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Avenue Georges Lemâıtre, 4, 1348 Louvain-la-Neuve - Belgium

Abstract. This paper presents a nonlinear method aimed to project data

on a non-Euclidean manifold, when their structure is too complex to be

embedded in an Euclidean space. The method optimizes a pairwise dis-

tance criterion that implements a control between trustworthiness and

continuity that respectively represent the risks of flattening and tearing

the projection. The method is illustrated to project data on a sphere, but

can be extended to other manifolds such as the torus and the cylinder.

1 Introduction

Nowadays, industrial domains have to deal with high dimensional data. To visu-
alize them, projection methods try to minimize the loss of information between
original and projected data points. The quality of the projection relies on its
ability to preserve the pairwise distances, the neighbourhood and also on the
choice of a suitable manifold. Indeed, if the data are too complex, the Euclidean
space could be unadapted. Many state-of-the-art projection methods [1] try to
preserve either pairwise distances [2, 3, 4] or neighbourhoods [5, 6]. Most of the
methods project data on an Euclidean space. However, assuming that original
data lie on an unknown manifold, their global, possibly non-Euclidean, topology
contains an important part of the information: for example, when the manifold
intercepts itself. This is widely known in the context of neighbourhood based
methods like SOM [7, 8, 9, 10] where it is common to project on a sphere or
on a torus. This paper presents a distance based projection method on a non-
Euclidean manifold. The method is detailed for the case of the sphere but the
approach can be adapted to other manifolds like the cylinder or the torus.

Moreover the projection methods have to deal with a trade-off between trust-
worthiness and continuity [11], which means respectively avoiding flattening and
tearing the projection. The method presented in this paper controls the trade-off
explicitly through the pairwise distance criterion developped in Section 2.

Because the sphere is a nonlinear submanifold embedded in the Euclidean
space, the projection process is based on differential geometry theory. In Section
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3, we show how the gradient descent can be adapted to ensure the convergence
of the optimization, using the theory of optimization on manifolds [12, 13]. Pre-
liminary results are shown in Section 4 where improvements of the projection
on the sphere are assessed trough the trustworthiness and continuity criteria.

2 Projection criterion

The projection of a cylinder on the Euclidean space R
2 illustrates the trade-off

between trustworthiness and continuity that dimensionality reduction methods
have to deal with. As a first attempt, the cylinder can be flattened such that
two opposite generatrices are projected one onto the other. Such a projection is
not trustworthy because two close projected data points cannot be trusted to be
close in the original space. Conversely, the cylinder can be ripped up along one
generatrix and then be unfolded such that some close original data points go away
from each other; in this case the projection is not continuous anymore. These
types of behaviour led to the idea of two intuitive quality measures [11] that count
points that are close in one space (original or projected) and faraway in the other
one. However, these quality measures are difficult to optimize directly because
they are not continuous. To bypass this problem, most projection methods try
to preserve distances by minimizing a weighted distance criterion.

Without weighting, the idea is that distances δij between data points i and j
in the projected space must remain close to the corresponding original distances
Dij . Minimizing the criterion

∑N−1
i=1

∑N

j>i(Dij − δij)
2, where N is the number

of data points to be projected, does not always lead to good results as large
distances (in one of the two spaces) influence too much the criterion. Dividing
each term of the sum by the distance Dij between the original data points favours
the continuity of the projection. Indeed, the smaller is the original distance, the
largest is the weight in (Dij − δij)

2/Dij , which results in more importance given
to tears (small Dij and large δij). A tearing error term can thus be expressed:

Tearing error ≡

N−1∑

i=1

N∑

j>i

(Dij − δij)
2

Dij

.

Conversely, dividing each term by the distance δij in the projection space
leads to the flattening error that measures the trustworthiness:

Flattening error ≡

N−1∑

i=1

N∑

j>i

(Dij − δij)
2

δij

.

Indeed if two projected data points are close whereas the corresponding original
data points are distant, the flattening error will increase.

The total error f measures a compromise between the trustworthiness and
the continuity, more specifically between the flattening and the tearing errors,
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through a user-defined control parameter λ ∈ [0, 1]:

f ≡

N−1∑

i=1

N∑

j>i

λ
(Dij − δij)

2

Dij

+ (1 − λ)
(Dij − δij)

2

δij

. (1)

3 Optimization procedure

We now show how the criterion (1) proposed in the previous section can be
optimized on a specific non-Euclidean manifold, in our case the sphere. As
a first attempt, we could define yi in the spherical coordinate space and op-
timize (1) in a direct way by taking its gradient according to the spherical
coordinates. Unfortunately, the search space should have to be restricted to
{(φ, θ) ∈ [0, 2π[×[−π

2 , π
2 ]}. Moreover, in this space, there exist singularities in

the corresponding north and south poles; for example, the line segment θ = π
2

for φ ∈ [0, 2π[ corresponds to a single point on the sphere, the north pole.
In order to circumvent these difficulties, the minimization problem is refor-

mulated as an optimization problem in the Euclidean space R
3, with the additive

constraint that the projected data points must remain on an embedded mani-
fold - in our case a sphere. To search for a minimum of f , a gradient descent
procedure is used. In order to add the manifold constraint, the algorithm is
adapted to the optimization on manifold principle [12] that relies on differential
geometry.

Firstly, at iteration k, the algorithm tries to determine a search direction.
The gradient ∇f(y1(k), ...,yN (k), ν(k)) of the criterion is evaluated, where ν,
discussed later, represents the parameters of the manifold M. The aim of the
gradient direction is to approximate locally the cost function. Because of the
spherical constraints, the gradient must stay close to the manifold M. The
projection of ∇f on the tangent space Ty(k)M is then used:

∇′f(y1(k), ...,yN (k), ν(k)) = ProjTy(k)M
(∇f).

Secondly, the algorithm updates the current locations y(k). Through this
second search direction ∇′f , a new set of locations y

′(k + 1) is evaluated on the
tangent space Ty(k)M using a step size α:

y
′(k + 1) = y(k) − α∇′f.

Third, in order to satisfy the manifold constraint, another set y(k + 1) is
evaluated by a Retraction step [12] which is a kind of deterministic projection
of the tangent space on the manifold.

Finally, in order to provide a sufficient decrease of the cost function, the step
size α must satisfy the Armijo condition [12]. Let σ ∈ [0, 1]; if the condition
f(y(k))− f(y(k + 1)) ≥ σα‖|∇′f ||2 is satisfied, y(k + 1) is accepted; otherwise,
the step size α is decreased. When σ = 0, the condition checks the decrease of
the cost function. But if σ 6= 0, the decrease of the cost function is compared
to the expected decrease of its first order approximation in the less powerful
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Fig. 1: Illustration of an optimization iterate

direction −σ∇′f . The different steps are repeated until convergence and are
illustrated in Fig. 1.

The general methodology of the optimization on a manifold is now applied
to our problem of minimizing the criterion f defined by (1) on the sphere; the
expressions of the manifold M and the tangent space TyM must therefore be
detailed. Because the most appropriate radius R of the sphere cannot be deter-
mined a priori (remind that distances on the sphere must correspond, according
to (1), to the distances in the original space, whose scale is fixed), it is considered
as another variable. This leads to the following definitions:

M ≡ {(y1, ...,yN , R) ∈ S3 × ... × S3 × R
+|yT

i yi − R2 = 0, 1 ≤ i ≤ N},

TyM ≡ {(u1, ...,uN , uR) ∈ R
3 × ... × R

3 × R|yT
i ui − RuR = 0, 1 ≤ i ≤ N}.

Concerning the distance δij in the projected space, it is naturally defined by δij ≡

Rarccos
y

′

iyj

R2 . In the original high-dimensional space, a graph is constructed
between the data; the distances Dij are evaluated by the shortest path [3, 4]
as an approximation to the geodesic distances on the original and unknown
manifold. As for the evaluation of the gradient, ∇f is the vector of the partial
derivatives with respect to the variables yi and R.

4 Results

In order to evaluate the performance of the projection method, an experiment
is performed on the widely known data base of virtual face pictures [1, 14]. This
database contains 698 pictures of 64×64 pixels of faces taken from different angles
and lighting. The dimension of the original space is thus 4096 while its intrinsic
dimension is 3 because the pictures can be totaly described by the elevation and
the azimuth angles of the camera and by the lighting. Samples of these pictures
are presented in Fig. 2(a). The distance Dij between the data is evaluated by the
shortest path in the graph built between the pictures with 15 neighbours [3, 4].
The faces are projected both on R

2 and on the sphere, according to criterion (1),
in order to show the advantages of a projection on a sphere instead of on R

2.
Different values of λ are used to evaluate the trustworthiness and the continuity,
as defined in [11]. The closer to 1 these measures are, the most trustworthy or
continuous the projection is. As shown in Fig. 2(b), the results corresponding
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to the projection on a sphere are closer to (1, 1) than those corresponding to a
projection on R

2. To visualize the projected data, they are represented in the
spherical coordinate space in Fig. 2(c).
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Fig. 2: (a) Sample of face data base; (b) comparison between the projections
on R

2 and on the sphere with the trustworthiness and the continuity measure;
(c) Representation of the projected face data on the sphere for λ = 0.7 in the
spherical coordinate space (the color varies as the azimuthal angle of the camera
does). Only a few data are represented as faces to increase the readability of the
figure and to show the smoothness of the projection.

5 Conclusion

This paper describes a nonlinear data projection method able to project data
on a non-Euclidean manifold (the sphere is taken as an example) by preserving
the pairwise distances. It combines different interpretations of the information
underlying the distribution of the data. Firstly, with a pairwise distance cri-
terion, the proximity among data can be visualized and quantified. Secondly,
the method controls the trade-off between trustworthiness and continuity by the
introduction of flattening and tearing errors in the criterion. Finally, to embed
the global topology of the high dimensional manifold, the method builds the
mapping on a non-Euclidean manifold using a dedicated optimization method.
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The paper presents the projection on a sphere; however the methodology can
be easily generalized to other manifolds like the torus or the cylinder, through
the use of the generic optimization on manifold methodology. Future work will
include the development of the projections on other manifolds, including the
automatic determination of the most suitable one in a family of manifolds. First
ideas in this direction may be found in [15].
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