beats

Left bundle branch block beats Aberrated atrial premature
beat

Ventricular escape beats

Right bundle branch block beats Nodal (junctional)
premature beats

Atrial escape beats Supraventricular premature
beats

Nodal (junctional) escape beats

Table 2: Distribution of heart beat classes in the two independent datasets.

N S V F Total

Training 45809 942 3784 413 50948

89.91% 1.85% 7.43% 0.81% 100%

Test 44099 1836 3219 388 49542

89.01% 3.71% 6.50% 0.78% 100%

Table 3: Top 10 features as ranked by the MI criterion. Ref. stands
for the reference annotations provided with the MIT database.

Pos. Description Lead

1 Previous R-R (normalized) Ref.

2 T wave amplitude (normalized) 1

3 2nd-order statistic at −40 msec 1

4 2nd-order statistic at +40 msec 1

5 2nd-order statistic at −166 msec 1

6 2nd-order statistic at 166 msec 1

7 T wave interpolation at 50% 1

8 Previous R-R Ref.

9 Next R-R (normalized) Ref.

10 T wave interpolation at 60% 1

As in heart beat classification problems around 90% of
data points correspond to normal beats, a trivial model
always predicting the normal class would reach an accuracy
of 90%. The accuracy itself is thus not well suited for
this problem and the balanced classification rate (BCR),
defined as the geometric mean of class accuracies, is rather
considered in this work [1]. In the above example, a BCR
of only 25% would be obtained, which better reflects that
only one class out of the four classes was correctly classified.
According to preliminary experiments and expert opinions,
the maximum number of allowed features is arbitrarily set to
10. For both models, the weights are set to the same values as
in [4]: the inverse of the class priors.

The forward-backward selection is performed on the
training set and the BCR obtained at each step on both the
test set and the training set is shown in Figure 1. Although
a BCR of more than 80% can be reached on the training set,
the best performance achieved on the test set is a BCR of 73%
with only two features. These two features are the normalized

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

B
C

R

1 2 3 4 5 6 7 8 9 10

Training set
Test set

Number of features

Figure 1: BCR obtained with the LDA and a forward wrapper
feature selection procedure.

value of the previous R-R interval and the high-order statistic
of order one with a delay of −166 msec. Nevertheless, if
the number of features was selected by taking the maximal
results obtained on the training set, a BCR below 70% would
be obtained on the test. Hence, the wrapper algorithm seems
to overfit the training data and to generalize quite poorly.

As far as the weighted SVM model is considered, the one-
against-one approach is used for multiclass classification,
and the polynomial kernel is used to allow nonlinear
predictions. The optimal degree of the polynomial kernel
(between one and four) and the optimal value of the
regularization parameter (between 10−5 and 105) are chosen
using a leave-one-patient-out cross-validation procedure
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Table 4: Classification performances of the two feature selection methods compared to previously reported feature choices.

Model Feature selection Features BCR N S V F

wLDA [4] 50 73.83% 88.63% 44.66% 80.58% 81.44%

wLDA Wrapper wLDA 2 73.00% 81.88% 70.53% 70.77% 68.81%

wSVM Ranking MI 6 82.99% 75.88% 82.63% 85.06% 88.40%

wSVM [1] 36 71.55% 77.54% 42.86% 79.19% 86.60%

0.13

0.135

0.14

0.145

0.15

0.155

M
I

1 2 3 4 5 6 7 8 9 10

Most informative features

Figure 2: MI of the ten most informative features with the class
labels.

on the training set. The MI value between each feature
and the class labels is computed using a histogram-based
estimator [14] on the training set to score the features.
Following recommendations by [14], the number of bins in
the histogram was heuristically chosen as the square root of
N .

Table 3 holds the top 10 features, as ranked by the MI
criterion. As it can be observed from the table, the important
features seem to be R-R intervals, the amplitude and length
of the T wave, and 2nd-order statistics (the autocorrelation
function). The top 2 features are from patient-normalized
feature sets. This is in accordance with the selection of the
forward-backward algorithm with the LDA classifier since
the two selected features are the first and fifth best ranked
features. These findings are also in accordance with previous
work such as [1], where the best performances were obtained
using R-R, normalized R-R and HOS feature sets, and the
second best performances with normalized interval features.

These results validate the relevance of the normalization
of the features. On the other hand, several popular feature
sets do not seem to serve the classification performances.
No features were indeed selected by the models from the
HBF coefficients, the 3rd- and 4th- order statistics, and the
unnormalized segmentation intervals. Furthermore, it does
not seem necessary to extract features on both leads since
only features from the original annotations and from the first
lead are selected.

It is important to note that unlike the correlation, the
MI is not bounded, and the choice of the significantly
informative features is not straightforward [15]. For this rea-
son, and in order to keep the computational time reasonable,

the number of features is chosen by looking at the sorted
MI values for the 10 most informative features as shown in
Figure 2. It can be observed in Figure 2 that a number of six
features seem to be a reasonable choice.

Table 4 summarizes the performances achieved by the
two feature selection approaches together with the perfor-
mances obtained with previously reported feature choices for
the same models. The classification accuracy for each class is
presented, together with the BCR.

The results in Table 4 show that performing feature
selection is of great importance, since the weighted SVM
with only 6 features significantly outperforms all other
classification procedures with up to 50 features. In particular,
the accuracy for the S class is improved by almost 40%. This
can be explained by the selection of more relevant features
and by the fact that features can be chosen individually and
not only at a group level. As far as LDA classification is
concerned, an improvement of less than 1% of BCR can be
achieved by using 50 features instead of only the 2 features
selected by the wrapper method.

It is important to note that the performances reported
in Table 4 are different to the ones published in [4] and in
[1]. This can be explained by differences in methodologies.
In [4], the authors made a tremendous work by manually
correcting all the R spike annotations. Since the R-R features
are clearly one of the most important features, this may
explain the differences in performances. However, manually
annotating all the signal is a time-consuming process which
is not affordable in practice when thousands of beats have
to be evaluated. The difference in performance with [1]
can be explained by the fact that the authors select the
hyperparameters of the SVM by measuring the performances
directly on the test set rather than by using a cross-validation
procedure on the training set which is a less advantageous
but more realistic situation.

Eventually, it is important to note that in [7], the authors
also report an increase in performance compared to [4].
However, the fusion class is merged with the V class in
their experiments. Since the F class is the most unbalanced
class, the classification process is then less impacted by the
unbalance and likely to yield higher results. Nevertheless,
when looking at the class accuracies reported in that study
for the pathological classes S (77%) and V (81%) that are
common to this work, our algorithm also performs better.

7. Conclusion

The selection of discriminative features is known to be
of great importance to help interpreting models and to
increase the performances by removing spurious features.
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In this work, a large number of features proposed in the
literature are extracted from the heart beat time series, and
their relevance is evaluated on a common ground. For this
purpose, two feature selection strategies are evaluated on
real ambulatory recordings. The first one is an incremental
wrapper procedure, and the second one is a filter approach.

The wrapper method is used with the weighted LDA
model using a forward-backward search strategy. Results
show that the best performances on the test set are obtained
with only two features. These results are similar in terms of
BCR to the performances of the same model using previously
reported feature selection, were up to 50 features where
required to attain the same performances.

The ranking approach is used in conjunction with the
weighted SVM classifier and the MI criterion to score
the features. Six features are empirically selected from the
ranking procedure. Results with the weighted SVM classifier
using only these 6 features are higher than previously
reported interpatient algorithms.

These results show that a very small number of features
are actually necessary to yield high performances and that
several popular feature sets do not seem to serve the
classification process. In particular, the most important
features appear to be R-R intervals, the amplitude and
length of the T wave, and 2nd-order statistics. Results also
show that the mutual information criterion is a powerful
tool for feature selection. In particular, it can be used in
conjunction with models having a computational complexity
which makes the wrapper procedure intractable in practice.
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