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Abstract. Independent Component Analysis (ICA) is a powerful tool
with applications in many areas of blind signal processing; however, its key
assumption, i.e. the statistical independence of the source signals, can be
somewhat restricting in some particular cases. For example, when consid-
ering several images, it is tempting to look on them as independent sources
(the picture subjects are different), although they may actually be highly
correlated (subjects are similar). Pictures of several landscapes (or faces)
fall in this category. How to separate mixtures of such pictures? This
paper proposes an ICA algorithm that can tackle this apparently para-
doxical problem. Experiments with mixtures of real images demonstrate
the soundness of the approach.

1 Introduction

For two decades, Independent Component Analysis (ICA) [1, 2] has brought an
elegant solution to many Blind Source Separation problems (BSS). Examples of
applications are the cocktail party problem, ECG/EEG/MEG processing [3, 4],
signal denoising, etc. The key assumption in ICA is the statistical independence
of the source signals. Starting from there, many mixtures models (instantaneous,
convolutive, linear, post-non-linear) can be developed and several algorithm can
be implemented (gradient ascent, fixed-point, joint diagonalization, etc.).

Sometimes however, statistical independence may be a restricting assump-
tion. Indeed, assume that the source vector s consists of composite random
variables that can be written as

si =

{

ci with probability α
pi with probability 1− α

, (1)

where 0 ≤ α ≤ 1. In the last equation, the random variables ci are strongly
correlated whereas the pi are fully independent. Intuitively, all sources can
be seen as independent variations of a common pattern. This situation may
be encountered when dealing with images. Several images may share a common
underlying pattern, like e.g. various pictures of landscapes or identity pictures. It
is clear that in each of these sets, images are correlated although we would like to
consider them to be independent. Within that framework, separating mixtures
of such images becomes a difficult task, at least with usual ICA algorithms, in
which mixtures are systematically decorrelated, either by prewhitening or by
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the ICA algorithm itself. Solving the above problem requires leaving aside the
common patterns ci and focusing on the independent ones pi. For this purpose,
the approach followed in this paper assumes that ci and pi influence the source
pdfs in different locations of their supports. More precisely, it is assumed that
i) ci act exclusively on the inner part of the ith source support, ii) tails and
bounds of the ith source support are determined solely by pi and iii) pdf tails
are sharply cut. This situation is not uncommon in digital image processing,
because image are often under- and/or over-exposed.

The remainder of this paper is organized as follows. After this introduc-
tion, Section 2 reviews the classical mixture model of ICA. Section 3 describes
an ICA contrast function that exploits information contained in the pdf tails.
Next, Section 4 presents the NOSWICA algorithm, which can tackle the above-
mentioned problem. Section 5 shows some experimental results of NOSWICA.
Finally, conclusions are drawn in Section 6.

2 Mixture model

Within the ICA framework, it is usually assumed that sources are mixed in an
instantaneous and linear way. This model can be written as follows:

x = As , (2)

where x is the vector of observed signals, s the vector of independent sources
and A the mixing matrix. Assuming that sources are statistically independent
allows one to identify A by solving blindly the reverse model:

y = Bx = BAs . (3)

In this equation, the unmixing matrix B is such that C = BA = PD, where P

and D are respectively a permutation matrix and a diagonal one.
Typically, most ICA algorithms proceed in two stages: first, mixtures are

whitened, i.e. are decorrelated and standardized; second, full independence is
reached by maximizing some contrast function. Prewhitening allows decompos-
ing the unmixing matrix into the product B = WTV, where V is the whitening
matrix and W is the ICA matrix, constrained to be orthogonal. Prewhitening
also allows rewriting the unmixing model (3) as

y = WTVx = WT z , (4)

where both y and z have zero mean and unit variance. The orthogonality con-
straint on the ICA matrix W makes the ICA problem much easier to solve.
Indeed, there are fewer parameter to identify and in particular orthogonality
prevents the algorithm from extracting twice the same source.

3 The support width measure as ICA contrast

A contrast is a function C of one or all ICA outputs that respectively measures the
‘level of non-Gaussianity’ or the ‘level of independence’. Maximizing the contrast
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allows solving the ICA problem, either at once or by extracting one source
at a time. Usual contrasts for all outputs are for example minus the mutual
information [5]. Contrasts for one output is typically the absolute value of the
normalized kurtosis, the negentropy or any other measure of ‘non-Gaussianity’.

Previous work [6] has shown that for bounded sources, the support width
measure (SWM) of an ICA output can be used as contrast. The support Ω(Y )
of a random variable y is the subset of the domain where its pdf is non-zero.
If the support is non-convex, then the convex hull Ω̄(Y ) of the support may
be used instead. The support width is the length of the shortest interval that
contains the (convex hull of the) support. Formally, this can be written using
the Lebesgue measure of sets µ[·]:

C(yi) = −µ[Ω̄(yi)] = −µ[Ω̄(wT
i z)] , (5)

where wi is the ith column of the matrix W. Maximizing C w.r.t. wi under the
constraint wT

i wi = 1 allows extracting one source.
Practically, pdfs are unknown and only samples of the observed variables are

provided. In this case, the support width can be estimated using order statistics.

Assuming that observations of yi are sorted in the list [y
(1)
i , y

(2)
i , . . . , y

(N−1)
i , y

(N)
i ],

then a good estimator of the support width is

Ĉ(yi) =
1

m

m
∑

j=1

y
(m)
i −

1

m

m
∑

j=1

y
(N+1−m)
i , (6)

where 1 ≤ m ≪ ⌊N/2⌋. Taking m = 1 amounts to measuring the interval
between the minimum and maximum observed values. Taking m > 1 leads to a
more robust estimator (see [7] for more details).

4 The NOSWICA algorithm

The SWM contrast is not everywhere differentiable. As a consequence, most
usual ICA algorithm based on gradient ascent or fixed-point approaches would
fail to maximize it. A deflation procedure that can handle non-differentiable
contrasts is detailed in [8]. It relies on a naive but yet efficient trial-and-error
optimization scheme. The association of that procedure with the SWM contrast
is called SWICA.

As many other ICA algorithms, SWICA works on prewhitened mixtures.
Unfortunately, in the source model described in the introduction, prewhitening
does not help because sources are correlated. Maintaining the orthogonality
constraint on W would then amount to imposing that y is white, what obvi-
ously contradicts the source model. At least, whitening remains useful to make
variance constant in all directions, but it may not be stated that W is orthog-
onal anymore: only the constraint wT

i wi = 1 for all i remains acceptable. As
a consequence, orthogonality has to be replaced with some kind of penalty in
order to avoid extracting repeatedly the same source. In the case of the SWM
contrast, geometrical arguments help to identify the ideal penalty.
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Considering two sources that are bounded and independent, the convex hull
of their joint support is a rectangle. Similarly, two linear mixtures of these
sources live in a parallelogram. If the sources are fully independent, the orthog-
onality constraint on W is meaningful because whitening these mixtures trans-
forms the parallelogram back to a (rotated and scaled) rectangle. However, if
sources are composite as in (1), this property does not hold anymore and whiten-
ing merely leads to another (rotated and scaled) parallelogram1. For the sake
of simplicity, it can then be assumed without loss of generality that z = x and
B = WT = [1, 0; cos θ, sin θ] where θ is the mixing angle. In this case, the joint
support corresponds to the solid parallelogram in Fig. 1. Under these assump-

^ θθ̂

h µ1

B

µ2

µ2
w1

w2

w2
^

B̂

z1

z 2

Fig. 1: Schematic view of the joint support
of two mixtures of two bounded sources.
The solid parallelogram is the true convex
hull of the joint support; the dashed one
represents the hypothetic support when one
source direction is perfectly known and the
second one is only approximated. Recover-
ing the second source may be achieved by
finding the angle that minimizes the area of
the dashed parallelogram.

tions, recovering the direction of the first source is trivial (w1 = [1, 0]T ). This
can be achieved by minimizing the support without any constraint or penalty.
On the other hand, finding the direction of the second source proves more diffi-
cult: minimizing the estimated support without penalty could lead to the first
source once again. An alternative approach would be to minimize the area of
the joint support instead of the width of the marginal support. The true area
of the joint support (the solid parallelogram in Fig. 1) can be written as a func-
tion of the two marginal supports: A = µ1µ2/| sin θ|, where µi is a short-hand
notation for µ[Ω̄(si)]. The last formula expresses the area as the intersection
of two infinite-length strips, with crossing angle θ and widths equal to µ1 and
µ2 respectively. Knowing only the estimate of the marginal support in direc-
tion ŵ2, A can be approximated by Â = µ1µ̂2/| sin θ̂|, where µ̂2 = µ[Ω̄(ŵT

2 z)].
This estimate corresponds to the area of the dashed parallelogram in Fig. 1: the
second strip is not perfectly known but must be wide enough to cover the true
support. By construction, the height h is shared by the two parallelograms and
equals the support of the first source (h = µ1). On the other hand, the base of

1As some source components in (1) may be correlated, the symmetry axes of their
component-wise joint supports are not necessarily aligned. See an example in Fig. 2: whiten-
ing leads to a ‘tradeoff’, where both the independent uniform components and the correlated
Gaussian ones influence the final result.
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the dashed parallegram is always longer than for the solid one:

B =
µ2

| sin θ|
≤

µ̂2

| sin θ̂|
= B̂ = B + h

∣

∣

∣
cot θ − cot θ̂

∣

∣

∣
. (7)

These inequalities allow concluding that A ≤ Â and A = Â iff θ̂ = θ+kπ. Differ-
entiating Â w.r.t. θ̂ also shows that no other (local) minimum exists. Therefore,
as the constant h can be omitted, minimizing B̂ w.r.t. ŵ2 (instead of Â) allows
determining w2, the direction of the second source.

The above reasoning can be extended to more than two dimensions. For
example, assume that two sources have been extracted and that w1 and w2 are
known. Assume also that U = [u1,u2] is an orthonormal basis of the subspace

spanned by w1 and w2. Then, minimizing B̂ = µ̂3/| sin θ̂| w.r.t. ŵ3, where

µ̂3 = µ[Ω̄(ŵT
3 z)] and | sin θ̂| = ‖ŵ3 − UUT ŵ3‖ leads to the right solution,

without any risk of converging on w1 or w2. In summary, the deflation algorithm
of NOSWICA consists of the following steps:

• Whiten the mixtures and initialize the ICA matrix: z← Vx, W← I.
(Whitening is used here for obtaining mixtures with similar variances; visually, this

allows avoiding cases where the parallelogram would be too flat, making the estimator

of the support width not robust enough.)

• Minimize the support width in order to recover a first source:
w1 ← arg minŵ1

µ[Ω̄(ŵT
1 z)], U← [w1].

• To extract other sources, minimize the penalized support and update U:
wi ← argminŵi

µ[Ω̄(ŵT
i z)]/‖ŵi −UUT wi‖

U← [U,wi −UUT wi/‖wi −UUT wi‖] (append a column)

From a practical point of view, the support estimator in (6) seems to be the
most robust and the optimization procedure described in [8] gives good results.

5 Experiments

Toy example. Two sources have been artificially generated according to the
model in (1), with α = 0.5. The data set is then an equiprobable mixture of
samples of both the ci and pi. Obtaining the two pi is easy: each pi is drawn from
a uniform distribution in the interval (−1, +1). On the other hand, the two ci are
built as follows. First, two independent zero-mean unit-variance Gaussian dis-
tributions are sampled. Next, the obtained vectors are mixed by premultiplying
them with the matrix [0.2, 0.4; 0.4; 0.2], in order to correlate their components.
Finally, all values greater than one in absolute value are replaced with ±1. The
covariance matrix of the resulting sources is Σss = [0.25, 0.07; 0.07, 0.25]. The
first plot in Fig. 2 shows 500 points obtained according to the above building
scheme. The second plot displays mixtures of these sources. The third plot
shows the whitened mixtures. The three last plots illustrate the results of Fas-
tICA [9] (v2.5, deflation, pow3), SWICA [6, 8] (m = 5 in (6)) and NOSWICA
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(m = 5). FastICA does not recover any source, SWICA extracts the first one but
misses the second one because of the orthogonality constraint. Only NOSWICA
yields the expected result.
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Fig. 2: Toy example with computer-generated composite distributions. The six
plots show respectively the two sources, two random mixtures, the whitened
mixtures and results of FastICA, SWICA and NOSWICA.

Mixtures of real images. For this experiment, color pictures of the three authors
are downloaded from http://www.dice.ucl.ac.be. Pictures are cropped in
order to share the same size (192 by 144 pixels) and converted to grayscale using
rgb2gray in Matlab, as shown in Fig.3. Next, images are transposed and rows of
pixels are concatenated to obtain three row vectors that contain the observations
of each source. Finally, those vectors are standardized so that sources have zero
mean and unit variance. The leftmost plots in Fig. 3 show the histograms of the
sources. Computing the covariance matrix of these sources leads to

Σss =





1.00 −0.27 −0.25
−0.27 1.00 0.51
−0.25 0.51 1.00



 . (8)

Pictures corresponding to three random linear combinations of the sources are
shown in the third column of Fig. 3. The three rightmost columns show the
results of FastICA (v2.5, deflation, pow3), SWICA (m = 500) and NOSWICA
(m = 500). As in the case of the toy example, NOSWICA clearly outperforms
the two other algorithms. The quality of the results may be assessed using
a performance index (PI) that reflects the residual interferences between the
recovered sources. In order to compute the latter, it is assumed that both the
sources and ICA outputs are standardized. For a given ICA output vector y,
the equation system y = Cs is solved and for each source the PI is computed as

PI(yi) =

∑

j |cij |

maxj |cij |
− 1 , (9)

where cij is the entry of C at the crossing of the i-th row and j-th column.
In Fig. 4, the three algorithms are run 1000 times with different mixtures and
histograms of the PIs are displayed for each source or for all of them (average PI).
As it can also be seen in Table 1, the average result of NOSWICA is excellent. On
the other hand, its robustness needs some improvement: the standard deviation
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of the PIs is not negligible. Because the orthogonality constraint is relaxed in
NOSWICA, the space of solutions is larger than for the two other algorithms.
This could account for the result variability.

6 Conclusions

Most ICA algorithms rely on the statistical independence of the unknown sources
to be recovered. A slightly different model is proposed in this paper, where
sources have composite distributions. More precisely, it is assumed that only
some parts of these composite distributions are independent whereas others may
be heavily correlated.

The adoption of this model gives rise to several consequences. Firstly, sep-
arating the sources requires defining ad hoc contrast functions, that take into
account the independent parts of the sources and neglect their correlated parts.
As shown in this paper, the support width measure is a possible answer to this
issue, in the case of bounded sources. Secondly, the prewhitening step involved
in many ICA algorithms becomes partly useless here. Indeed, decorrelating the
mixtures would contradict the source model.

A non-orthogonal ICA algorithm for the optimization of the support width
measure, called NOSWICA, has been developed to identify the parameters of
the proposed model. Experiments show the soundness of the approach in the
case of mixtures of real images.
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Sources Mixtures FastICA 2.5 SWICA NOSWICA

Fig. 3: Mixtures of real images (pictures of the three authors’ faces). The two
leftmost columns shows the sources and their histogram. The third column
consists of three random mixtures of the sources. The three rightmost columns
display results of FastICA, SWICA and NOSWICA. All images are displayed
using a grayscale that fits to their own intensity range.
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Fig. 4: Histograms of PI for the example in Fig. 3. Lowest values are the best.

PI FastICA 2.5 SWICA NOSWICA
Source 1 0.1472 (0.0204) 0.0423 (0.0306) 0.0555 (0.0888)
Source 2 0.6528 (0.2464) 0.3126 (0.0125) 0.0599 (0.0583)
Source 3 0.6684 (0.0810) 0.5928 (0.0172) 0.0926 (0.0542)
Average 0.4895 (0.1159) 0.3159 (0.0172) 0.0693 (0.0463)

Table 1: Mean and standard deviation (in parentheses) of the performance in-
dexes for the example in Fig. 3, over 1000 trials with different random mixtures.
Best values are italicized.
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