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Abstract. Similarity-based embedding is a paradigm that recently gained interest
in the field of nonlinear dimensionality reduction. It provides an elegant framework
that naturally emphasizes the preservation of the local structure of the data set.
An emblematic method in this trend is t-distributed stochastic neighbor embedding
(t-SNE), which is acknowledged to be an efficient method in the recent literature.
This paper aims at analyzing the reasons of this success, together with the impact of
the two metaparameters embedded in the method. Moreover, the paper shows that
t-SNE can be interpreted as a distance-preserving method with a specific distance
transformation, making the link with existing methods. Experiments on artificial
data support the theoretical discussion.
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1 Introduction

Dimensionality reduction is the task of finding faithful, low-dimensional rep-
resentations of high-dimensional data. Although the case of clustered data can
be considered too, dimensionality reduction usually relies on the assumption
that the data are sampled from a smooth manifold. Methods such as prin-
cipal component analysis (PCA) or classical metric multidimensional scaling
(MDS) (Young and Householder (1938)) can be successfully applied when
the manifold is a linear subspace. However, when the manifold is curved or
folded (Tenenbaum et al. (2000)), one should use adapted nonlinear dimen-
sionality reduction (Lee and Verleysen (2007)) (NLDR). Nonmetric MDS
(Shepard (1962), Kruskal (1964)) and Sammon’s nonlinear mapping (SNLM)
(Sammon (1969)) are early methods generalizing MDS, based on the prin-
ciple of distance preservation. Spectral embedding (Saul et al. (2006)) has
emerged since the seminal paper describing kernel PCA (Scholkopf et al.
(1998)). Isomap (Tenenbaum et al. (2000)), locally linear embedding (Roweis
and Saul (2000)), Laplacian eigenmaps (Belkin and Niyogi (2002)), and max-
imum variance unfolding (MVU) (Weinberger and Saul (2006)) are among
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the most representative methods in this category. Spectral methods provide
the guarantee of finding the global optimum of their cost function. In con-
trast, methods based on other optimization techniques generally do not offer
this advantage. However, they usually compensate for this drawback by the
capability of handling a broader range of cost functions. Successful nonspec-
tral methods are among others curvilinear component analysis (CCA) (De-
martines and Herault (1997)), stochastic neighbor embedding (SNE) (Hin-
ton and Roweis (2003)), and its variant t-SNE (Van der Maaten and Hinton
(2008)). CCA has long been considered to be a distance-preserving method
that can be related to SNLM. In contrast, SNE and t-SNE seek to match sim-
ilarities, which are basically decreasing functions of the pairwise distances.
This reformulation provides a more natural way to formalise the importance
of preserving the local structure of data. t-SNE is nowadays considered as an
efficient method for visualizing high-dimensional data (see for example Erhan
et al. (2009), Parviainen and Vehtari (2009)).

This paper aims at analysing the behavior of t-SNE and the key influence
of its two metaparameters, namely the so-called perplexity and the number
of degrees of freedom. It addition, it shows that t-SNE can be cast within the
framework of distance preservation, by means of a distance tranformation;
we identify this transformation, and compare it to other methods.

The remainder of this paper is organized as follows. Section 2 briefly
reviews SNE and t-SNE. Section 3 weaves the connection between distance
preservation and similarity matching. Sections 4 and 5 provide and discuss
the experimental results. Finally, Section 6 draws the conclusions.

2 Stochastic Neighbor Embedding

Let Ξ = [ξi]1≤i≤N denote a data set of N vectors picked in an M dimensional
space. Symbol δij denotes the pairwise distance between data vectors ξi and
ξj . The similarity between ξi and ξj is defined in SNE as:

pj|i(λi)
.=

{
0 if i = j

g(δij/λi)
/∑

k 6=i g(δik/λi) otherwise ,

where g(u) = exp(−u2/2). In Hinton and Roweis (2003), pj|i is referred to as
a conditional probability and represents the empirical probability of ξj to be a
neighbor of ξi. The softmax denominator indeed guarantees that

∑N
j=1 pi|j =

1. Probabilities pj|i(λi) and pi|j(λj) are not equal since they involve kernels
with individual widths. A user-defined metaparameter, the perplexity PPXT,
induces all widths λi through the equation 2H(pj|i) = PPXT, where H(pj|i)

.=∑N
j=1 pj|i log2 pj|i is the entropy of pj|i. Intuitively, the perplexity allows the

Gaussian kernels to adapt their width to the local density of data points.
Within this framework, a symmetric similarity function between ξi and

ξj can be defined by pij(λ) .= 1
2N

(
pj|i(λi) + pi|j(λj)

)
, where λ = [λi]1≤i≤N
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and pij is referred to as a joint probability. As for the conditional probability,
we have pii(λ) = 0 and

∑N
i,j=1 pij(λ) = 1.

In the low-dimensional space, let X = [xi]1≤i≤N denote the embedding to
be found by SNE. If dij is the Euclidean distance ‖xi − xj‖2, then pairwise
similarities in the low-dimensional space can be written as

qij(n) .=

{
0 if i = j

t(dij , n)
/∑

k 6=l t(dkl, n) otherwise , (1)

where t(u, n) = (1 + u2/n)−(n+1)/2. Function t(u, n) is proportional to the
probability density of a Student’s t-distributed variable with n degrees of
freedom; n controls the tail thickness of the similarity kernel. It is notewor-
thy that limn→∞ t(u, n) = g(u). Hence, SNE (Hinton and Roweis (2003)
corresponds to the case n → ∞ whereas t-SNE (Van der Maaten and Hin-
ton (2008), Van der Maaten (2009)) turns out to be the case n = 1 . Like
pij(λ), qij(n) is referred to as a joint probability, although it is differently
defined. Two important differences are the kernel shape and the absence of
scaling parameter. Another difference is that qij(n) can be interpreted as a
(non-conditional) probability, thanks to the single softmax denominator.

The t-SNE method compares pij(λ) and qij(n) by means of a (discrete)
Kullback-Leibler divergence:

E(Ξ,X,λ, n) = DKL(p‖q) .=
N∑

i,j=1

pij(λ) log
pij(λ)
qij(n)

.

The minimization of E can be achieved by gradient descent. In t-SNE, the
gradient of E(Ξ,X,λ, n) with respect to xi can be written as (Van der
Maaten and Hinton (2008), Van der Maaten (2009))

∂E

∂xi
=

2n+ 2
n

N∑
j=1

pij(λ)− qij(n)
1 + d2

ij/n
(xi − xj) . (2)

It is easy to verify that

lim
n→∞

∂E

∂xi
= 2

N∑
j=1

(pij(λ)− qij(n))(xi − xj) ,

which corresponds to the gradient of SNE. In the context of a gradient de-
scent, three factors can be identified in each term of (2). Factor (xi − xj) is
a vector that allows xi to move towards xj . Factor (pij(λ) − qij(n)) varies
between −1 and +1; it is proportional to the similarity error and adjusts the
length and direction (inwards/outwards) of the movement. Finally, factor
(1 + d2

ij/n)−1 varies between 0 and 1 and damps the movement, especially if
xi lies far away from xj . A similar factor can be found in the gradient of CCA



340 Lee, J.A. and Verleysen, M.

(Demartines and Herault (1997)). It provides the capability of ‘tearing’ the
manifold to be embedded. Additional details about t-SNE and the gradient
descent of E can be found in van der Maaten and Hinton (2008).

The discrepancy between the kernels in the high- and low-dimensional
spaces is intended to address the curse of dimensionality. Let us take the
exemple of a curved P -dimensional manifold embedded in an M -dimensional
space (with M > P ). It is easy to see that the Euclidean distance between
any two manifold points shrinks as the curvature increases, especially if they
lie far away from each other. Hence, a strict isometry will not succeed in
embedding the manifold in a low-dimensional space: a poor unfording with
several regions superimposed would result (Hinton and Roweis (2003)). Based
on this observation, the similarity kernels in t-SNE have heavier tails in the
embedding space, to force large distances to grow in order to attain the same
similarity value as in the data space.

3 Connection between similarity and distance
preservation

Let us assume that t-SNE finds an embedding that cancels the gradient of
its objective function. A sufficient condition to obtain such a solution is that
one of the terms in (2) vanishes. A trivial (useless) solution is when dij = 0
for all i and j. Another trivial solution is dij → ∞ for all i and j, because
the damping factor tends to zero. The useful solution consists in satisfying
pij(λ) = qij(n). In this last case, let us approximate the above definition of
pij(λ) with pij ≈ pj|i/N . Using this approximation in conjuntion with the
definition of qij(n) in (1) allows us to write

dij ≈ f(δij)
.=

√√√√nR
2

n+1
i exp

(
δ2ij

(n+ 1)λ2
i

)
− n , (3)

where Ri = N
∑

k 6=i g(δik/λi)/
∑

k 6=l t(dkl, n) is the ratio of the softmax de-
nominators. If we get rid of the difficulty raised by the softmax denominators,
namely if we assume that Ri ≈ 1, then we can see SNE and t-SNE as NLDR
methods that preserve transformed distances. The transformation has an ex-
ponentially increasing shape; its key properties are

• f(0) = 0 and f is monotonically increasing on R+,
• limn→∞ f(δij) = δij/λi,
• if δij � λi, then dij = f(δij) ≈ δij/(λi

√
n+ 1).

Intuitively, t-SNE tries to preserve stretched distances; the stretch is expo-
nential. In the case of SNE, the transformation degenerates and distances are
merely locally scaled by λi. The second property shows that a similar scaling
occurs when δij � λi. What is important to note is that λi and n act more or
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less in the same way in transformation (3), namely they modulate the expo-
nential growth. However, the differences are that (i) n is global whereas the
λi can fluctuate locally, (ii) changing the perplexity (which approximately
amounts to multiplying all λi with approximately the same factor) impacts
the scale of the embedding, while changing n does not have this effect.

The relationship between n and the intrinsic dimensionality of the mani-
fold that is put forward in Van der Maaten (2009) is questioned by the above
analysis. First, because n and the perplexity cannot be studied separately
and, second, because n depends neither on the embedding dimensionality
nor on the data dimensionality. In addition, the optimal distance transfor-
mation depends on the manifold shape: in the above example, changing the
curvature of the manifold should have an impact on the required stretch,
hence on n. This motivates the experiments described in the next section.

4 Experiments

The experiments rely on the widely used Swiss roll (Tenenbaum et al. (2000))
benchmark manifold. A dataset of 750 noisefree vectors is sampled from
ξ = [

√
u cos(3π

√
u),
√
u sin(3π

√
u), πv]T , where u and v have uniform dis-

tributions in [0, 1]. Two reasons justify using the Swiss roll. First, it is a
widespread benchmark that has however not been used in (Van der Maaten
and Hinton (2008), Van der Maaten (2009)). Second, it is a Euclidean mani-
fold, which implies that a linear projection (such as in metric MDS) suffices
to obtain a perfect embedding of the Swiss roll, provided geodesic distances
are used (Tenenbaum et al. (2000), Lee and Verleysen (2007)).

The experiments compare t-SNE, CCA, SNLM, and classical metric MDS,
whose result serves as baseline. Each method is used with both Euclidean and
geodesic distances. The latter are approximated with graph distances, that
is, with shortest paths in a Euclidean graph that stems from 6-ary neighbor-
hoods around each data point. MDS is equivalent to PCA with Euclidean
distances, and to Isomap (Tenenbaum et al. (2000)) with geodesic distances.
CCA with geodesic distances is known as Curvilinear Distances Analysis (Lee
and Verleysen (2004)). The implementation of t-SNE is provided by the au-
thors of Van der Maaten and Hinton (2008); the only extension concerns the
possibility to vary the number of degrees of freedom.

Performance assessment is achieved by means of the criteria proposed
in (Lee and Verleysen (2009). These criteria look at K-ary neighborhoods
around each vector in the data space as well as in the embedding space.
Criterion QNX(K) reflects the overall quality of the embedding; its value
corresponds to the average percentage of identical neighbors in both spaces.
Criterion BNX(K) measures to what extend a NLDR method can be ‘in-
trusive’ or ‘extrusive’. A positive BNX(K) corresponds to an intrusive em-
bedding, wherein many distant points are embedded close to each other; a
negative value corresponds to many extrusions, i.e. to close neighbors em-
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Fig. 1. Quality assessment of the embeddings using Euclidean distances. The num-
bered curves for t-SNE refer to perplexity values equal to 4, 25, 64, 121, 196, and
289 respectively. See text for details.

bedded far away from each other. Both QNX(K) and BNX(K) are shown in
specific diagrams that consist of three panels. The first one spans the inter-
val 1 ≤ K ≤ N − 1, whereas the small ones on the right focus on small
values of K, for each criterion separately. The quality and behavior of the
various methods are depicted in Figs. 1 and 2. Figure 3 shows the evolution
of QNX(K) with respect to the perplexity, for K = {5, 15, 50, 150}.

5 Discussion

Unfolding the Swiss roll with Euclidean distances is a difficult task, as shown
by the low values of QNX(K) produced by MDS, SNLM, and CCA in Fig. 1.
The result of t-SNE largely depends on the value of the perplexity; it ranges
from poorer than MDS to excellent. Looking at the curves for BNX(K) shows
that t-SNE tends to be extrusive or intrusive, depending on the perplexity,
whereas all other methods are rather intrusive. An illustration of the embed-
dings provided by t-SNE with different perplexity values is given in Fig. 4.

Replacing Euclidean distances with geodesic ones obviously facilitates the
task. All methods achieve good results in Fig. 2, the best being CCA. The
variability in t-SNE’s results remains, but one sees that increasing the per-
plexity leads to better performances (see also Fig. 3). As expected, geodesic



On the Role and Impact of the Metaparameters in t-SNE 343

0 200 400 600
−0.2

0

0.2

0.4

0.6

0.8

1

Q
NX

(K) (top), B
NX

(K) (bottom)

 

 

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

Q
NX

(K) (detail)

0 10 20 30 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

B
NX

(K) (detail)

MDS
SNLM
CCA
t−SNE 1
t−SNE 2
t−SNE 3
t−SNE 4
t−SNE 5
t−SNE 6

Fig. 2. Quality assessment of the embeddings using geodesic distances. The num-
bered curves for t-SNE refer to perplexity values equal to 4, 25, 64, 121, 196, and
289 respectively. See text for details.

distances do not need to be stretched, what can be achieved with a high (infi-
nite) perplexity. For Euclidean distances, we observe a peak in QNX(K): there
exist an optimal value of the perplexity, such that the transformed distances
approximate as closely as possible the geodesic distances.

At this point, we can state that the distance transformation that is im-
plicitly achieved by t-SNE is not always optimal and that its parameters
must be carefully tuned. More specifically, the perplexity controls the way
distances are stretched. If stretching distances is fundamentally a pertinent
idea when one wishes to unfold a manifold, t-SNE cannot always approximate
the optimal transformation, which can be much more complex than in the
Swiss roll. A positive point for t-SNE is that its gradient includes a damping
factor that diminishes the importance of large distances, whose transformed
value could be inappropriate. Nevertheless, this does not address the issue
raised by non-Euclidean manifolds, such as an half (hollow) sphere. Near the
pole, small distances should shrink or remain unchanged, whereas a stronger
and stronger stretch is required when moving away from the pole. The situ-
ation gets obviously much more favorable with clustered data, as stretching
large distances improves the separation between the clusters; examples can be
found in Van der Maaten and Hinton (2008) and in Van der Maaten (2009).
There is a risk however that too small a value of the perplexity could lead to
an embedding with spurious clusters.
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Fig. 4. Embeddings provided by t-SNE with Euclidean distances, for perplexity
values equal to 4, 25, 64, 121, 196, and 289 (from top left to bottom right).

Finally, the paradigm of distance preservation can be used to compare
t-SNE to other NLDR methods. The comparison is straightforward for many
spectral methods that explicitly use distances, like Isomap and MVU. For
other methods, such as those involving the bottom eigenvectors of some Gram
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matrix, duality (Xiao et al. (2006)) can be invoked in order to first build a
virtual matrix of pairwise distances, on which classical MDS (isometric em-
bedding) is applied. For example, Laplacian eigenmaps and related methods
can be shown to involve commute time distances or random walks in a graph
(Saerens et al. (2004)). Focusing on the transformation we see for instance
that Isomap, MVU, and t-SNE all stretch distances. In this respect however,
MVU proves to be more powerful than Isomap, which in turn is superior to
t-SNE. The transformations in Isomap and MVU are indeed data-driven: any
distance value depends on the shape of the underlying manifold. Moreover,
the semidefinite programming step in MVU adjusts long distances in order
to minimize the embedding dimensionality. In contrast, the transformation
achieved by t-SNE marginally depends on the data density (when the individ-
ualized widths in λ are computed from the perplexity), not on the manifold
shape. Apart from this and a minor impact of the softmax normalizations,
t-SNE achieves an ‘a priori’ distance transformation, which is not data driven.

6 Conclusions

Many methods of nonlinear dimensionality reduction rely on distance preser-
vation. Recent works reveal however a growing interest in similarity matching;
an emblematic method that follows this trend is undoubtedly t-SNE. This
contribution aims at analyzing t-SNE’s properties. Casting t-SNE within the
framework of distance preservation allows a better understanding of its be-
haviour. Specifically, it has been shown that t-SNE can be considered to
preserve transformed distance and the transformation has been identified to
be an exponential stretch. The slope of the transformation turns out to be
controlled by the main two metaparameters of t-SNE, namely the perplex-
ity and the number of degrees of freedom in the Student similarity functions.
Such an exponential stretch increases the separation between clusters and this
explains why t-SNE performs so well with clustered data. On the other hand,
the transformation shape can be suboptimal for manifold data. Experiments
are performed on the Swiss roll, a manifold for which an optimal distance
transformation is known and consists in replacing Euclidean distances with
geodesic distances. In this case, t-SNE requires a careful parameter adjust-
ment and cannot outperform basic methods that preserve geodesic distances.
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