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Abstract— The large number of methods for EEG feature
extraction demands a good choice for EEG features for every
task. This paper compares three subsets of features obtained
by tracks extraction method, wavelet transform and fractional
Fourier transform. Particularly, we compare the performance of
each subset in classification tasks using support vector machines
and then we select possible combination of features by feature
selection methods based on forward–backward procedure and
mutual information as relevance criteria. Results confirm that
fractional Fourier transform coefficients present very good
performance and also the possibility of using some combination
of this features to improve the performance of the classifier.
To reinforce the relevance of the study, we carry out 1000
independent runs using a bootstrap approach, and evaluate the
statistical significance of the Fscore results using the Kruskal-
Wallis test.

I. INTRODUCTION

Neuroelectric waveforms such as EEG and event related
potential (ERP) recordings from multiple electrode arrays
vary in their frequency content over time and across record-
ing sites on the scalp. Accordingly, EEG and ERP data
sets are nonstationary in both time and space. From this
perspective, it is necessary to try to identify hidden dynam-
ical patterns which could yield important insight into the
underlying physiological mechanisms.
The electroencephalogram (EEG) is the tool with more
diagnostic applications in clinical environment, and can be a
good indicator of abnormality in the central nervous system
because it is the record of the electrical activity of the
neurons in the brain. EEG feature extraction has a widely
variety of methods or techniques that could be different de-
pending of the application, i.e., EEG epilepsy detection, EEG
prediction and brain computer interface (BCI) [8]. Automatic
detection of EEG seizures has been investigated for years.
However, so far, no detector has demonstrated to have com-
petitive sensitivity and specificity values, new alternatives
being necessary to obtain new information to distinguish
between real epileptic seizures during non-epileptic events
(high specificity). Taking this requirement into account, EEG
features extraction plays an important role in conjunction
with methods that evaluate this features in different scenarios
such as detection or classification of EEG signals. One
form of extracting information from EEG signals is to
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apply a transform and try to choose the relevant information
to reduce the computational burden of the detection or
classification systems, with the objective of improving the
performance, being this the aim of feature selection methods.
In this paper, we compare features obtained by tracks ex-
traction and wavelet transform (WT) with features from
fractional Fourier transform (FrFT). Tracks extractions has
shown to be suitable to non-stationary signals [3]. WT can be
applied to extract the wavelet coefficients of discrete signals
and characterize the behavior of dynamic signals [10] and
the FrFT arises as a new alternative in EEG feature extrac-
tion and has gained more attention for various applications
including time-frequency design to specific applications [1].
In order to know if the features introduced have a good per-
formance in EEG classification task, we use a support vector
machine (SVM) classifier that is an effective and state-of-art
classification method. Then, we chose the relevant features
by features selection algorithms based on mutual information
that could improve both performance classification task and
reduce the computational cost by dimension reduction of the
features. We use several datasets and compute measures such
as Fscore and bootstrap evaluation [3].
This paper is organized as follows. Section II introduces
the feature extraction, classification and feature selection
methods. Section III and Section IV shows the material
and results of the seizure classification method applied to
real EEG data from epileptic patients. Finally, in Section V ,
the main results are discussed and the principal conclusions
with further work are presented.

II. METHODS

A. The Tracks extraction method

Tracks extraction method performs an estimation by peak-
matching based on the localization of peaks in energy on
the time-frequency plane. By linking peaks which occur at
similar frequencies, we can define tracks along the time-
frequency plane [9].
This method proposes to use three features based on length,
frequency and energy of the principal track by a discretized
version of the k-th segment in the time frequency plane,
ϑk(n,m), such that the track extraction procedure identifies
the coordinates of every track with a dummy variable that is
equal to 1 in those points:

Tk,�(n,m) =
{

1, if ϑk(n,m) belogs to the �-th track
0, otherwise
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The lenght of every track is computed as:

Lk,� =
∑

n

∑
m

Tk,�(n,m) (1)

the average frequency is

Fk,� = (
∑

n

∑
m

Tk,�(n,m)m)/Lk,� (2)

and the energy is

Ek,� = (
∑

n

∑
m

Tk,�(n,m)ϑk(n,m))/Lk,� (3)

It is possible to identify the principal track in segment k as
the largest track:

�′ = arg max
�

{Lk,�} (4)

such that the final features for segment k are:

Lk = Lk,�′ (5)

Fk = Fk,�′ (6)

Ek = Ek,�′ (7)

The interested reader may refer to [3] for more detail.

B. Wavelet transform (WT)

Wavelets arise to overcome the drawback of a fixed time-
frequency resolution of short time Fourier transforms. This
tool performs a multiresolution analysis, WΨf(a, b) of a
signal, x(n) by convolving the mother function Ψ(n) with
the signal as given in [5], [7]:

WΨx(b, a) =
N−1∑
n′=0

x(n′)Ψ∗
(

n′ − b

a

)
(8)

where ()∗ denotes complex conjugate , a is the scale coeffi-
cient, b the shift coefficient and a, b ∈ �, a �= 0.
In the procedure of multiresolution decomposition of a signal
x(n), each stage consists of two digital filters and two
downsamplers by 2. The bandwidth of the filter outputs are
half the bandwidth of the original signal, which allows for the
downsampling of the output signals by two without loosing
any information according to the Nyquist theorem. The
downsampled signals provide detail D1 and approximation
A1 of the signal [10].
Once the mother wavelet is fixed, it is possible to analyze
the signal at every possible scale a and translation b. The
Daubechies’ family of wavelets is one of the most commonly
used orthogonal wavelets to non-stationary EEG signals
presenting good properties and allowing reconstruction of
the original signal from the wavelet coefficients [7].

C. The fractional Fourier transform (FrFT)

The fractional Fourier transform (FrFT) is a new change
representation of the signal which is an extension of the
classical Fourier transform. When fractional order increases
gradually, the FrFT of a signal can offer much more time-
frequency united representation than the classical Fourier
transform. Moreover, FrFT provides a higher concentration

than STFT and avoids the cross terms components produced
by quadratics TFDs.
Fourier techniques employ chirp harmonics for the decom-
position of signals with time-varying periodicity. It can be
interpreted as the representation of a signal in neutral domain
by means of the rotation of the signal by the origin in
counter-clockwise direction with rotational angle α in time-
frequency domain shown in Fig.1.

u=tcosα +wsinα
v=−tsinα +wcosα

α

Time (t)

α

Frequency (w)

v
u

Fig. 1. The relation of fractional domain (u, v) with traditional time-
frequency plane (t, w) rotated by an angle α.

Defining Kα(u, t) as the kernel function; the FrFT Xα(u)
of x(t) is given by

Xα(u) =
∫ ∞

−∞
x(t)Kα(t, u)dt (9)

Xα(u) could be expressed by means of the transformation
kernel Kα(t, u) and is a linear transform 1, continuous in
the angle α, which satisfies the basic conditions for being
interpretable as a rotation in the time-frequency plane [1].

D. Support vector machine (SVM) classifier

The support vector machine (SVM) is a classification
method rooted in statistical learning theory [11]. The motiva-
tion behind SVMs is to map the input into a high dimensional
feature space, in which the data might be linearly separable.
The construction of a hyperplane wT x + b = 0 (w the
vector of hyperplane coefficients, b is a bias term) so that
the margin between the hyperplane and the nearest point is
maximized and can be posed as the quadratic-optimization
problem transformed into a convex quadratic programming
problem that is solved with standard techniques [12]. The

1

Xα(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
(
1 − jcotα

2π
ej u2

2 cotα
∫ ∞

−∞
x(t)ej t2

2 cotαejutcscαdt,

if α is not a multiple of π

x(t), if α is multiple of 2π

x(−t), if α + π is multiple of 2π
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result is a discriminant function

f(x) = sgn

(
m∑

i=1

yiαi · (Φ(x) · Φ(xi)) + b

)

= sgn

(
m∑

i=1

yiαi · K(x, xi) + b

)
, (10)

where K(xi, xj) is a kernel function. This kernel trick is
capable of producing arbitrary decision functions in input
space, depending on the kernel function.
In many applications, SVMs have been shown to provide
higher performance than traditional learning machines and
have been introduced as powerful tools for solving classi-
fication problems including EEG classification. Two exam-
ples of suitable kernel functions are the polynomial kernel
K(xi, xj) = (xT

i xj + 1)p and the radial basis function

(RBF) kernel K(xi, xj) = e(
||xi−xj ||2

2σ2 ), where σ2 denotes
the variance to be properly set [12].

E. Feature selection using mutual information

Usually feature selection relies on two main tasks: a
relevance criterion and a searching procedure. The mu-
tual information (MI) could be used as relevance criterion
because it has been widely accepted as a good indicator
to measure the importance of the feature. However, it is
necessary to estimate the data probability distribution that
usually is unknown. For this, we employ three estimations
methods based on the Kraskov estimator, Parzen windows
and K-nearest neighbors distances, all of them oriented to
classification problems. The searching procedure used is the
forward-backward procedure that acts in two steps: the first
step, called forward stage, consists in adding features one by
one. At each iteration, the feature chosen to be incorporated
to the current subset is the one that most increases the
mutual information. The process is stopped when adding
any new feature actually decreases the mutual information.
The second step, called backward stage, the features are
eliminated one at a time. The feature that is excluded from
the current feature subset is the feature that most increases
the mutual information when it is discarded [2].

III. MATERIAL AND SETTINGS

This paper uses a database consisting of five sets (denoted
as Z, O, N, F and S), each one containing 100 single-channel
EEG segments each having 23.6 sec duration and sampling
rate of 173.61 Hz [6]. In our experiments we use three
classifications problems to evaluate our features.

1) The first problem called N1, two classes are examined:
normal (Z) and seizure (S).

2) The second classification problem called N2, includes
the classes normal, seizure-free and seizure (Z, F and S
respectively).

3) In the third problem called N3, all the five classes are
used.

More detail of the dataset and the problem classifications are
described in [6].

Before feature extractions task, we have a feature matrix
composed of: 3 features (LFE) from track extractions, 46
wavelets coefficients computed using the mother wavelet
Daubechies 8 (db8) and detail D5; and 17 FrF coefficients
obtained by varying the angle α from 0 to 4 (the increment
step is 0.25).
All computation has been carried out off-line in a Pentium III
computer, using the Matlab (V.6) programming environment
and kernel RBF was used in the SVM classifier. The SVM’s
parameters was adjusted by cross validation.

IV. RESULTS

This section shows the performance analysis of the feature
matrix analyzed separately in detection and classification
tasks. We have worked with 7 experiments that involve
computing all the possible feature combinations to evaluate
the SVM performance.
The performance of the experiments set was based on a
bootstrap experiment [4] using a function called “Fscore”
and defined as:

Fscore = 2∗sensitivity∗specifity/(sensitivity+specifity)
(11)

where sensitivity and specifity are defined as follows:

. Sensitivity: Percentage of EEG segments containing
seizure activity correctly classified.

. Specificity: Percentage of EEG segments not contain-
ing seizure activity correctly classified.

Values in Table I correspond to Fscore average values over
the 1000 bootstrap runs. The statistical relevance of the
results shown in Table I have been verified by means of
a Kruskall-Wallis test, which is a sort of nonparametric
ANOVA test that does not assume Gaussianity in the data
under study. In all cases (except between Fractional Fourier
(FrF) and LFE+Wavelets (W) in the N1 case) a p-value
smaller than 0.01 has been obtained, thereby rejecting the
null hypothesis that data come from the same distribution.
Note in this table the difference in difficulty among N1
(easy), N2 and N3 (hard) problems.

TABLE I

Fscore VALUES AVERAGE CORRESPOND TO OVER THE 1000 BOOTSTRAP

RUNS.

LFE W FrF LFE+W LFE+FrF W+FrF All
Dim 3 45 17 48 20 62 65
N1 99.36 99.89 98.70 98.70 99.23 99.74 99.66
N2 87.45 93.28 99.18 85.01 94.16 98.36 97.96
N3 86.27 82.54 83.59 81.35 88.18 93.23 92.25

Average 91.03 91.91 93.82 88.35 93.85 97.11 96.62

Fig.2, Fig.3 and Fig.4 show the Fscore evolution vs number
of coefficients. Finally, Table II shows the results in feature
selection using all the features by forward-backward proce-
dure with MI criteria. All the features have been normalized
and each value in Table II represent the features chose. For
example, {E,5 WC, 1 FrF} means feature E, 5 wavelets and
1 fractional coefficients.
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Fig. 2. Fscore evolution vs number of LFE coefficients. Note how
the feature F (correspond to number 2) increases the performance of the
classifier in all the problems.
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Fig. 3. Fscore evolution vs number of wavelets coefficients. Note that
all classification problems present a similar good performance using few
coefficients.
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Fig. 4. Fscore evolution vs number of FrF coefficients. The N2 problem
presents a similar good performance using few coefficients as wavelets
method (see Fig.3).

V. DISCUSSION AND CONCLUSIONS

The classification results clearly show the good perfor-
mance of the FrF coefficients in all tasks (97.11% in Table
I). However, we can assume that choosing a subset of
features instead of all, turns out simpler the SVM classifier
task increasing the classification Fscore with less coefficients
(93.23% in Table I).
Fig.2, Fig.3 and Fig.4 show a variation of the Fscore measure

TABLE II

FEATURE SELECTION USING THREE DIFFERENT MI ESTIMATIONS.

Fscore VALUES AVERAGE CORRESPOND TO OVER THE 1000 BOOTSTRAP

RUNS.

Forward-backward selection
Kraskov Parzen Knn

N1 {E, 1 FrF} {F} { L,E,F,12 WC, 6 FrF}
99.63 100 99.75

N2 {L,F,E, 44 WC, 11 FrF} {L,E,F} {L,E,F, 15 WC, 9 FrF}
99.37 87.57 99.2

N3 {3 FrF} {L,E,F} {F,E,1 WC, 5 FrF}
85.35 86.34 85.59

related with the number of coefficients. These results could
sense us other experiment consist in combining the feature
subsets for improving the performance classification.
Table II shows the results after feature selection for each
problem. Note in this table, how the best performance is
reached with N1, reducing significantly the dimension of the
features (one feature) and improving the performance of the
classifier (100%). Results of N2 problem are quite similar
compared to Table I , being the dimensional reduction and
performance less notorious. For N3 problem, it is shown that
exist a difficult of obtaining accurate estimators when we
have unbalanced data.
In conclusion, FrF method really introduces new relevant
information in our classification problems and opens the
possibility of applying this method in other classification
environments. Future works point to the study of data prob-
ability distribution estimators, feature selection parameters
such as number of neighbors (K), effect of the size data and
the sensibility with unbalanced data.
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