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Abstract. The regularized Mahalanobis distance is proposed in the frame-

work of finite mixture models to avoid commonly faced numerical difficulties

encountered with EM. Its principle is applied to Gaussian and Student-t

mixtures, resulting in reliable density estimates, the model complexity being

kept low. Besides, the regularized models are robust to various noise types.

Finally, it is shown that the quality of the associated Bayesian classification

is near optimal on Ripley’s synthetic data set.

1 Introduction

Probability density function (PDF) estimation is essential in pattern recognition,
exploratory data analysis and other related fields [5, 3]. Among others, it provides
a solid basis to learning tasks such as clustering and classification.

A popular technique for estimating an unknown PDF nonparametrically, i.e.
not assuming any a priori shape, is by the Parzen window estimator [9]. It consists
in placing a Gaussian kernel on each data point of the learning set. The PDF is
approximated by summing all the kernels, which are multiplied by a normalizing
factor. While the computational complexity of Parzen’s estimator is relatively
small, its model complexity is large, increasing unnecessarily for large data sets
as it is proportional to the number of learning samples. As a result, when using
Parzen’s estimator, oscillations may occur in the distribution tails and in less dense
regions of the input space. This leads to inaccuracies in the PDF estimates and
their associated Bayesian classification.

By contrast, finite mixture models (FM) are used in semi-parametric PDF
estimation problems or clustering tasks [8]. The unknown PDF is approximated
by a weighted sum of mixture distributions. In general, finite Gaussian mixture
models (FGM) are used. However, Student-t mixture models (FTM) are efficient
alternatives that can deal with a limited number of outliers [10]. Both model types

∗M.V. is a Senior Research Associate of the Belgian FNRS. This work was partially supported
by the European Commission (IST-2000-25145) and the Belgian FRSM (# 3.4590.02).

ESANN'2004 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 28-30 April 2004, d-side publi., ISBN 2-930307-04-8, pp. 75-80



provide a powerful tool when the number of components in the mixture is small,
can be guessed easily and the data clusters are Gaussian shape. Each density in
the mixture is then fitted to a cluster of data samples in the learning set.

Yet, FM may be used in a more general framework in order to estimate PDFs
of arbitrary shape [3], the number of components being learnt as a hyperparam-
eter. Compared to Parzen’s estimator, FM are computationally expensive, but
their flexibility is increased by the introduction of weighting factors. This leads to
a lower model complexity, which in turns shows better generalization capabilities
and avoids oscillations in the PDF estimates. In practice however, when the num-
ber of components increases, numerical difficulties arise, as mixture densities may
possibly collapse. This problem was extensively discussed in [1] and accredited to
the concept of isolation. In [2], it was proposed to use the regularized Mahalanobis
distance [6] in order to improve the density estimates of FGM. In this paper, we
extend its use to FTM and show that the quality of the resulting Bayesian classi-
fication is high for both regularized FM.

This paper is organized as follows. In Section 2, FGM and FTM are recalled.
In Section 3, the use of the regularized Mahalanobis distance is proposed and
motivated in the context of FM. Finally, in Section 4, the classification performance
of regularized FGM (RFGM) and regularized FTM (RFTM) on Ripley’s synthetic
data set [11] is presented and discussed. More specifically, the robustness of RFGM
and RFTM is assessed by corrupting the learning set by additive Gaussian noise
or uniform random noise (atypical observations).

2 Finite Mixture Models

Finite mixture models [8] can approximate any continuous PDF, provided the
model has a sufficient number of components and provided the parameters of the
model are chosen correctly [3]. Let us consider a d-dimensional continuous random
vector X ∈ <d. Its true PDF can be approximated by a linear combination of M

component densities p(x|j):

p(x) =

M
∑

j=1

P (j)p(x|j), (1)

where the mixing proportions P (j) are non-negative and must sum to one. Con-
sider an i.i.d. realization χ = {xn}

N
n=1 of X. We may define the corresponding

log-likelihood function:

L(θ) = log
N
∏

n=1

p(xn), (2)

where θ summarizes the model parameters. By means of the expectation-maxi
mization (EM) algorithm [4], the maximum likelihood estimate of θ can be ap-
proximated iteratively, avoiding the intricacy of non-linear optimization schemes.
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Maximizing the log-likelihood function is then equivalent to finding the most prob-
able PDF estimate provided the data set χ. For further details on EM and its
extensions, we refer to [7].

A popular choice for the component density p(x|j) is the multivariate Gaussian
distribution. Each component j is then characterized by its center cj and its
covariance matrix Σj .

When the data set contains atypical observations such as outliers, the estimates
of the centers cj and the covariance matrices Σj of the Gaussian components can
be severely affected. Therefore, providing protection against outliers is essential
in many practical problems. Robustness can be introduced by embedding the
Gaussian distribution of each mixture component in a wider class of elliptically
symmetric distributions, called the t-Student distribution. As a result, a heavy-
tailed alternative to the Gaussian family is provided:

p(x|j) =
Γ

(

ν+d
2

)

(νπ)
d

2 |Σj |1/2Γ
(

ν
2

)

[

1 +
1

ν
(x − cj)

T
Σ−1

j (x − cj)

]

−
ν+d

2

. (3)

In this equation, Γ(·) denotes the gamma function. Parameter ν is called the
degree of freedom. It may be viewed as a robustness tuning parameter. If ν tends
to infinity, the t distribution tends to the Gaussian distribution.

Applying EM to (2) leads to the following iterative scheme for FTM [10]:

E-step:

P (t)(j|xn) =
p(t)(xn|j)P

(t)(j)

p(t)(xn)
, (4)

Q(t)(j|xn) =
ν + d

ν + 1
ν

(

xn − c
(t)
j

)T

Σ
(t)
j

−1 (

xn − c
(t)
j

)

. (5)

M -step:

c
(t+1)
j =

∑N
n=1 P (t)(j|xn)Q(t)(j|xn)xn

∑N
n=1 P (t)(j|xn)Q(t)(j|xn)

, (6)

Σ
(t+1)
j =

∑N
n=1 P (t)(j|xn)Q(t)(j|xn)

(

xn − c
(t+1)
j

)(

xn − c
(t+1)
j

)T

∑N
n=1 P (t)(j|xn)

, (7)

P (t+1)(j) =
1

N

N
∑

n=1

P (t)(j|xn). (8)

Theoretically, the degree of freedom ν can be estimated by EM [8]. However, in
practice, the convergence of EM is slow for unknown ν and the one-dimensional
search of its solution, computed at each iteration step, is very time consuming.
Therefore, ν is considered as a regular hyperparameter and is learnt in a classical
way by exhaustive search.

The corresponding E- and M -step for FGM are easily obtained by setting
Q(t)(j|xn) equal to 1 for each component j and each data sample xn. Indeed, by
computing the limit, we get limν→+∞ Q(t)(j|xn) = 1.
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3 Regularized Mahalanobis Distance

When one wants to approximate an unknown PDF of arbitrary shape by increasing
the number of components arbitrarily, numerical difficulties might occur. This
problem was traced in [1] and linked to the concept of isolation. Actually, when
maximizing the log-likelihood function L(θ), the width of a component in the
mixture may tend to zero. Yet, if sufficient data samples are available and the
singularities of the likelihood function can be avoided, we may approximate the
true PDF arbitrarily well. In order to recover from singular covariance matrices,
the regularized Mahalanobis distance is proposed.

The Mahalanobis distance DM is defined as follows:

DM (xn, cj) = (xn − cj)
T

Σ−1
j (xn − cj) . (9)

From (3), one can easily see that both the multivariate Gaussian distribution and
the multivariate Student-t distribution use DM to determine their shape. When
the number of data samples contributing to the computation of the covariance
matrix of a component is small with respect to the dimension d of the data sam-
ples, it may be singular. Moreover, as discussed in [6], DM tends to produce
hyperellipsoidal components, leading to unusually large and elongated densities.
By contrast, when we consider the Euclidean distance DE , large data clusters
tend to split unnecessarily, as the component densities are hyperspherical. If the
covariance matrix Σj is replaced by the d × d identity matrix I in (9), one finds
the definition of the Euclidean distance.

Based on the hyperspherical character of DE and the hyperellipsiodal character
of DM , we can construct the regularized Mahalanobis distance [6], which is a convex
combination of both distances:

DME(xn, cj) = (xn − cj)
T

[

(1 − λ) (Σj + εI)
−1

+ λI
]

(xn − cj) , (10)

where ε and λ are learning parameters. Parameter λ is in the interval [0, 1] and
should be learnt properly. It controls the tradeoff between DM and DE . When
the covariance matrices cannot be estimated reliably, a large value of λ should be
used. By contrast, a careful estimation of ε is not required. Indeed, its role is
to stabilize the learning process by converting a singular matrix to a non-singular
one. As a result, using different values of ε do not make much difference as long
as they are significantly smaller than the average variance of the data samples [2].

Consider again the E- and M -step for computing the model parameters of FGM
and FTM. Introducing the regularized Mahalanobis distance consists in adapting,
at each iteration step t, the covariance matrix of each component density according
to (10). Therefore, the following adaptation rule is inserted in the M -step:

Σ′(t+1)
j =

[

(1 − λ)
(

Σ
(t+1)
j + εI

)

−1

+ λI

]

−1

, (11)

where Σ
(t+1)
j is still computed according to (7).
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Figure 1: Ripley’s learning set (a), corrupted by (b) additive Gaussian noise (σ =
0.2) or (c) uniform random noise (10% atypical observations). The class labels are
denoted by ‘+’ and ‘×’ respectively.

4 Results and Discussion

FM that exploits the regularized Mahalanobis distance can be used for supervised
classification. First, one learns the unknown PDF p(x|c = C) of each class C.
Next, each data sample can be classified according to Bayes’ rule:

Ĉ(xn) = arg max
c

p(xn|c = C)P (c = C), (12)

where P (c = C) is the class prior of class C.
In Figure 1, Ripley’s synthetic learning set is shown [11]. For both regular-

ized FM (RFGM and RFTM), learning has been performed using learning sets
corrupted by two types of noise. Both are common in practice. First, a strong
additive Gaussian noise was considered (σ = 0.2). Subsequently, the robustness
of the models to uniform random noise in the input space was investigated (up to
10% atypical observations). Their class label were randomly assigned.

Figure 2 shows the average correct classification rate on Ripley’s test set [11],
when learning is biased by the two types of noise. In both cases, RFTM outper-
forms RFGM. The results should be compared to the Bayes’ optimal error rate of
8%, obtained when the class densities are known and the learning set is noiseless.
In presence of the Gaussian noise source, we obtain an error rate of 10.8% and
9.6% for RFGM and RFTM (ν = 7) respectively. For both techniques it was
found that the optimal parameter λopt = 0.2. The error rate in presence of uni-
form random noise is 9.4% and 9.3% for RFGM and RFTM (ν = 5) respectively.
While in this case RFTM only slightly outperforms RFGM, one can see that the
RFTM estimate is more flexible as it uses less constrained covariance matrices
(λRFGM,opt > λRFTM,opt).

The number of components M , and the optimal parameters λ and ν were
selected by exhaustive search. The models were computed using a learning set χL

and their performance was evaluated on a test set χT . It was assumed that the true
class PDFs were unknown. Both RFGM and RFTM used 5 mixture components
during learning. It should be emphasized that the regular FGM and FTM could
not be computed as they were collapsing.
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Figure 2: Correct classification rate of Ripley’s test set in function of λ (ε = 10−6).
The learning set is corrupted by (a) additive Gaussian noise and (b) uniform
random noise. RFGM and RFTM are denoted by ‘5’ and ‘©’ respectively.

5 Conclusion

The regularized Mahalanobis distance was introduced in the context of finite mix-
ture models, making them applicable in a wider range of problems, as for example
for nonparametric PDF estimation. Regularized Gaussian mixtures and regular-
ized Student-t mixtures were proposed. They avoid the numerical difficulties faced
with finite mixture models when estimating the model parameters by the EM al-
gorithm. It was shown that the resulting PDF estimates are flexible and robust
to different types of noise. Finally, it was shown that the associated Bayesian
classification is near optimal on Ripley’s data set.
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