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a b s t r a c t

Away to achieve feature selection for classification problems polluted by label noise is pro-
posed. The performances of traditional feature selection algorithms often decrease sharply
when some samples are wrongly labelled. A method based on a probabilistic label noise
model combined with a nearest neighbours-based entropy estimator is introduced to ro-
bustly evaluate the mutual information, a popular relevance criterion for feature selection.
A backward greedy search procedure is used in combination with this criterion to find rel-
evant sets of features. Experiments establish that (i) there is a real need to take a possible
label noise into account when selecting features and (ii) the proposed methodology is ef-
fectively able to reduce the negative impact of the mislabelled data points on the feature
selection process.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Performing feature selection is an essential preprocessing step for many data mining and pattern recognition applica-
tions, including classification (Guyon and Elisseeff, 2003; Dash and Liu, 1997). The objective is to determine, among the
original set of features of a data set, which are the most relevant ones to achieve a particular task. In practice, the benefits of
feature selection are numerous. First, it helps reducing the dimensionality of a data set. This aspect is particularly important
when the data are high-dimensional. Indeed, learning in this context is a hard task, due to many difficulties known under
the generic term curse of dimensionality (Bellman, 1961). In addition, it is likely that for a specific problem, some features
are either irrelevant or redundant. Discarding these features generally improves the performances of classification models.
Last, feature selection has the advantage over other dimensionality reduction strategies, such as feature extraction (Guyon
et al., 2006), that it preserves the original features. This is of crucial importance inmany industrial andmedical applications,
where the interpretation of the models is important.

Among the different possible solutions, filtermethods are often preferred to achieve feature selection. Filters are based on
the optimisation of a criterion which is independent of any prediction model; in practice, this makes them particularly fast
compared to wrapper methods, which directly optimise the performances of a specific prediction model. Moreover, filter
methods can be used in combinationwith any predictionmodel; for these reasons, they will be considered in this work. As a
criterion of relevance, Shannon’smutual information (MI) (Shannon, 1948) is one of themost popular and successful choices
for filter-based feature selection. Due to several reasons described in Section 2.1, MI possesses many required qualities for
this task and has strong advantages over other well-known criteria such as the correlation coefficient.

Themajor problemwhen usingMI is that, in general, it cannot be computed analytically but has to be estimated from the
available data. Even if estimating MI has been intensively studied for one-dimensional features, estimating the MI between
high-dimensional groups of features still remains a challenging task; however, it can prove to be very useful in practice
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for feature selection. Recent works have addressed this problem, by showing the interest of a nearest-neighbours based MI
estimator (Kraskov et al., 2004; Gómez-Verdejo et al., 2009).

Even if feature selection for traditional classification problems has been widely studied in the literature, it is somehow
surprising that the impact of label noise on this task has not been investigated yet. To our knowledge, problemswith feature
selection were only mentioned by Zhang et al. (2006) and Shanab et al. (2012). In the particular context of gene selection,
they show that only a fewmislabelled samples cause a large percentage of themost discriminative genes to be not identified
and that label noise decreases the stability of feature rankings. It is quite common when working with real-world datasets
that some of the class labels are wrong (Brodley and Friedl, 1999). This can be due to the fact that, for many applications,
human expertise is needed to assign class labels. Moreover, some errors can be made when labels are encoded in a data
set. As label noise is known to have a negative impact on the performances of supervised classification algorithms, it is
reasonable to assume that it will also degrade the performances of supervised feature selection algorithms. In this case, a
label noise-tolerant feature selection algorithm would undoubtedly be of great interest.

First, the impact of label noise on a traditional MI-based filter feature selection algorithm is analysed, which shows how
the performances of such an algorithm can decreasewhen the label noise increases. A solution tomake a nearest neighbours
based entropy estimator less sensitive to errors in the class labels is thenproposed; the solution is based on a statisticalmodel
of the label noise and an expectation-maximisation algorithm.

The rest of the paper is organised as follows. Section 2 briefly reviews basic notions about MI-based feature selection and
about the label noise problem; the impact of label noise on feature selection is also illustrated. Section 3 introduces a label
noise-tolerant entropy estimator, assuming the true classmemberships are known. An expectation-maximisation algorithm
to estimate these memberships is derived in Section 4. The complete label noise-tolerant feature selection procedure is
introduced in Section 5 and its interest is experimentally illustrated in Section 6. Section 7 concludes the paper.

2. Imprecise labels and feature selection

This section reviews basic concepts about mutual information (MI)-based feature selection and methods to handle label
noise. The impact of the label noise on the performances of a classical MI-based supervised feature selection algorithm is
eventually illustrated in an example.

2.1. Mutual information: definitions and interest for feature selection

Filter-based feature selection requires the use of a statistical criterion, measuring the relevance of a feature set for
predicting the class labels. In this work, the mutual information (MI) (Shannon, 1948) criterion is considered. Let X denote a
(group of) real-valued random variable(s) on domainX and Y a discrete random variable on domainY. In a feature selection
context, X is a (group of) feature(s) and Y the associated class label. The MI between X and Y is defined as

I(X; Y ) = H(X)− H(X |Y ), (1)
where H(X) is called the entropy of X . The entropy is

H(X) = −


X

pX (x) log pX (x)dx, (2)

pX being the probability density function of X . In Eq. (1), H(X |Y ) is the conditional entropy of X given Y :

H(X |Y ) =

y∈Y

pY (y)H(X |Y = y), (3)

where pY is the probability mass function of Y . In the last equation, H(X |Y = y) is the classical entropy of X , but limited to
the points whose class label is y.

The MI criterion has many desirable properties for feature selection. First it has a natural interpretation in terms of
uncertainty reduction. Indeed, it is symmetric and Eq. (1) can be equivalently rewritten as

I(X; Y ) = H(Y )− H(Y |X). (4)
Since the entropymeasures the uncertainty on the observed values of a random variable, theMI can be seen as the reduction
of uncertainty on the class labels once a (group of) feature(s) is known. This is obviously a sound criterion to assess the
interest of a subset of features. Moreover, the MI has the advantage over other well-known criteria (such as the popular
correlation coefficient, see e.g. Yu and Liu (2003)) that it is able to detect non-linear relationships between variables; it is
thus more powerful in practice. Eventually, the MI can be naturally defined for multidimensional variables, which again is
not the case for other popular criteria. This property can be particularly helpful for feature selection, since some features are
often only relevant or redundant when considered together.

2.2. Search procedures

The objective of the feature selection method that is considered in this paper is to find the subset of the original features
which together maximise the MI with the output Y . The most straightforward strategy is to try all possible feature subsets.
However, such an exhaustive search is intractable in practice as the number of features gets large.
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An efficient alternative often encountered in the literature is to use greedy procedures, whose most popular ones are
the forward and the backward searches (Caruana and Freitag, 1994). A forward search begins with an empty set of features.
Then, at each step, the feature whose addition to the set of already selected features leads to the highest MI with the output
is selected. On the contrary, a backward search starts with all features. At each step of the procedure, the feature whose
removal leads to the subset with the highest MI with the output vector is eliminated.

2.3. Mutual information estimation

As can be understood fromEq. (3), theMI cannot be directly computed for real-world problems, as the probability density
function (PDF) of X is not known in practice. The MI has thus to be estimated from the dataset. Traditional approaches to
MI estimation first start by estimating the PDF, in order to get an approximation of the entropy of X . Eqs. (1) and (3) can
then be used to estimate the MI. Estimating a PDF for one-dimensional variables is a widely studied task for which many
satisfactory solutions exist, e.g. the kernel-based density estimation (Steuer et al., 2002), the B-splines approach (Daub et al.,
2004) or even the basic histogram (Battiti, 1994). When the dimension of the data increases, however, these methods are
likely to fail, since they are strongly affected by the curse of dimensionality (Bellman, 1961). As a consequence, they cannot
be used in combination with the multivariate greedy search procedures described above.

A possible alternative is to consider nearest neighbours based entropy estimators, such as the one proposed by
Kozachenko and Leonenko (1987). Indeed, such estimators are expected to be less sensitive to the dimensionality of the
data (Rossi et al., 2006). For this reason, the results in Kozachenko and Leonenko (1987) have been extended to the esti-
mation of the MI for both continuous (Kraskov et al., 2004) and categorical (Gómez-Verdejo et al., 2009) output vectors.
Feature selection results obtained through these estimators are particularly encouraging (see e.g. Rossi et al., 2006). The
entropy estimator proposed in Kozachenko and Leonenko (1987) is

Ĥ(X) = −ψ(k)+ ψ(n)+ log cd +
d
n

n
i=1

log ϵk(i), (5)

where k, the only parameter of the estimator, is the number of nearest neighbours considered, n is the total number of sam-

ples of X, d is the dimensionality of the samples (or equivalently the number of features), cd = 2π
d
2

Γ ( d2 )
is the volume of the

unitary ball of dimension d (where Γ is the Gamma function) and ϵk(i) is twice the distance from the ith sample in X to its
kth nearest neighbour (in terms of the Euclidean distance). Notice that ϵk(i) can also be interpreted as the diameter of the
hypersphere containing the k-nearest neighbours of the ith sample. Eventually, ψ is the digamma function.

Combining Eqs. (1), (3) and (5), Gómez-Verdejo et al. (2009) derived the estimator

Î(X; Y ) = Ĥ(X)−

y∈Y

pY (y)Ĥ(X |Y = y)

= ψ(n)−
1
n


y∈Y

nyψ(ny)+
d
n


n

i=1

log ϵk(i)−

y∈Y


i|yi=y

log ϵk(i|y)


, (6)

with ny being the number of samples whose observed label is y and ϵk(i|y) being defined similarly as ϵk(i) but considering
only the points belonging to class y. Eq. (6) assumes that pY (y) can be adequately estimated by ny

n .

2.4. Label noise

In the literature, three main approaches can be distinguished to deal with label noise in the context of classification
problems.

First, some authors have proposed to filter the noisy data, in order to detect the wrongly labelled samples. Those samples
are then removed or their label is corrected. Different criteria indicating the existence of mislabelled data points can be
thought of. As a few examples, Guyon et al. (1996) considers the information gain, while Barandela and Gasca (2000) rather
makes use of the labels of the neighbouring samples. Eventually, in Brodley and Friedl (1999), the authors use disagreement
in ensemble methods. In these examples, the decontamination of the data set is made prior to any further classification step.

Second, a quite different strategy is themodel-based approach,where an explicit label noisemodel is considered. The first
work to propose such a strategy was Lawrence and Schölkopf (2001), where a probabilistic noise model is combined with
a Fisher Kernel discriminant to perform binary classification. This model has been extended by getting rid of the limiting
assumption of Gaussian distribution (Li et al., 2007) and adapted to multi-class problems (Bootkrajang and Kaban, 2011).
Other models have also been proposed as e.g. Paulino et al. (2005) and Bouveyron and Girard (2009).

Eventually, different but related works address problems where uncertainties over labels are assumed to be readily
available (Côme et al., 2008, 2009).

This work focuses on model-based approaches and develops a noise-tolerant MI estimator to achieve feature selection.
Indeed, model-based approaches are theoretically sound and have the advantage of not discarding any sample containing
potentially valuable information.
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Fig. 1. Balanced classification error rate of a k-nearest neighbours classifier for the Iris dataset as a function of the number of selected features for noise-free
(plain line) and noisy (dashed line) data. The error bars correspond to 95% confidence intervals.

2.5. Impact of label noise on feature selection

It is well known that label noise has a negative impact on the performances of supervised classification models.
Nevertheless, there is to the best of our knowledge no evidence that label noise also degrades the performances of feature
selection algorithms, except Zhang et al. (2006) which shows in the context of gene selection that only a few mislabelled
samples cause a large percentage of themost discriminative genes to be not identified and Shanab et al. (2012) which shows
that label noise decreases the stability of feature rankings. Notice that gene selection is particular, since there are only a few
tens of training samples, whatmaymake this application especially sensitive to label noise. The goal of this section is to show
that the performances of feature selection are actually degraded by label noise and that taking label noise into account when
performing feature selection can be important and useful in practice.

To this end, a greedy backward feature selection algorithm based on theMI criterion, estimated as detailed in Section 2.3,
was run on the well-known Iris dataset from the UCI repository (Frank and Asuncion, 2010). The same experiment was also
carried out, but after 20% of the class labels have randomly been switched to another class, chosen equiprobable among the
other classes. To measure the quality of feature selection, the performances of a k-nearest neighbours (kNN) classifier are
observed for each obtained feature subset, since the kNN classifier is known to be very sensitive to the presence or irrelevant
features. It is important to notice that only the feature selection is made with noisy data, while the training, the validation
and the prediction steps of the kNN are made using the noise-free data. This allows us to compare the results on the actual
problem of interest, feature selection. The experiment was repeated 100 times and samples are split into training and test
sets (70%–30%). The optimal value of the meta-parameter k was chosen using ten-fold cross-validation. All the technical
details are discussed in Section 6.

Fig. 1 shows that even for the simple Iris dataset, the performances of the kNN classifier are considerably affected by the
presence of label noise. Indeed, the balanced classification error rate (the average of the classification error rates obtained
for each class) is largely and significantly higher in the noisy case, whatever the number of selected features is. Moreover,
the stability of the feature selection is also degraded by the presence of label noise, as shown by the much larger confidence
intervals.

3. Label noise-tolerant entropy estimation

As discussed in the previous section, feature selection in classification can be affected by label noise. Indeed, the Gomez
MI estimator (Gómez-Verdejo et al., 2009) uses the observed labels, which may be incorrect. In turn, the incorrect MI values
disrupt feature selection, which may lead to the selection of less informative feature subsets. This section proposes a label
noise-tolerant entropy estimator. Since the next three sections are highly interdependent, a short introduction is given to
help the reader.

3.1. Short summary of the three next sections

In this section and the two following ones, a methodology is proposed to deal with label noise for feature selection in
classification. Concepts and algorithms are progressively introduced in these three sections to make developments easier to
follow.

Section 3 shows that the Kozachenko–Leonenko estimator is affected by label noise. Consequently, a label noise-tolerant
estimator of the entropy is proposed by relaxing the observed labels. This estimator requires the knowledge of the true
memberships of each instance to the different classes, which are of course usually unknown in practice but can be estimated
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Fig. 2. Estimates of the logarithm of the conditional probability for a binary classification problem. Each class has a Gaussian distribution (dashed lines)
and 40 samples are shown (grey circles belong to class 0, black squares belong to class 1); one sample is mislabelled (large grey square).

as seen in Section 4. This allows to estimate mutual information in a label noise-tolerant way to perform feature selection,
as seen in Section 5.

The true memberships which are necessary in Section 3 are obtained in Section 4. A statistical model of label noise intro-
duced in Lawrence and Schölkopf (2001) is used, whose parameters are optimised using a new expectation-maximisation
algorithm. At each iteration of this EM algorithm, the class memberships are estimated using the current label noise model
parameters, which are in turn updated. The resulting values can be used to evaluate the entropy estimator proposed in
Section 3.

Eventually, a backward search algorithm is proposed in Section 5 to perform feature selection in the presence of label
noise. This feature selection algorithm uses the results of Section 4 to estimate the class memberships and the results of
Section 3 to estimate mutual information.

3.2. Effects of label noise on the Kozachenko–Leonenko estimator

As explained in Section 2, the MI between the features X and the target Y can estimated for classification problems using

Î(X; Y ) = Ĥ(X)−

y∈Y

p̂Y (y)Ĥ(X |Y = y) (7)

where probabilities p̂Y (y) are estimated from data. One has to estimate the entropy H(X) of the features and their partial
conditional entropy H(X |Y = y) for each class y ∈ Y. In Gómez-Verdejo et al. (2009), the Kozachenko–Leonenko estimator
of entropy (5) is used to obtain the Gomez estimator of MI for classification (6), which implements Eq. (7). When instances
are mislabelled, two different, yet related problems occur with both Eq. (7) and the Gomez estimator (6).

Firstly, since each term in the sum of Eq. (7) requires an empirical estimator of the form

Ĥ(X |Y = y) = −
1
ny


i|yi=y

log p̂X |Y (xi|y), (8)

where the sum is taken on all instances with observed label y, the instances with incorrect labels are used to estimate the
wrong quantity. For example, if x belongs to class 0 but is labelled in class 1, it is used to estimate H(X |Y = 1) instead of
H(X |Y = 0). In that case, both estimates are altered.

Secondly, and consequently, the Kozachenko–Leonenko estimates of the partial conditional entropies H(X |Y = y) are
biased. Indeed, since the label noise results in the removal and addition of neighbourswith label y, it canmodify the diameter
ϵk(i|y) of the hypersphere containing the k nearest neighbours of xi with label y. Depending on the altered labels, the
diameter can increase or decrease. Moreover, and more importantly, the diameter of the hypersphere may get large for
mislabelled instances. Indeed, if xi is incorrectly labelled in class 1 while it is surrounded by instances from its true class 0,
the k nearest neighbours of xi in class 1 will probably be far away. In such a case, the estimate of pX |Y (xi|y) is almost zero
and a large negative value occurs in Eq. (8).

The problemof large negative values is illustrated in Fig. 2. In that experiment, 40 samples are generated from two classes
with Gaussian conditional probability distributions N (µ0 = −1.5, σ0 = 1) and N (µ1 = 1.5, σ1 = 1) and identical priors
pY (0) = pY (1) = 1

2 . Moreover, one of the samples with label 0 is incorrectly assigned the label 1. Fig. 2 shows estimates of
the log pX |Y (xi|yi) terms in Eq. (8), which are computed using the Kozachenko–Leonenko approach with k = 8. The values
reflect the conditional probability of each sample, except for the only mislabelled sample which corresponds to a large
negative value. Consequently, the resulting estimate of MI is only Î(X; Y ) = 0.58. By way of comparison, the estimate for
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a clean version of this dataset (with no mislabelling) is Î(X; Y ) = 0.63. Hence, a single mislabelled instance can already
influence the estimation of MI, even for a simple problem.

3.3. True class memberships and label noise modelling

In order to address the two above problems, it is proposed to associate each sample to a true class whichmay be different
from the observed label. In other words, each observed label is a noisy copy of a true hidden label. For each instance, one
can therefore estimate the membership pS|X,Y (s|x, y) of an instance x to the true class s, if the observed label is y. If there is
no label noise, then one simply obtains

pS|X,Y (s|x, y) =

1 if s = y
0 if s ≠ y. (9)

In other cases, it is necessary (i) to choose a model of the label noise and (ii) to estimate the most probable true class mem-
berships, given the observed data. For example, in the situation where the classes correspond to separate clusters with no
overlap, it is reasonable to assume that an instance which is obviously in the wrong cluster is mislabelled. The estimated
memberships depend on the label noise model, which itself expresses hypotheses on the nature of the label noise.

The rest of this section assumes that true class memberships are available. Of course, true class memberships are
usually unknown in practice. Hence, an approach is proposed to estimate these quantities in Section 4. In order to simplify
mathematical notations, the following notation is introduced:

γ (s|i) = pS|X,Y (s|xi, yi). (10)

3.4. An entropy estimator based on the true class memberships

The Kozachenko–Leonenko estimator is based on the hypothesis that pY |X remains constant in a small hypersphere with
diameter ϵk(i|y) containing exactly the k nearest neighbours of the ith sample. Using this assumption, Kozachenko and
Leonenko obtain the following estimate

log p̂X |Y (xi|yi) = ψ(k)− ψ(ny)− log cd − d log ϵk(i|y). (11)

Hence, the partial conditional entropy in Eq. (8) can be estimated by

Ĥ(X |Y = y) = −ψ(k)+ ψ(ny)+ log cd +
d
ny


i|yi=y

log ϵk(i|y). (12)

However, as explained in Section 3.2, problems can occur when observed labels are polluted by label noise. Instead of
H(X |Y = y), one would rather prefer to estimate H(X |S = s). In other words, one is interested in the entropy of X given
the true class S, rather than the entropy of X given the observed label Y which is potentially incorrect. In this paper, the
proposed solution consists in using the hyperspherewhich contains approximately an expected number of k instances really
belonging to the target class s. Since true class memberships are assumed to be available, they can be used to determine the
new hypersphere diameter. For each class s ∈ Y and each sample xi, one can pick the hypersphere which contains enough
neighbours of xi so that the sumof theirmemberships to class s is approximately equal to k. The resulting algorithm is shown
in Algorithm 1.

For each class s ∈ Y and each sample xi, Algorithm 1 starts with the standard hypersphere with diameter ϵk(i) which
contains the k nearest neighbours of xi. Notice that the observed labels are not taken into account. The initial hypersphere
contains an expected number

k
j=1

γ (s|ij) (13)

of instances of the target class s, where ij is the index of the jth neighbour of the ith sample. For correctly labelled samples,
this quantity is expected to be (i) close to k for their observed class and (ii) close to zero for other classes, except near
the classification boundary where the expected number of instances for each class is proportional to the class prior. For
mislabelled examples, the initial hypersphere is expected to contain almost no samples of their observed class, since they
stand in a region where that class should not be observed.

Thereafter, the hypersphere diameter ϵk,γ (i|s) is increased until the sum of the memberships

Γ (s|i) =
k(s|i)
j=1

γ (s|ij) (14)

becomes at least equal to k, where k(s|i) is the number of actually considered neighbours. The sum Γ (s|i) of memberships
estimates the actual number of neighbours of the ith sample which really belong to class s. The resulting hypersphere with
diameter ϵk,γ (i|s) contains an expected number of Γ (s|i) ≈ k instances of the target class s.
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Algorithm 1 Label noise-tolerant estimation of hypersphere diameters
Input: set of samples {xi}i∈1...n and memberships {γ (s|i)}i∈1...n,s∈Y
Output: hypersphere diameters ϵk,γ (i|s) and memberships sums Γ (s|i)

for all class s ∈ Y do
for all sample xi do

compute the ordering i1 . . . in of samples w.r.t. xi

k(s|i)← k
Γ (s|i)←

k
j=1 γ (s|ij)

while Γ (s|i) < k do
k(s|i)← k(s|i)+ 1
Γ (s|i)← Γ (s|i)+ γ (s|ik(s|i))

end while

ϵk,γ (i|s)← 2 ∥xik(s|i) − xi∥2
end for

end for

The hypersphere diameter ϵk,γ (i|y) associated with the observed label y is expected to be much larger for mislabelled
samples than for correctly labelled samples. Indeed, the hypersphere has to grow much in order to comprehend a region
where samples have sufficient memberships to the class y. In contrast, the hypersphere diameter ϵk,γ (i|y) associated with
the true class of mislabelled samples should be close to the diameter for correctly labelled samples of the same class. Hence,
hypersphere diameters can be used to deal with noisy instances, as shown below.

With the new robust estimation of the hypersphere diameters, one obtains the following label noise-tolerant estimate

log p̂X |S(xi|si) = ψ (Γ (s|i))− ψ (Γ (s))− log cd − d log ϵk,γ (i|s) (15)

where

Γ (s) =
n

i=1

γ (s|i) (16)

can be interpreted as the expected number of samples which really belong to class s. Notice that the instance xi itself is
included in sums in both Eqs. (14) and (16), so that 0 ≤ Γ (s|i) ≤ Γ (s) ≤ n for each ith instance and class s. Also, Γ is not
the Gamma function used in Section 2.3 to compute the volume of the unitary ball of dimension d. In the rest of this paper,
the notation Γ always refers to Eqs. (14) and (16).

Since (i) each sample xi belongs to class swith probability γ (s|i) and (ii) Γ (s) is the estimated number of samples in class
s, Eq. (8) becomes

Ĥ(X |S = s) = −
1

Γ (s)

n
i=1

γ (s|i) log p̂X |S(xi|si). (17)

Using Eq. (15) together with Eq. (17), one eventually obtains the following label noise-tolerant estimate of the partial
conditional entropy

Ĥ(X |S = s) = −
1

Γ (s)

n
i=1

γ (s|i)ψ (Γ (s|i))+ ψ (Γ (s))+ log cd +
d

Γ (s)

n
i=1

γ (s|i) log ϵk,γ (i|s). (18)

3.5. A label noise-tolerant estimator for mutual information

For feature selection, the actual quantity of interest is the mutual information. Using the above results, it is possible to
derive a label noise-tolerant estimate of this quantity. Indeed, Eq. (18) allows us to estimate the partial conditional entropy
H(X |S = s) in a label noise-tolerant way for each class s ∈ Y. Since the estimation of the entropy H(X) is not affected by
label noise, because labels are not taken into account, one can replace the Gomez estimator (6) by the following new label
noise-tolerant estimator of the MI

Î(X; S) = Ĥ(X)−

s∈S

p̂S(s)Ĥ(X |S = s) (19)

where the partial conditional entropies H(X |S = s) are estimated using Eq. (18) and p̂S(s) = Γ (s)/n. This newMI estimator
measures the relationship between X and the true class S, whereas Eq. (7) estimates the relationship between X and the
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observed label Y . Hence, Eq. (19) is more reliable for feature selection in the context of label noise, which is shown through
experiments in Section 6.

4. True class memberships estimation

In the above developments, true classmemberships are assumed to be known. However, in practice, it is seldom the case.
Hence, this section proposes a new expectation maximisation (EM) algorithm to estimate the true class memberships.

4.1. Label noise modelling

In order to estimate the true class memberships, it is necessary to model the label noise. This paper uses the model
introduced in Lawrence and Schölkopf (2001) which assumes that the observed label Y is a noisy copy of the true class S.
Under the hypothesis that (i) an instance with true class s has a probability pe(s) to be mislabelled and that (ii) in that case
the incorrect label is randomly chosen amongst the remaining labels Y \ {s}, one obtains

pY |S(y|s) =

1− pe(s) if s = y
pe(s)
|Y| − 1

if s ≠ y. (20)

In the rest of this section, it is shown how to estimate the error probabilities pe(s) and the true class memberships through
a probabilistic approach.

4.2. Derivation of an objective criterion for label noise estimation

Label noise tends to increase the estimate of the partial conditional entropy

Ĥ(X |Y = y) = −
1
ny


i|yi=y

log p̂X |Y (xi|y). (21)

Indeed, as illustrated in Section 3.2, the most important effect of label noise is to introduce large negative values in the sum
in Eq. (21). Eventually, this increase of the partial conditional entropies decreases the estimate of the MI.

The large negative values in Eq. (21) are due to the difficulty of standardmodels to explainmisclassified instances. Indeed,
such observations typically arise in regions where instances of the corresponding class should not exist. Consequently,
misclassified instances are seen by standard methods as outliers that (i) bias the estimated class distributions whose tails
get heavier and (ii) have a very small estimated conditional probability p̂X |Y (x|y).

Label noise modelling allows increasing p̂X |Y (x|y) for misclassified instances, since the label noise model can help to
explain such noisy observations. Eventually, it reduces the decrease of the estimated MI value. It is proposed here to take
advantage of this behaviour to define an objective criterion for selecting pe. More precisely, one should seek themodelwhich
maximises the estimated MI, i.e.

p̂e = argmax
pe

Î(X; Y ). (22)

In such a case, the label noise model is used to reduce the uncertainty coming from the label noise itself. Using Eqs. (7) and
(21), one can show that the above formulation is equivalent to

p̂e = argmax
pe

n
i=1

log p̂X |Y (xi|yi). (23)

This formulation is similar to objective function considered in Lawrence and Schölkopf (2001). However, there are two
main differences: (i) the justification of Eq. (23) is based on MI maximisation, whereas the formulation in Lawrence and
Schölkopf (2001) is based on maximum likelihood and (ii) only the label noise model is optimised in our case, whereas a
classification model is also optimised in Lawrence and Schölkopf (2001). Indeed, Lawrence and Schölkopf (2001) is about
label noise-tolerant classification, whereas this paper is about MI estimation.

4.3. An expectation maximisation algorithm for label noise estimation

There exists no closed-form solution to Eq. (23). Indeed, one can write

n
i=1

log p̂X |Y (xi|yi) =
n

i=1

log

s∈Y

p̂X,S|Y (xi, s|yi) (24)
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where the second sum spans all possible true classes. Quantity (24) is called the incomplete log-likelihood, because the true
classes are unknown. Because of the occurrence of logarithms in the sum, the function is non-convex and multiple local
maxima may exist. As a closed-form expression for the global maximum of Eq. (24) does not exist, one can rather use an
expectation maximisation (EM) algorithm (Dempster et al., 1977) which considers S as a latent random variable in order
(i) to build successive approximations of the incomplete log-likelihood and (ii) to use them to maintain an estimate of the
error probabilities pe(s). For Eq. (24), the EM algorithm alternatively (i) estimates the functional

Q (pe, polde ) =

n
i=1


s∈Y

γ (s|i) log p̂X,S|Y (xi, s|yi) (25)

using the current estimate polde (E step) and (ii) maximises Q (pe, polde ) with respect to pe in order to update its estimate (M
step). See e.g. Sections 9.3 and 9.4 of Bishop (2007) for details about the EM algorithm and the link between Eqs. (24) and
(25). At the beginning of the EM algorithm, the error probabilities pe(s) are randomly initialised and the true class priors are
equal to the label priors, i.e. pY (s) =

ny
n .

The E step consists in estimating the true class memberships using the current label noise model, i.e.

γ (s|i) =
pX |S(xi|s)pY |S(yi|s)pS(s)

s∈S
pX |S(xi|s)pY |S(yi|s)pS(s)

. (26)

The labelling probabilities pY |S(yi|s) are provided by Eq. (20), whereas the likelihoods pX |S(xi|s) can be obtained from
Eq. (15) as

p̂X |S(xi|si) = exp

ψ (Γ (s|i))− ψ (Γ (s))− log cd − d log ϵk,γ (i|s)


. (27)

During the M step, the error probabilities are updated (see Appendix) as

pe(s) =
1

Γ (s)


i|yi≠s

γ (s|i) (28)

whereas the true class priors become

pS(s) =
1
n

n
i=1

γ (s|i). (29)

Notice that EM is an iterative algorithm thatmay converge to localmaxima.Hence, the E step andMstepmust be repeated
until convergence and the whole EM must be repeated several times with random initial values for pe and pS(s). The best
solution is then selected by evaluating the incomplete log-likelihood with Eq. (24), which is the objective function. This
quantity can also be used to stop the EM, e.g. by detecting that a (local) maximum has been reached.

4.4. Time complexity comparison of the entropy estimation algorithms

The results derived in Sections 3 and 4 allow estimating mutual information in the presence of label noise. Let us now
compare the proposed method and the standard method in terms of time complexity. In order to simplify the discussion,
the estimation of H(X) can be ignored since it is identically performed in both methods. Similarly, both methods require
an efficient data structure to sort instances, whose computational cost of creation can be ignored. In fact, the neighbours
search is the more computationally demanding operation in both cases. The exact cost of the neighbour search depends on
the implementation (using e.g. k-d trees introduced in Bentley, 1975; Friedman et al., 1977), but it is possible to perform a
simple comparative analysis.

For the Gomez estimator (6), a kth neighbour search has to be done n times. In the proposed methodology, neighbours
are searched in Algorithm 1: for each class s ∈ Y and each sample xi, the hypersphere diameter ϵk,γ (i|s) is increased until
Γ (s|i) becomes at least equal to k. This process is equivalent to the kth neighbour search for a correctly labelled instance,
whereas it takes in the worst case n iterations for a mislabelled instance. Hopefully, the number of mislabelled instances
which fall in the worst case category is likely to remain small. Since Algorithm 1 is used in each E step of the EM algorithm,
the average computation cost of the proposed method is r|Y| times larger than the cost of the Gómez estimator, where r is
the number of EM iterations.

In practice, memberships stabilise after only a few iterations of the EM algorithm. For a small number of classes |Y|
and a reasonable number of mislabelled instances, the proposed methodology is only a few times slower than the standard
approach.

4.5. Illustration

Let us consider again the problem of large negative values discussed in Section 3.2 and illustrated for a simple binary
classification problem in Fig. 2. With the above procedure for estimating true class memberships, Fig. 3 shows the estimates
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Fig. 3. Estimates of the logarithm of the conditional probability for a binary classification problem. Each class has a Gaussian distribution (dashed lines)
and 40 samples are shown (grey circles belong to class 0, black squares belong to class 1), but one sample is mislabelled (large grey square).

of the terms

log pX |Y (xi|yi) = log

s∈Y

pX,S|Y (xi, s|yi). (30)

It can be seen that the conditional probability of the mislabelled sample has significantly increased and is now at the same
level as the samples of its true class. Moreover, the estimated error probabilities are pe(0) = 0.02 and pe(1) = 0.00, which is
close to the true error frequencies in the dataset. Eventually, the newMI estimate obtained using Eq. (19) is Î(X; Y ) = 0.61,
which is better than the MI estimate obtained by the standard estimator in Section 3.2.

5. Label noise-tolerant backward search for feature selection

In Sections 3 and 4, tools were developed for estimating MI in the presence of label noise. This section proposes a simple
variant of the backward search, which is a well-known feature selection algorithm. The choice of this algorithm ismotivated
by the fact that backward search starts with large groups of features. In that case, the available information is higher at
the beginning and both feature selection and label noise modelling should be easier. On the contrary, forward search has
the drawback that it is largely influenced by the choice of the first feature. Indeed, different choices for the first feature
generally lead to very different feature subsets. However, the MI between different features and the output vector is not
always significantly different, which means that the choice of the first feature to be added is difficult. The backward search
traditionally leads to a greater stability regarding the selected features. Notice that backward search may however not be
suitable for problems with very large dimensionality, since (i) the number of necessary MI estimations grows in O(d2) and
(ii) the MI estimation itself becomes less reliable in such cases.

Algorithm 2 shows the proposed label noise-tolerant backward search. At each iteration, the algorithm firstly estimates
a model of the label noise and, thereafter, chooses the feature to be removed. Hence, the label noise model is identical for
all features within an iteration. There are two advantages to this approach, compared to estimating a new label noise model
for each tested feature. Firstly, the computational load is much smaller. Indeed,O(d) label noisemodels are estimated in the
former case instead of O(d2) label noise models in the latter case. Secondly, the same label noise model is used to compare
all features which can still be removed. Notice that Si is the subset of feature indices of size i ∈ 1 . . . d, which is obtained at
the step d− i of the algorithm.

6. Experiments

Let us recall the two questions raised in the introduction which are addressed in this paper: (i) what are the effects of
label noise on feature selection and (ii) is it possible to reduce these effects? In Sections 2.5 and 3.2, it has been shown
that label noise adversely impacts feature selection, because the MI estimation itself is affected. In Section 5, a label-noise
tolerant algorithm has been derived using a new label noise-tolerant entropy estimator, which is shown in Section 4.5 to be
less sensitive to label noise.

The goal of this section is not to compare the proposed feature selectionmethodwith all existing feature selectionmeth-
ods. Instead, this section addresses the two above questions for several real-world datasets, in order to confirm the results
obtained in previous sections for simple examples. Hence, only two feature selection algorithms are compared: (i) backward
search with standard MI (BW) and (ii) the proposed label noise-tolerant backward search (LNT-BW). Since both algorithms
are identical, except for the evaluation of MI, it allows focusing the analysis on the two above questions about feature se-
lection.
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Algorithm 2 Label noise-tolerant backward search for feature selection
Input: set of samples {xi}i∈1...n
Output: subsets of feature indices {Si}i∈1...d

Sd ← {1, . . . , d}

for all number of features i ∈ d− 1 . . . 1 do
estimate true class memberships γ with the EM proposed in Section 4

for all remaining feature with index j ∈ Si+1 do
compute Îj = Î(XSi+1\{j}; S)with the label noise-tolerant estimator (19)

end for

Si ← Si+1 \


argmaxj Îj


end for

6.1. Experimental setting

In the following experiments, the k-nearest neighbours (kNN) classifier (Kononenko and Kukar, 2007) is used to compare
selected subsets of features. Given a new sample, this classifier predicts themajority class in its knearest neighbours. Despite
its simplicity, this classifier usually achieves excellent results (Cover and Hart, 1967). Moreover, it is fast and only onemeta-
parameter has to be tuned: the number k of neighbours. Since the kNN classifier uses all features to compute distances in
order to locate nearest neighbours, it is particularly well suited to assess the two questions recalled at the beginning of
this section. Indeed, it is theoretically unable to perform any embedded feature selection and is sensitive to the presence of
irrelevant features, which alter distances. If an irrelevant feature is selected, pairwise distances between instances become
noisy. In turn, this distance noise causes the neighbourhood of an instance to be less appropriate to predict its class and
leads to a decrease in performances.

The experiments are performed on the eleven UCI datasets (Frank and Asuncion, 2010) described in Table 1, where the
last column gives the following measure of class imbalance 1

|Y|


y∈Y


ny

n
−

1
|Y|

2

, (31)

which is inspired from the measure introduced in Pinto et al. (2009). The fourth feature of the Ecoli dataset and the third
feature of the Segment dataset are constant and have been removed, since they have no predictive power and can be ignored
beforehand. Eq. (31) measures the difference between the observed frequency of each class and the frequency 1

|Y|
which

corresponds to the perfectly balanced case. Balanced datasets obtain a zero value, whereas imbalanced datasets correspond
to larger values. The Glass and Yeast datasets originally contain some very small classes which are not used, since they do
not even consist of enough instances to estimate the standard MI. Classes {1, 2, 7} and classes {1, 2, 3, 4}were kept for the
Glass and Yeast datasets, respectively. Notice that very high-dimensional datasets are not considered in our experiments,
like e.g. micro-array datasets which contain only a few tens of instances with hundreds of thousands of features. In such
cases, specific feature selection methods have to be used. For example, in the micro-array case, linear models provide good
results (Guyon et al., 2002;Mukherjee, 2003; Carin et al., 2004; Lee et al., 2005; Xu et al., 2009) since they are about themore
complex models which can be used, because of the very small number of instances. Other methods based on correlation,
statistical tests or regularisation are commonly used (Guyon et al., 2002; Li and Cheng, 2004; Helleputte and Dupont, 2009;
Wang et al., 2010; Hall and Xue, 2014). Investigating our method for very high-dimensional datasets is thus left for further
work and could be the topic of a specific paper, due to the special characteristics of such problems.

For each dataset, all features are normalised. Then, samples are split into training and test sets (70%–30%). Training labels
are then polluted by a random label noise, i.e. a given percentage of labels are flipped. For each flipped label, the new label
is chosen among the other possible classes with uniform probability. The training set is used to perform feature selection in
three different ways: (i) backward search with standard MI estimated on the clean labels (BW-C), (ii) backward search with
standard MI estimated on the noisy labels (BW-N) and (iii) the proposed label noise-tolerant backward search (LNT-BW)
with label noise-tolerant MI estimated on the noisy labels.

For each feature subset obtained by the three above feature selection algorithms, the training set with clean labels is also
used to obtain a kNN classifier. This step consists in (i) selecting the optimal value of the meta-parameter k using ten-fold
cross-validation and (ii) building the kNN classifier. Eventually, the performances of each kNN are assessed on the test set,
which is not polluted by label noise. Both validation and test errors are measured by the balanced error rate criterion, which
is the average of the percentages of misclassification for each class. This criterion avoids situations where a classifier could
assign all instances to the majority class and yet obtain a good score. Indeed, some of the datasets in Table 1 are imbalanced
and measures like e.g. the error rate are not appropriate, since they are relevant for balanced classification problems only.
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Table 1
Detailed list of datasets used for experiments, ordered by name.

Name Size Dimensionality nb. of classes Imbalance

Ecoli 327 6 5 0.13
Glass 175 9 3 0.12
Iris 150 4 3 0.00
Page 5473 10 5 0.35
Segment 2310 18 7 0.00
Vehicle 752 18 4 0.01
Vertebral Column 310 6 3 0.12
Wall Robot 5456 24 4 0.15
Waveform 5000 40 3 0.00
Wine 178 13 3 0.05
Yeast 1296 8 4 0.10

In order to achieve statistically significant conclusions, experiments are repeated 100 times and the dataset is shuffled
before each run. The mean and standard deviation of the balanced error rate are computed. The levels of label noise are 10%
and 20% of flipped labels, respectively. The parameter for the MI estimator is k = 8, which is standard in MI estimation
(Stögbauer et al., 2004). In theory, the parameter k should be optimised using e.g. cross-validation (François et al., 2007;
Verleysen et al., 2009), but such methods are computationally consuming (Gómez-Verdejo et al., 2009). This could greatly
limit the interest of MI estimators in filter-based feature selection. Instead, it is advised in theMI estimation literature to use
small values for k (Kraskov et al., 2004; Stögbauer et al., 2004; Rossi et al., 2006), which has been shown to give reliable MI
estimates (Doquire and Verleysen, 2012). Similarly, the parameter for the label noise modelling is k = 3, which constrains
the label noise to be estimated locally. Indeed, it was noticed during preliminary experiments that minority classes tend
to be integrated in majority classes with larger values of k during the estimation of the true class memberships. The tested
values for the meta-parameter k of kNN classifiers are considered incrementally between 1 neighbour and 50 neighbours,
with increasing step size. Between 1 and 10 neighbours, the step size is 1,whereas it is 2 and 5 between 10 and 20 neighbours
and between 20 and 50 neighbours, respectively.

Notice that theKraskov estimator suffers fromnumerical problemswhen all neighbours of a sample stand at zero distance
from it. Indeed, in that case, the terms log ϵk(i|s) and log ϵk,γ (i|s) are infinite in Eq. (12) and Eq. (18), respectively. This
situation can occurwhen one selects only a few featureswhich containmany repeated values. In order to avoid this situation,
a small Gaussian noise with zero mean and standard deviation σ = 10−3 is added to each feature before (and only for) the
feature selection step, so that zero distances no longer occur.

6.2. Results on real datasets

Figs. 4–6 show the results for each dataset in Table 1. In each figure, 10% of the labels have been flipped to simulate label
noise in the left column, whereas this percentage increases to 20% in the right column. The curves show the mean over 100
runs of the balanced error rate in terms of the feature subset size. Error bars show the 95% confidence interval for themeans.
The training sets used in the case of BW-C are not polluted by artificial label noise, contrarily to the training sets for BW-N
and LNT-BW. Moreover, the training sets used to build kNN classifiers and the test sets are not polluted by artificial label
noise.

In order to facilitate the discussion of the experimental results, datasets are split into two groups: (i) Figs. 4 and 5 show
those for which the proposed feature selectionmethod produces better feature subsets than BW-N, whereas (ii) Fig. 6 shows
those for which the balanced error rate is not significantly different between BW-N and LNT-BW.

6.3. Discussion

The results in Figs. 4–6 show that the label noise can have a significant impact on feature selection. Indeed, the perfor-
mances obtained by the kNN classifier are almost always significantly worst when feature subsets are obtained using BW-N
than with BW-C. This can be explained by the fact that the artificial label noise affects the MI estimation, which in turns
leads the backward search in a wrong direction. The final consequence is a decrease of classification performances, which
can be important in practice. In particular, large differences in balanced error rates between BW-C and BW-N are shown in
Figs. 4(f), (h), 5(d) and (f). The only exceptions are the Ecoli and Yeast datasets for which the difference is either small or
non-existent.

For the datasets illustrated in Figs. 4 and 5, the proposed feature selection method is able to improve the classification
performances.When 20% of the labels are flipped, LNT-BW is always significantly better than BW-N, in terms of the balanced
error rate. Notice that this is only true for intermediate feature subset sizes, i.e. 1 ≪ |S| ≪ d. Indeed, when |S| = d,
all features are being selected, whatever the feature selection algorithm, which means that their respective performances
must be identical. This also explains that the performances of the three feature selection algorithms becomemore andmore
similar as the feature subset size tends towards d. When |S| = 1, only one feature is selected and the amount of available
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(a) Iris (10%). (b) Iris (20%).

(c) Segment (10%). (d) Segment (20%).

(e) Vehicle (10%). (f) Vehicle (20%).

(g) Vertebral Column (10%). (h) Vertebral Column (20%).

Fig. 4. Results for the (a–b) Iris, (c–d) Segment, (e–f) Vehicle and (g–h) Vertebral Column datasets. Balanced error rates in percentages are shown in terms
of the feature subset size for BW-C (plain black line), BW-N (dashed black line) and LNT-BW (plain grey line). The levels of label noise are 10% and 20% of
flipped labels in the left and right columns, respectively.

information is too low to achieve satisfying classification performances. Therefore, models achieve bad performances with
any feature selection when the number of selected features becomes too small.
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(a) Wall Robot (10%). (b) Wall Robot (20%).

(c) Waveform (10%). (d) Waveform (20%).

(e) Wine (10%). (f) Wine (20%).

(g) Yeast (10%). (h) Yeast (20%).

Fig. 5. Results for the (a–b) Wall Robot, (c–d) Waveform, (e–f) Wine datasets and (g–h) Yeast datasets. Balanced error rates in percentages are shown in
terms of the feature subset size for BW-C (plain black line), BW-N (dashed black line) and LNT-BW (plain grey line). The levels of label noise are 10% and
20% of flipped labels in the left and right columns, respectively.

Notice that BW-C is better than LNT-BW inmost cases, whichmeans that it could be possible to further reduce the impact
of label noise on feature selection.When 10% of the labels are flipped, LNT-BW remains better than BW-N, except in the case
of the Vertebral Column and Wall Robot datasets.
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(a) Ecoli (10%). (b) Ecoli (20%).

(c) Glass (10%). (d) Glass (20%).

(e) Page (10%). (f) Page (20%).

Fig. 6. Results for the (a–b) Ecoli, (c–d) Glass and (e–f) Page. Balanced error rates in percentages are shown in terms of the feature subset size for BW-C
(plain black line), BW-N (dashed black line) and LNT-BW (plain grey line). The levels of label noise are 10% and 20% of flipped labels in the left and right
columns, respectively.

For the datasets illustrated in Fig. 6, it is impossible to distinguish the performances of the LNT-BW and BW-N methods.
For the Ecoli dataset, the balanced error rates are identical for the three methods. In other words, the artificial label noise
has no impact on feature selection for this dataset. For the Glass and Page datasets, both LNT-BW and BW-N are affected by
label noise, but neither of them is significantly better over a large range of feature subset sizes.

6.4. Summary of results

According to the above results and discussion, it is possible to answer the two questions asked in the beginning of this
experimental section. Firstly, the label noise adversely impacts feature selection. By degrading the MI estimation, it causes
backward search to take wrong decisions when the MI estimate does not take label noise into account. In turn, this leads
to less informative feature subsets and the classification performances are eventually decreased. The resulting decrease in
performances can be important. Secondly, it has been shown that the proposed approach can improve feature selection
results. In most cases, it significantly improves the classification performances. At the very worst, performances are not
degraded when the method does not improve the feature selection.
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7. Conclusion

A new entropy estimator is proposed to be used in the context of label noise-tolerant feature selection. Indeed, experi-
ments show that label noise often has a significant negative influence on the quality of selected features for MI-based algo-
rithms, because the MI estimators themselves are altered by label noise. The proposed entropy estimator is used to derive
a new label noise-tolerant MI estimator. In turn, it is shown how to use this estimator to perform label noise-tolerant fea-
ture selection. Experimental results show that the proposed label noise-tolerant feature selection algorithm obtains feature
subsets which allow improving the performances of classification models.
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Appendix

Proof of the update rule for error probabilities

The update rule for error probabilities (28) can be obtained by maximising

Q (pe, polde ) =

n
i=1


s∈Y

γ (s|i) log pX,S|Y (xi, s|yi) (32)

with respect to pe(s) for each s ∈ Y. Since

pX,S|Y (xi, s|yi) =
pX |S(xi|s)pY |S(yi|s)pS(s)

pY (yi)
(33)

where only pY |S(yi|s) depends on pe(s), this is equivalent to maximising

n
i=1


s∈Y

γ (s|i) log pY |S(yi|s) =
n

i=1


γ (yi|i) log (1− pe(yi))+


s∈Y\{yi}

γ (s|i) log
pe(s)
|Y| − 1


. (34)

Setting the derivative of the above expression with respect to pe(s) to zero gives

−


i|yi=s

γ (yi|i)
1− pe(s)

+


i|yi≠s

γ (s|i)
pe(s)

= 0 (35)

which eventually gives the update rule for error probabilities

pe(s) =
1

Γ (s)


i|yi≠s

γ (s|i). (36)
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