
Ensemble Modeling with a Constrained
Linear System of Leave-One-Out Outputs

Yoan Miche1,2, Emil Eirola1, Patrick Bas2, Olli Simula1,
Christian Jutten2, Amaury Lendasse1 and Michel Verleysen3

1 – Helsinki University of Technology – Dept. of Information and Computer Science
Konemiehentie 2, 02015 TKK – Finland

2 – Institut National Polytechnique de Grenoble – Gipsa-Lab
961 rue de la Houille Blanche, BP46, 38402 Grenoble – France

3 – Université Catholique de Louvain – Machine Learning Group
Place du Levant 3, B-1348-Louvain-la-Neuve, Belgium

Abstract. This paper proposes a method for ensemble models using
their Leave-One-Out output and solving a constrained linear system. By
the use of the proposed method to create an ensemble of Locally Linear
models, results on six different regression data sets are comparable to
state-of-the-art methods such as Least-Squares Support Vector Machines
and Gaussian Processes, while being orders of magnitude faster.

1 Introduction

One of the typical machine learning paradigms is about finding the model that
best fits the given data, in terms of test or validation. Searching for such a model
can be very time consuming: finding the model class that best suits the type of
data, optimizing the possible hyper-parameters, and finally training the model
once all details of the model structure have been selected. This most likely leads
to a rather good model, which properly fits the data and avoids the pitfalls of
overfitting. Meanwhile, a lot of computation time is consumed, which could be
used for building less efficient but much more numerous simpler models. The
Boosting idea [1] is using this approach: a “weak” model is built, and the data
leading to the largest errors are identified; another model of the same class is
then trained with an emphasis on these data, and so on. Hence, the models
iteratively overfit some part of the data which is not properly modeled by the
previous models. The addressed challenge here – the Ensemble technique – is
rather different. All models can be built in parallel. The goal is then to weight
each model so that the overall output of a linear combination of models has
the best possible error. Several ensemble techniques have been proposed, out
of which two kinds can be distinguished [2]: the variable weights approach and
the “average” ones. Traditionally, average weights ensemble techniques are used
and simply take an average of all the built models. While this obviously has the
advantage of having immediately the weights of all models, it yields suboptimal
results. The variable weights ensemble techniques try to optimize the weight
of each model in the ensemble according to a criterion. Techniques such as the
Genetic Algorithm have been recently used for such optimization [3] but are very
time consuming. This paper proposes the use of a Leave-One-Out (LOO) output

19

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

M1

Mn

y LOO
1

ny LOO

∑ ŷy LOO
i

α 1≥0

α i≥0

α n≥0

Fig. 1: Illustrative scheme of the Ensemble of models using LOO outputs.

for each model and a Non-Negative constrained Least-Squares problem solving
algorithm, leading to an efficient solution coupled with a short computation
time. Section 2 details this methodology, with Section 2.1 giving a proof on
the applicability of the methodology under some hypotheses. Experiments on
six regression data sets and details about the class of models used are given in
Section 3, along with a comparison of performances to state-of-the-art methods.

2 Method

The global aim is to find the optimal weights αi for a given set of models Mi (each
providing the prediction ŷ(i) = (y(i)

1 , . . . , y
(i)
N), with N the number of samples)

to form an ensemble as a linear combination:

ŷ =
n∑

i=1

αiŷ
(i). (1)

In order to not exaggerate the errors of each model in the ensemble, the αi should
usually be set to non-negative. Assuming each model is unbiased, the ensemble
model can be made unbiased by having

∑
αi = 1. The naive choice is to take

a simple average and specify αi = 1
n , but it is possible to obtain significantly

better performance by optimizing the weights. If the models are known to be
entirely independent, a closed-form expression for the optimal weights can be
derived as in Section 2.1. On the other hand, if the models contain dependencies
which are not easy to quantify, as is often the case, another choice is to solve
the weights from a constrained linear system. This scenario is studied in Section
2.2. The overall idea is depicted in Fig. 1.

2.1 Theoretical Study of Independent Models

Assuming there are n independent models for y – each of the form y(i) = y +εi,
where the additive noise εi has zero mean and variance σ2

i – it is possible to
directly derive the optimal weights αi. In the following, Y and Y (i) = Y + εi

are to be considered as random variables (y(i) is a vector of realisations of Y (i),
etc.). The aim is to minimise the (expected) MSE E

[(
Y − ∑

i αiY
(i)

)2
]
, which

20

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

can be separated due to the independence of the noise:

E
[(

Y −
∑

i
αiY

(i)
)2

]
= E

[(
Y −

∑
i
αiY −

∑
i
αiεi

)2
]

= E
[(

Y −
∑

i
αiy

)2
]

+ E
[(∑

i
αiεi

)2
]

=
(
1 −

∑
i
αi

)2

s2 +
∑

i
α2

i σ
2
i ,

where s2 = E
[
Y 2

]
. Differentiating w.r.t. αk, and setting to zero results in:

d

dαk

[(
1 −

∑
i
αi

)2

s2 +
∑

i
α2

i σ
2
i

]
= −2

(
1 −

∑
i
αi

)
s2 + 2αkσ2

k = 0.

This leads to the equation

αkσ2
k =

(
1 −

∑
i
αi

)
s2. (2)

Here the right side (call it c), while still dependent on the parameter αk, is
independent of k. Hence it holds that αk ∝ σ−2

k , with the proportionality
coefficient c. Substituting αi = cσ−2

i into Eq. 2, we can solve for c:

c = s2 −
∑

i
cσ−2

i s2 =⇒ c =
1

s−2 +
∑

i σ−2
i

.

Finally, the optimal weights are

αk =
σ−2

k

s−2 +
∑

i σ−2
i

, (3)

and the resulting MSE with these weights becomes 1/(s−2 +
∑

i σ−2
i). This is

lower than mink σ2
k, meaning that the ensemble is more performant than any

single constituent model. The error is also lower than the error achieved by the
naïve average weighting αk = 1

n , which is 1
n2

∑
i σ2

i .
There is a trade-off between bias and variance here: minimising the vari-

ance introduces a slight bias to the ensemble model. This could be rectified by
restricting the weights to

∑
i αi = 1, in which case the optimal weights are

αk =
σ−2

k∑
i σ−2

i

. (4)

This can be shown using Lagrange multipliers. The resulting MSE is then slightly
larger: 1/

∑
i σ−2

i , however, the difference is practically insignificant. Indeed, if
the collections of models includes even a few reasonably accurate ones – that
is, ∃k, s.t., σk � s – the term s−2 is insignificant compared to the sum in the
denominator in Eq. 3 for αk, and the weights (and resulting MSEs) calculated
by Eq. 3 or 4 are essentially equivalent.

Some observations concerning Eq. 3 and 4 can be made. First, the weight
of a model is inversely proportional to the variance of the error of that model,
resulting in good models having large weights, and, correspondingly, poor mod-
els having low weights. Second, all the weights are strictly positive. As the
assumptions specify that the models are independent, even the poor models can
still contribute to the predictive power to some extent.

21

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

2.2 Practice

In the previous section, it was assumed that all the models are independent. In
practice, this scenario is unlikely. If the particular dependencies are unknown, it
is difficult to derive an exact expression for the optimal weights of the ensemble,
but in any reasonable case there certainly exists a set of weights such that the
resulting MSE is notably lower than that of any single model. The alternative
is to solve the weights from the linear system in Eq. 5 below, as in this one
the dependencies between models can be accounted for. Solving the system is a
very aggressive method of fitting and runs the risk of overfitting. To counteract
this, the LOO output of the models is used, and the αi are restricted to be
non-negative. Solving the constrained linear system naturally results in higher
weights for more accurate models, and low weights for poor models. This inverse
relationship between the weight and MSE is in correspondance with Eq. 3. This
method is based on the LOO [4] output y

(i)
LOO of each of the models Mi, with the

coefficients determined using a Non-Negative constrained Least-Squares (NNLS)
algorithm. The classical NNLS algorithm in [5] is used to compute this solution.
For each model Mi, 1 ≤ i ≤ n, the LOO output y

(i)
LOO is computed by omitting

the considered point from the training and evaluating the model on that single
point. Hence, a set of

{
y

(i)
LOO

}
1≤i≤n

outputs are computed, one for each model.
The coefficients αi are then solved from the constrained linear system:

arg min
α

∥∥∥∥y −
n∑

i=1

αiy
(i)
LOO

∥∥∥∥
2

s.t. αi ≥ 0 . (5)

As mentioned earlier, one advantage of this method is its low computational
time, in terms of finding an optimal linear combination. The NNLS algorithm
has been widely used and is known to converge in 1

2n steps, as noticed in [5].
In the idea of keeping the computational time low, for the whole method to be
fast, the class of models used should be such that the LOO output is rapidly
computed or eventually approximated. As the Locally Linear models used in the
experimental section are not independent, the weights are determined by solving
Eq. 5 instead of using Eq. 3.

3 Experiments

3.1 Locally Linear models (LL)

The class of models used in the experiments is known as Locally Linear mod-
els [6, 7] (LL). The idea is to perform a linear regression for each sample of the
data set, based on its k-nearest neighbors. Each sample’s output can then be
estimated using the linear regression model. To be able to fit a linear model,
k must necessarily be at least the number of dimensions d plus one (this lower
bound kmin has to be checked for possible numerical problems might arise). In
the experiments, the lower bound kmin has been set to d + 2 and the upper
bound to kmax = d + 11 and all the values in the range have been tested. In
this setup, all the possible subsets of variables are investigated and used for the

22

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Table 1: Regression data sets: number of variables and number of samples.
Abalone Ailerons Elevators CPU Servo Bank

Number of Variables 8 5 6 6 4 8
Samples 4177 7129 9517 209 167 4499

Table 2: Computational times (in seconds) on regression data sets.
Abalone Ailerons Elevators CPU Servo Bank

LS-SVM 6.6e+4 4.2e+2 5.8e+2 3.2e+2 1.3e+2 1.6e+3
MLP 2.1e+3 3.5e+3 3.5e+3 5.8e+2 5.2e+2 2.7e+3
GP 9.5e+2 2.9e+3 6.5e+3 3.2 2.2 1.7e+3
E-LL 1.8e+2 4.1e+1 1.0e+2 2.0 4.4e-1 2.0e+2

linear combination of models: there are then (kmax − kmin)× (2d − 1) models to
combine, using their LOO output and the NNLS algorithm. Irrelevant variables
subsets yield suboptimal models and LOO outputs and are therefore not taken
in the linear combination. Since all the 2d − 1 subsets of variables are exam-
ined, and while the LL models and their LOO outputs are fast to compute, it
remains necessary to use data sets with a number of variables sufficiently low
(no more than 10 in the following experiments). Variable selection or wrapper
techniques could be used in order to extend this limit while keeping a reasonable
computational time.

3.2 Experiments setup and results

The methodology is applied to six regression data sets from the UCI database [8].
All data sets are processed in the same way: 10 random permutations of the
whole set are taken (without repetitions), and each is first divided in training and
test sets (two-thirds for training and one third for testing), and then normalized
(zero mean and unit standard deviation) both using the mean and standard
deviation from the training set. Table 1 gives details about the data sets. In order
to make a fair comparison of the proposed method to state-of-the-art techniques,
Least-Squares Support Vector Machines [9] (LS-SVM), Multi-Layer Perceptron
(MLP) (using the Matlab Neural Network toolbox with Levenberg-Marquardt
backpropagation) and Gaussian Processes [10] (GP) are also used on the same
data sets. Each method is used on the 10 permutations of the seven data sets,
in order to obtain reliable performance and a standard deviation on the results.
Computational times are the result of averaging the 10 computational times
obtained and are given in Table 2. From Table 3, the proposed methodology
performs roughly as well as the best model in each case, and with a smaller
standard deviation of the results in most cases. It can be noted that in most
cases solving the linear system results in a relatively low number of non-zero
coefficients αi (number of selected models) as shown in Table 3.

23

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

Table 3: Normalized MSE Test results in boldface (standard deviations in reg-
ular) and number of selected models (in parenthesis) for Ensemble of LL.

Abalone Ailerons Elevators CPU Servo Bank
LS-SVM 0.44 1.43 1.09 0.31 6.9e-1 1.18

2.6e-2 2.9e-1 1.2e-1 2.4e-1 3.3e-1 3.5e-2
MLP 0.45 2.97 0.46 0.66 2.2e-1 0.04

5.6e-2 4.8e-2 1.6e-2 8.5e-1 8.1e-2 1.8e-3
GP 0.44 0.30 0.35 0.31 4.8e-1 0.04

2.3e-2 2.1e-2 8.8e-3 3.1e-1 3.5e-1 2.2e-3
E-LL 0.46 0.30 0.39 0.14 5.6e-1 0.04

2.5e-2 1.5e-2 1.2e-2 9.4e-2 3.0e-1 1.7e-3
Select. (23) (15) (20) (12) (4) (22)

4 Conclusion

This paper presents a method to build ensembles of models using the LOO out-
puts, combined using a non-negativity constrained linear system solved in the
least-squares sense. It is shown, that under some assumptions on the models,
there is always a benefit from the ensemble of models. The application of this
method to Locally Linear models proves to yield results comparable to the state-
of-the-art models, while keeping a low computational time and a low number of
selected models for the ensemble. In future work, this method shall be extended
to other classes of models (for which the LOO output is still rapidly computed
or approximated). Also, the construction of all the models could be done in
parallel, while the proposed results in this paper are for sequentially built mod-
els. Computational time could then be highly reduced while keeping the whole
methodology identical. Also, variable selection or wrapper techniques can be
used to extend the current dimensional limit on the data.

References
[1] R. E. Schapire. Theoretical views of boosting and applications. In Proceedings of the 10th

Int. Conf. on Algorithmic Learning Theory, pages 13–25, Tokyo, Japan, Dec. 1999.
[2] T. G. Dietterich. Handbook of brain theory and neural networks. Cambridge MA: MIT

Press, 2nd edition, 2002. Chapter: Articles: Ensemble Learning.
[3] Z. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be better than

all. Artif. Intell., 137(1-2):239–263, 2002.
[4] A. Lendasse, V. Wertz, and M. Verleysen. Model selection with cross-validations and

bootstraps - application to time series prediction with RBFN models. In ICANN 2003,
Istanbul (Turkey), volume 2714 of LNCS, pages 573–580. Springer, June 26-29 2003.

[5] C. L. Lawson and R. J. Hanson. Solving least squares problems. SIAM Classics in Applied
Mathematics, 3rd edition, 1995.

[6] M. Birattari, G. Bontempi, and H. Bersini. Local learning for data analysis. In Proceedings
of the 8th Belgian-Dutch Conf. on Machine Learning, Wageningen, Netherlands, 1998.

[7] C. Atkeson et al. Locally weighted learning. AI Review, 11:11–73, 1997.
[8] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.
[9] J.A.K. Suykens, T. Van Gestel, J. De Brabanter, B. De Moor, and J. Vanderwalle. Least-

Squares Support-Vector Machines. World Scientific, Singapore, 2002.
[10] C. E. Rasmussen et al. Gaussian Processes for Machine Learning. The MIT Press, 2006.

24

ESANN 2010 proceedings, European Symposium on Artificial Neural Networks - Computational Intelligence
and Machine Learning. Bruges (Belgium), 28-30 April 2010, d-side publi., ISBN 2-930307-10-2.

