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Abstract. Input selection is an important consideration in all large-scale
modelling problems. We propose that using an established noise variance
estimator known as the Delta test as the target to minimise can provide
an effective input selection methodology. Theoretical justifications and
experimental results are presented.

1 Introduction

In regression analysis, two of the main concerns are accuracy of the model and
increased interpretability of the data. Input selection is one way to address both
of these issues. The constantly increasing size of relevant data sets, however,
requires progressively more sophisticated methods for input selection. Several
popular methods exist for this task (e.g., [1]), but many suffer from the “curse of
dimensionality” in some way or another when the data sets escalate to very high
dimensionalities [2]. We investigate a method based on the concept of nearest
neighbors (NN) to evaluate input selections, since intuitively such proximity-
measures are less affected by this curse. The effects of dimensionality related to
NNs have been extensively studied in the literature [3, 4].

Our method is based on a well-known noise variance estimator commonly
referred to as the Delta test [5, 6]. Intuitively, it seems sensible to compare
different input selections by minimising a noise estimate, and this method has
been used with some success [7]. In this paper, we present some justification
for this procedure, and explanations for why in particular the Delta test is an
appropriate estimator to use for this task, when it is well known that there are
more sophisticated methods for actual noise estimation—e.g., [8, 9].

The goal of this paper is to provide a mathematically convincing—though
not technically rigorous—argument supported by an example as to why the
suggested methodology is valid.

This paper is organised as follows: in Section 2, we review some fundamentals
of noise variance estimation. Section 3 comprises the main result, a theoretical
analysis of why the Delta test can be used for variable selection. In Section 4,
we present some supporting experimental evidence.

2 Noise Variance Estimation

In function approximation, we have a set of input points (xi)
M
i=1 and associated

scalar outputs (yi)
M
i=1. The assumption is that there is a functional dependence
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between them, but with an additive noise term:

yi = f(xi) + εi

The function f is assumed to be smooth, and the noise terms εi are i.i.d. with
zero mean. Noise variance estimation is the study of how to give an a priori
estimate for Var(ε) given some data without considering any specifics of the
shape of f .

2.1 Nearest Neighbors

The noise variance estimator considered here is based on a nearest neighbour
(NN) approach. The NN of a point is defined as the (unique) point which
minimises a distance metric to that point in the input space:

N(i) := arg min
j �=i

‖xi − xj‖2

In this context, we use the Euclidean distance, but other metrics can also be
used.

2.2 The Delta Test

The Delta test [5, 6] is usually written as

Var(ε) ≈ 1
2M

M∑
i=1

(
yi − yN(i)

)2
,

i.e., we consider the differences in the outputs associated with neighboring (in
the input space) points. This is a well-known and widely used estimator, and it
has been shown—e.g., in [10]—that the estimate converges to the true value of
the noise variance in the limit M → ∞.

2.3 Noise Variance Estimators for Input Selection?

Noise variance estimators have been used previously for variable selection pro-
cedures, but there are some essential problems with this usage that need to be
addressed. Indeed, any reasonable noise estimator would manage to include all
of the relevant variables, since excluding them would cause unexplainable varia-
tions in the data. However, most estimators fail at the equally important task of
pruning irrelevant inputs, since in that context every variable has the possibility
of containing a slight bit of additional information and including it might lead
to a lower estimate.

For eliminating variables, it is then somewhat counter-intuitive to be using
a noise-estimation scheme. In spite of this, we will see that the Delta test has
the interesting property that adding unrelated inputs does increase the estimate,
separating it from most other estimators, and making it effective for input se-
lection.
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3 Theoretical Justification

In this section, we present the rationale for why minimising the Delta test can be
an effective variable selection procedure. Let the input space dimension d ∈ N

and the number of points M ∈ N be fixed.
We first assume that our data xi ∈ [0, 1]d for 1 ≤ i ≤ M are i.i.d. uniformly

distributed on the unit hypercube. Consequently the components (or variables,
denoted xk

i ) of each xi are i.i.d. on the interval [0, 1]. Let yi := f(xi) + εi for
1 ≤ i ≤ M where f : [0, 1]d → R is a continuous function with bounded first
and second partial derivatives. The residuals εi are i.i.d. random variables with
zero mean and Var(εi) = σ2. The points (xi)

M
i=1 and (yi)

M
i=1 now comprise our

imitation data set.
In general, there will be some inputs for f which are not significant—denote

by D ∈ P ({1, ..., d}) the set of variables which truly affect the output:

D = {k | ∂kf is non-zero somewhere}
Define the Delta test δ : P ({1, ..., d}) → R so that

δ(S) :=
1

2M

M∑
i=1

(
yi − yNS(i)

)2
where

NS(i) := arg min
j �=i

‖xi − xj‖2
S ,

and the seminorm
‖xi − xj‖2

S :=
∑
k∈S

(
xk

i − xk
j

)2
.

This representation of the Delta test maps each selection S ⊂ {1, ..., d} of vari-
ables to an estimate for the noise where the nearest neighbour is calculated in
the subspace spanned by the variables specified in S.

Conjecture 1 The correct selection of variables uniquely minimises the ex-
pected value of the Delta test.

S 	= D =⇒ E [δ(S)] > E [δ(D)]

Sketch of proof.

E [δ(S)] = E

[
1

2M

M∑
i=1

(
yi − yNS(i)

)2] =
1
2

E
[(

yi − yNS(i)

)2]
=

1
2

E
[(

f(xi) − f(xNS(i)) + εi − εNS(i)

)2]
=

1
2

E
[(

f(xi) − f(xNS(i))
)2]+ σ2,

since the ε terms are independent from x and each other. It then suffices to
show that

S 	= D =⇒ E
[(

f(xi) − f(xNS(i))
)2]

> E
[(

f(xi) − f(xND(i))
)2]

.
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Linear f

To illustrate the idea of the proof, we first study the case of a linear f , that is,
f(xi) = a0 +

∑
k∈D akxk

i with ak 	= 0 for k ∈ D. Now

E
[(

f(xi) − f(xNS(i))
)2] = E

[(∑
k∈D

ak

(
xk

i − xk
NS(i)

))2 ]

and since the components are uncorrelated:

= E

[∑
k∈D

a2
k

(
xk

i − xk
NS(i)

)2
]

=
∑
k∈D

a2
k E
[(

xk
i − xk

NS(i)

)2
]

=
∑

k∈D∩S

a2
k E
[(

xk
i − xk

NS(i)

)2
]

︸ ︷︷ ︸
=g(#S)

+
∑

k∈D\S

a2
k E
[(

xk
i − xk

NS(i)

)2
]

︸ ︷︷ ︸
=1/6

Here the second term is 1/6 because xk
i and xk

NS(i) are independent and uniformly
distributed on [0, 1] when k 	∈ S. The function g(#S)—which measures the
expected distance (squared) along one component in S from a point to its nearest
neighbor in the subspace of S—however, should clearly be far less than 1/6, as
long as M is large enough so that nearest neighbors can be expected to be
considerably closer than randomly chosen points.

Still, g(#S) is an increasing function of the number of variables in S. This
means that the expression is minimised by the smallest selection which includes
D, so it is minimised by S = D.

General f

For the general case of a smooth f , we apply the mean-value theorem to give us
a point x̂i on the line segment between xi and xNS(i) for which

E
[(

f(xi) − f(xNS(i))
)2] = E

[(∇f (x̂i)
(
xi − xNS(i)

))2]
Since the components are uncorrelated, we proceed as in the linear case.

= E

[(∑
k∈D

∂kf (x̂i)
(
xk

i − xk
NS(i)

))2 ]
=
∑
k∈D

E
[
(∂kf (x̂i))

2
(
xk

i − xk
NS(i)

)2
]

=
∑

k∈D∩S

E
[
(∂kf (x̂i))

2
(
xk

i − xk
NS(i)

)2
]

+
∑

k∈D\S

E
[
(∂kf (x̂i))

2
(
xk

i − xk
NS(i)

)2
]

As above, the second term here will be considerably large if D \ S 	= ∅, since
those particular variables are not considered in the minimisation but do affect
the output. Hence we need S ⊃ D for S to minimise the expression. As for
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Fig. 1: The convergence of choosing the correct input selection. The vertical
axis represents the ratio of cases where the Delta test correctly identified the
true selection from a total of 1000 tests for each point.

the first term, the differences xk
i − xk

NS(i) will on average grow slightly with the
size of S as there are more variables to take into account in the NN search. So
again, the minimising selection is the smallest set which contains D, and hence
the expression is uniquely minimised by S = D.
End of sketch of proof.

The assumptions that were made for the distribution of the data points
(uniform on unit hypercube) may seem strict, and our proof is rigorous only
for linear functions. However, the Delta test is a local method, and since any
continuous distribution is locally uniform and any smooth function is locally
linear the idea easily generalises to continuous distributions on bounded domains.

4 Experimental Results

To illustrate the effectiveness of the procedure, we conducted an artificial exper-
iment. For this test, we intentionally used a very nonlinear function:

f(x1, x2, x3, x4, x5, x6) = cos(2πx1) cos(4πx2) exp(x2) exp(2x3)

for xi ∈ [0, 1]. Obviously D = {1, 2, 3} in this case. The variance of the noise
was chosen to be 10, which is quite considerable considering the range of the
data.1 The estimator was given all 26 − 1 different possible input selections,
and the one which minimises the estimate is chosen. The results are presented
in Figure 1, where the vertical axis represents the fraction of cases where the
correct selection was chosen. The experiment was performed as a Monte Carlo
simulation with 1000 repetitions for each of the different data set sizes M .

It is clear that that with increasing data size, the Delta test is eventually able
to always choose the correct selection. The necessary size of over 1000 points in
this case might seem high, but recall that the situation was deliberately chosen
to be problematic. We ran the identical experiment with other noise variance
estimators [8, 9], and they definitely did not converge to a value of 1. The reason
that more sophisticated estimators can not be used for input selection in this
way is precisely because they are effective at accurately estimating the noise
variance—the bias of the estimate is (practically) zero even for a small number

1The signal-to-noise ratio Var(f(x))/ Var(ε) is approximately 1.08.
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of samples. The Delta test, as shown in [10], however, has a slight bias which
approaches zero in the limit M → ∞, but for a fixed M we are able to exploit
this bias for input selection purposes as explained in the previous section.

5 Conclusions

We have proposed that using the Delta test—a noise variance estimator—as
the target function for an input selection procedure can give effective results.
In addition to the theoretical treatment in Section 3, we provided illustrative
experimental evidence.

Now that we have elementary confirmation that the procedure is valid, the
next step will be to investigate further properties of the strategy. More ex-
periments with real-world data and established benchmarks will be needed to
evaluate the suitability for different types of problems.

The formal assumptions as presented in this paper may appear to rule out
application to many interesting problems such as time series or other situations
with non-independent variables. However, since the method is based on locality
it seems to be effective in these cases as well, and we are working on a formal
generalisation of the statement to cover such cases.

Since performing an exhaustive search over all possible input selections quick-
ly becomes unwieldy, it would be desirable to consider interactions between the
Delta test and other search/optimisation schemes. The approach could eventu-
ally lead to an effective methodology to complement current methods in use.
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