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Abstract. Mutual information may be used to select the embedding lag
of a time series. However, this lag selection is usually limited to the analysis
of the mutual information between a pair of lagged values in the series. In
this paper, generalized mutual information estimators are proposed to take
into account more than two variables in the lag selection. Experimental
results show that lag selection using mutual information should also take
into account the output of the regression model.

1 Introduction

While working with time series, one has first to analyze them. Such analysis
leads to a characterization of the series (stationary, periodic, chaotic, ... [1, 2]),
as well as to the computation of some invariants (dimension, lag, Lyapunov
exponents, ... [3, 4, 5, 1, 2]). The lag is an important value for the embedding
of the series i.e. for its reconstruction in a state space [5].

Two approaches are usually used to estimate the lag. The first one consists in
selecting the first value that corresponds to a zero of the autocorrelation function
[1, 2]. The second one selects a value corresponding to a minimum of the mutual
information (MI) [6, 1, 2]. However both approaches have the same goal: to
select variables that are as much independent (or uncorrelated) as possible in
order to reconstruct a trajectory in the state space that approaches at best the
true dynamics of the time series.

In both these approaches one usually estimates the first lag and then uses
multiples of it for the other lags. The lag selection problem is thus reduced
to a particular case using only two variables: one at time t and one at time
t− τ , where τ is the lag. Autocorrelation or MI with three (or more) variables is
not computed although the reconstructed state space is often 3-dimensional (or
higher). There is thus a need to estimate the lag with more than two variables.

Furthermore, in a time series prediction context, the common approach is
to estimate the lag by computing a criterion (autocorrelation or MI) between
the inputs of the model regardless of the desired model output(s). The usual
hypothesis behind this method is that a good reconstruction in a state space
leads to a good prediction accuracy. However, this common belief is usually
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not quantitatively measured, even in the lag selection step where it could be
measured easily.

In this paper it is first suggested selecting the lag using MI between more than
two variables at the model input side, and then taking into account the desired
model output. This approach is recommended in the context of time series
prediction as it allows selecting a set of past values in the series that contains
as much information as possible with respect to the output to be predicted.
The MI will be estimated in any dimensional space using a k-nearest neighbour
based MI estimator introduced recently [7]. Experimental results based on this
MI estimator show the positive impact of taking into account the model output
in the lag selection.

The paper is organized as follows. Section 2 presents the MI approach for lag
selection. Section 3 then introduces the lag selection using high-dimensional k-
nearest neighbour based MI estimator, and introduces a way to take into account
the desired model output. Experimental results in section 4 show the usefulness
of taking into account the model output while selecting the lag of a time series.

2 Embedding in a state space: the lag selection

A time series is defined as a series of values xt measured from a varying process.
The xt values are usually ordered according to the time index t.

In time series prediction context one has to build a model of the series that
can be denoted as:

x̂(t + 1) = f (x(t), x(t − τ), x(t − 2 ∗ τ), ..., x(t − (d − 1) ∗ τ)) , (1)

where f is the model (it can be linear or nonlinear) and x̂(t+1) is the prediction.
Values x(t), x(t− τ), x(t−2∗ τ), ..., x(t− (d−1)∗ τ) are often grouped in vectors
called state vectors [5]. Notation d is the dimension of the time series and τ
is the lag [5, 1, 2]. The question regarding how to choose the dimension d is
decisive for the model [3, 4, 1, 2] but is quite independent from the goal of this
work which is to choose an adequate lag τ . Dimension d will therefore be deemed
to be fixed a priori throughout the rest of this paper.

In practice lag τ is often selected as the first zero value of the autocorrelation
function [1, 2], but this criterion only measures the linear dependencies between
a variable x(t) and the lagged one x(t − τ). A nonlinear alternative proposed
to select the lag is the mutual information (MI) [6, 1, 2]. This lag selection
approach will be developed in this paper.

An estimator of the MI can be defined as:

MI(x(t), x(t + τ)) =
∑

x(t),x(t+τ)

P [x(t), x(t + τ)] log
(

P [x(t), x(t + τ)]
P [x(t)] P [x(t + τ)]

)
, (2)

where P[.] denotes the probability. This criterion is a nonlinear measure of how
much information on x(t) can be deduced from the knowledge of x(t + τ). The
lag to select is the one minimizing (2).
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Fig. 1: Left: MI for the Lorenz time series. Right: reconstructed 2-dimensional
state space (the selected lag is τ = 9).

Figure 1 shows the use of the MI criterion on a time series obtained from
the Lorenz equations [1, 2], in the d = 2 case. The left part shows the MI with
respect to the lag τ . According to this plot, τ = 9 is chosen. The reconstructed
2-dimensional state space is shown on the right.

3 Lag selection using high-dimensional MI

The main limitations of the criterion in Equation (2) are first its definition for two
variables x(t) and x(t− τ) only and second the non-use of the desired predicted
value. The following methodology is therefore introduced to get rid of both these
drawbacks. A similar generalization could be provided for the autocorrelation
function, but this paper focuses on MI as mentioned in section 2.

The 2-dimensional definition in (2) can be generalized to any dimension:

MI(X1, ..., Xm) =
�

X1,...,Xm

P [X1, ..., Xm] log

�
P [X1, ..., Xm]

P [X1] ... P [Xm]

�
, (3)

where X1, ..., Xm are variables that can be x(t), ..., x(t − (m − 1) ∗ τ) for
example. In practice, high-dimensional MI is very difficult to estimate, but
an estimator of such high-dimensional MI, based on k-nearest neighbours, has
been introduced recently [7]. This estimator has been used in the experiments
presented in Section 4.

Shortly, the estimator of MI(X,Y ) between X and Y is based on counting
the number of points in the X and Y spaces respectively, up to a limit distance
fixed according to the kth nearest-neighbour in the combined XY space. The
existence of a relation between the points in subspaces X and Y , obtained by
projection of the points in the XY space, will give rise to a relation between
the two counts as soon as the limit distance tends to be small. A variant of
this estimator is also given in [7] with distinct bounds in each space X and Y .
As expected from [7] experimental results confirm that both estimators behave
similarly (except for a small bias without consequence on the search for minima
and maxima); the first estimator is used in this paper. The most interesting
property of the estimator in [7] is that X and Y are not restricted to be scalar
variables; they may be vector as well, what provides an estimator for (3).

Now, taking into account the output x(t + 1), Equation (3) becomes:

MI(X0; (X1, ..., Xm)) =
�

X0,X1,...,Xm

P [X0, (X1, ..., Xm)] log

�
P [X0, (X1, ..., Xm)]

P [X0] P [X1, ..., Xm]

�
, (4)
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where X0 denotes the model output x(t + 1) and variables X1, ..., Xm can be
x(t), ..., x(t− (m− 1) ∗ τ) as above. Note that any prediction horizon h ≥ 1 can
be considered as output; h = 1 is chosen here for the ease of illustration.

A k-nearest neighbour estimator for the MI defined in (4) is also proposed in
[7]. Indeed variables X and Y can be replaced by vectors in the computation of
MI(X,Y ) once a norm has been defined in the X and Y spaces.

The two above criteria can be used together to select the embedding lag.
Intuitively it is expected that the MI estimated with (3) should be as low as
possible as the goal is to have state vector components as much independent as
possible. This approach is coherent with the 2-dimensional case usually applied
to select the lag [6]. On the contrary the MI estimated with (4) should be as
high as possible since in this case the state vector components should provide as
much information as possible to explain the output. Since high-dimensional MI
estimators are available, it is now possible to observe the influence of the model
output in the lag selection.

Finally note that definitions (3) and (4) are independent of the regression
model that is used for prediction. They thus provide a general framework for
the lag selection, in the form of an unsupervised method.

4 Experimental results

This section illustrates the use of the two MI criteria (3) and (4) in the lag
selection problem on artificial and real-world time series.

A real time series is the Santa Fe A time series [8] that has been proposed
in the Santa Fe Time Series Prediction and Analysis Competition held in 1991.
The 1000 data were collected from a Far-Infrared-Laser in a chaotic state. The
artificial time series were generated from the Henon map and the Lorenz system:

• Henon map [1, 9]:
xt+1 = 1 − 1.4x2

t + yt,
yt+1 = 0.3xt.

(5)

2000 data have been generated using these finite difference equations.

• Lorenz system [1, 9, 2]:

ẋt = 10(yt − xt),
ẏt = 28xt − yt − xtzt,
żt = xtyt − 8

3zt.
(6)

4000 data have been generated using an integration step of 0.015. The
first 2000 data have been discarded to remove any transient state and let
the trajectory fall to the attractor.

The real-world and the two artificial time series are shown in Figure 2.
From Figure 3 it can be observed that MI (3) presents some local minima

for the 2-dimensional case. Though these minima appear more or less at the
same values that the maxima of (4) as expected, they are obviously much less
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Fig. 2: From left to right: Santa Fe A, Henon and Lorenz time series.
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Fig. 3: Lorenz time series: comparisons of the MI values obtained according to
criteria (3) and (4) with respect to the lag. From left to right: 2-dimensional,
5-dimensional, 10-dimensional and 20-dimensional state vectors.
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Fig. 4: Same results than Figure 3 for the Santa Fe A time series.
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Fig. 5: Same results than Figures 3 and 4 for the Henon time series.

distinguishable. This tends to prove that using only the model inputs to select
the lag as in Equation (3) is not sufficient. Furthermore the minima that appear
in the 2-dimensional case are no longer observable in any other dimension. What
is much more problematic is the fact that for dimensions higher than two the
MI computed with (3) is not longer low while MI (4) is high. On the contrary,
both the criteria have high values together. Similar comments can be formulated
from Figure 4. In Figure 5, no clear minimum can be found for MI (3) while MI
(4) is high, even in two dimensions.
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These figures confirm two facts. First, when more than two consecutive values
(one lag) are taken into account, it may become difficult to select the adequate
value of the lag with criterion (3). This means that unfolding in a state space
become difficult, and that different unfoldings (corresponding to different lags)
may become indiscernible (from the criterion point of view). Furthermore, what
is even more important is that the minimum of criterion (3), even when it exists,
may not correspond anymore to a maximum of criterion (4). Although, it is clear
that a maximum of (4) is the goal to be reached: one tries to select a set of past
values in the series that contains as much information as possible with respect
to the output x(t+1) to be predicted; this goal corresponds exactly to (4). This
result questions the optimality of lag selection performed with a state space
unfolding goal. As using the desired output value is possible through criterion
(4) (or equivalent), it is strongly suggested to use the latter instead of criterion
(3) to select an optimal lag.

5 Conclusion

In this paper, mutual information estimators generalized to the high-dimensional
case and taking into account the output of a regression model have been used
to select the embedding lag.

Experimental results show that using a methodology that simply generalizes
the usual lag selection approach based on two lagged values becomes problematic
in spaces of dimension higher than two. It is thus recommended to use a mutual
information estimator that takes into account the output of the regression model.
With such approach the selected lagged variables are those that indeed provide
the most useful information in the context of time series prediction.

Further work will include a study of the influence of the prediction horizon
on the methodology that should be used to select the most adequate lag.
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